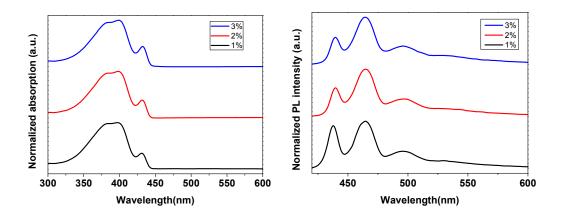

Supplementary Materials: An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties

Qi Zhang, Lang Chi, Gang Hai, Yueting Fang, Xiangchun Li, Ruidong Xia, Wei Huang and Erdan Gu


Calculation of β-phase Fraction

The absorption spectra of mixed-phase PFO films are understood to comprise a linear superposition of glassy and β -phase contributions. To estimate the fraction of β -phase chain segments (hereafter simply referred to as " β -phase fraction") in a PFO thin film, the absorption spectrum of the β -phase chain segments was extracted by normalizing the corresponding mixed phase and reference glassy absorption spectra at ~345 nm, followed by subtraction. The β -phase fraction is estimated from the ratio of integrated spectral areas of the β -phase, A_{β} , and the mixed-phase, A_{mixed} , (where $A_{mixed} = A_{glassy} + A_{\beta}$) absorption spectra, taking into account that the relative difference in oscillator strength, fosc, used time-dependent density functional theory (DFT) to estimate $f_{osc}^{\beta} = 1.08 \times f_{osc}^{glassy}$. Consequently, the β -phase fractions in PFO films were calculated by Equation (1):

Figure S1. Images of glassy PFO films and PFO film with various β -phase fractions when exposed under 365 nm flashlight.

Figure S2. Normalized absorption and PL of the films spin-coated from mixed PFO solution with 1, 2 and 3 vol % paraffin oil.

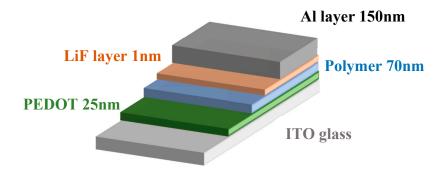


Figure S3. OLED device structure.

Table S1. Values of the PLQE (Photoluminescence quantum efficiency) and β -phase fraction of PFO film samples made from different solution with paraffin oil volume percentages.

Paraffin Oil Volume Percentage (vol%)	β-Phase Fraction (%)	PLQE (%)
0	0	49
0.05	0.2	51
0.07	0.5	53
0.09	1.5	52
0.11	2	55
0.13	4	61
0.15	5	66
0.30	7	51
0.50	20	50