

Fig. S1. Phylogenetic analysis of BglG167b in characterized glycoside hydrolases in family 3.
Amino acid sequences were obtained from the NCBI database and CAZy database (accession
numbers are indicated on the tree). This tree was made using the neighbor-joining method
with a Kimura two-parameter distance matrix and pairwise deletion.

7	Table S1.	Effects	of metal	ions and	chemical	agents	on the	activity	of p	urified	recomb	oinant

8 BglG167b.

Motal ion and reagant	Relative activity \pm SD (%)					
	1 mM	10 mM				
NaCl	100.0±6.3	94.4±1.6				
KCl	104.9±1.7	95.7±3.3				
$MgCl_2$	90.9±2.8	93.9±1.4				
CaCl ₂	94.4±5.7	61.0±4.7				
ZnCl ₂	44.6±6.0	26.3±9.6				
CoCl ₂	93.1±5.4	38.2±4.5				
CuCl ₂	13.8±1.0	14.0 ± 1.0				
SDS	33.8±9.0	19.9±0.6				
EDTA	81.0±3.7	28.9 ± 2.8				
DTT	85.9±1.1	46.9±5.9				
Control	100.0	100.0				

9

10 **Table. S2.** Relative activity of purified recombinant BglG167b towards various chromogenic

	Substrate ^a	Relative activity \pm SD (%) ^b
1	<i>p</i> NP-α-D-glucopyranoside	8.1 ± 2.6
2	$pNP-\alpha$ -D-mannopyranoside	ND
3	$pNP-\alpha$ -D-xylopyranoside	ND
4	$pNP-\alpha$ -L-arabinofuranoside	ND
5	$pNP-\alpha$ -L-arabinopyranoside	ND
6	<i>p</i> NP- <i>α</i> -L-rhamnopyranoside	ND
7	$pNP-\beta$ -D-fucopyranoside	ND
8	$pNP-\beta$ -D-galactopyranoside	ND
9	$pNP-\beta$ -D-glucopyranoside	100.0 ± 7.2
10	p NP-N-acetyl β -D-glucosaminide	ND
11	$pNP-\beta$ -D-mannopyranoside	ND
12	$pNP-\beta$ -D-xylopyranoside	ND
13	$pNP-\beta-L$ -arabinopyranoside	ND
14	oNP-α-D-galactopyranoside	ND
15	$oNP-\beta$ -D-fucopyranoside	ND
16	$oNP-\beta$ -D-galactopyranoside	ND
17	oNP-β-D-glucopyranoside	22.9 ± 0.9

substrates as measured by oNP or pNP release at 37°C. ND: not determined.

¹² ^aFinal concentration, 2.0 mM.

¹³ ^bActivity toward $pNP-\beta$ -D-glucopyranoside was set as 100%.

14

15 **REFERENCES**

- 16 Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press,
- 17 Cambridge.

18