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Abstract: Three computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/
LANL2DZ+dp) were used to study the effect of substitution on the potential energy surfaces of
RTl≡PR (R = F, OH, H, CH3, SiH3, SiMe(SitBu3)2, SiiPrDis2, Tbt (=C6H2-2,4,6-(CH(SiMe3)2)3), and
Ar* (=C6H3-2,6-(C6H2-2, 4,6-i-Pr3)2)). The theoretical results show that these triply bonded RTl≡PR
compounds have a preference for a bent geometry (i.e., ∠R–Tl–P ≈ 180◦ and ∠Tl–P–R ≈ 120◦).
Two valence bond models are used to interpret the bonding character of the Tl≡P triple bond.
One is model [I], which is best described as Tl
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valence bond models are used to interpret the bonding character of the Tl≡P triple bond. One is 
model [I], which is best described as Tl    P. This interprets the bonding conditions for RTl≡PR 
molecules that feature small ligands. The other is model [II], which is best represented as Tl    P. 
This explains the bonding character of RTl≡PR molecules that feature large substituents. 
Irrespective of the types of substituents used for the RTl≡PR species, the theoretical investigations 
(based on the natural bond orbital, the natural resonance theory, and the charge decomposition 
analysis) demonstrate that their Tl≡P triple bonds are very weak. However, the theoretical results 
predict that only bulkier substituents greatly stabilize the triply bonded RTl≡PR species, from the 
kinetic viewpoint. 
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1. Introduction 

The preparation and characterization of triply bonded heavier main group element (E14 = Si, Ge, 
Sn, and Pb) molecules (i.e., RE14≡E14R) is a popular field of study in inorganic chemistry [1–41]. From 
the valence electron viewpoint, the triply bonded RE13≡E15R compound is isoelectronic to the 
RE14≡E14R species. However, the former has been the subject of much less study than the latter, in the 
field of synthetic chemistry. Therefore, the level of understanding of the chemistry of RE13≡E15R is 
lower than that for group 14 less-coordinate alkyne analogues. 

In the group 15 family, phosphorus is more similar to its diagonal relative, carbon, than to 
nitrogen [42]. Thallium is also known to be monovalent and has an ionic radius that is similar to that 
of potassium, so it is often presumed to be a pseudo alkali metal [43]. The isolation and characterization 
of the singly bonded organothallium phosphorus molecule, (Me3SiCH2)3Tl�P(SiMe3)3, was 
experimentally reported about twenty years ago [44]. Two other novel compounds that contain the 
thallium�phosphorus single bond have also been identified [45,46]. If both thallium and phosphorus 
elements could be stabilized using a single bond to connect them, it might be possible to extend this 
field to the study of other triply bonded RTl≡PR inorganic molecules. This work reports the first 
theoretical study of the possible synthesis of the RTl≡PR molecule, which may be isolable as a 
long-lived compound. The study determines potential inorganic complexes that can stabilize the 
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1. Introduction

The preparation and characterization of triply bonded heavier main group element (E14 = Si,
Ge, Sn, and Pb) molecules (i.e., RE14≡E14R) is a popular field of study in inorganic chemistry [1–41].
From the valence electron viewpoint, the triply bonded RE13≡E15R compound is isoelectronic to the
RE14≡E14R species. However, the former has been the subject of much less study than the latter, in the
field of synthetic chemistry. Therefore, the level of understanding of the chemistry of RE13≡E15R is
lower than that for group 14 less-coordinate alkyne analogues.

In the group 15 family, phosphorus is more similar to its diagonal relative, carbon, than to
nitrogen [42]. Thallium is also known to be monovalent and has an ionic radius that is similar
to that of potassium, so it is often presumed to be a pseudo alkali metal [43]. The isolation and
characterization of the singly bonded organothallium phosphorus molecule, (Me3SiCH2)3Tl–P(SiMe3)3,
was experimentally reported about twenty years ago [44]. Two other novel compounds that contain the
thallium–phosphorus single bond have also been identified [45,46]. If both thallium and phosphorus
elements could be stabilized using a single bond to connect them, it might be possible to extend
this field to the study of other triply bonded RTl≡PR inorganic molecules. This work reports the
first theoretical study of the possible synthesis of the RTl≡PR molecule, which may be isolable
as a long-lived compound. The study determines potential inorganic complexes that can stabilize
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the thallium≡phosphorus triple bond, to demonstrate the theoretical possibility that these unusual
acetylene inorganic analogues can be synthesized.

2. Methodology

Using the Gaussian 09 program package [47], all geometries are fully optimized at the M06-2X [48],
B3LYP [49,50], and B3PW91 [51,52] levels of theory, in conjunction with the Def2-TZVP [53] and
LANL2DZ+dp [54–58] basis sets. These DFT calculations are signified as M06-2X/Def2-TZVP,
B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp, respectively. In order to confirm that the reactants
and products have no imaginary frequencies and that the transition states possess only one imaginary
frequency, frequency calculations were performed for all structures. Thermodynamic corrections to
298 K, heat capacity corrections and entropy corrections (∆S) are applied to the three levels of DFT.
The relative free energy (∆G) at 298 K is also computed at the same levels of theory.

Next, (SiiPrDis2)Tl≡P(SiiPrDis2), (Tbt)Tl≡P(Tbt), and (Ar*)Tl≡P(Ar*) are the model reactants
for this study. It is known that the B3LYP functional fails to describe non-valent interactions, such
as the London dispersion correctly. As a result, for large ligands, calculations were performed using
dispersion-corrected M06-2X method [48]. Because of the limitations of the available memory size
and CPU time, frequencies are not computed at the dispersion-corrected M06-2X/Def2-TZVP level of
theory for the triply bonded R´Tl≡PR’ systems that have bulky ligands (R’), so the zero-point energies
and the Gibbs free energies that are derived using the dispersion-corrected M06-2X/Def2-TZVP cannot
be used for these systems.

3. General Considerations

Two interaction models that describe the chemical bonding of the triply bonded RTl≡PR, which
serve as a basis for discussion, are given in this section. For convenience, the RTl≡PR molecule
is divided into two fragments: Tl–R and P–R. On the basis of theoretical results (see below), three
computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp) all
indicate that the Tl–R and P–R fragments are respectively calculated to be in the singlet ground state
and the triplet ground state.

In model [I], electron promotion energy (∆E1) forces the P–R moiety from the triplet ground state
to the singlet excited state, so the electronic structure of RTl≡PR can be described in terms of the
dimerization of singlet Tl–R and singlet P–R fragments, as shown in Figure 1. From the chemical
bonding viewpoint, model [I] shows that the Tl≡P triple bond consists of one σ–donation of Tl→P
and two π–donations of Tl←P. In model [II], the electron advancement energy (∆E2) promotes the
Tl–R unit from the singlet ground state to the triplet excited state. Accordingly, the bonding structure
of RTl≡PR can also be represented as the dimerization of triplet Tl–R and triplet P–R fragments, as
shown in Figure 1. From the bonding structure viewpoint, model [II] shows that the Tl≡P triple bond
is composed of one Tl←P π–bond, one regular σ–bond and one π–bond.

It is schematically shown in Figure 1 that the formation of the triply bonded RTl≡PR molecule
can be regarded as either [Tl–R]1 + [P–R]1 → [RTl≡PR]1 (model [I]) or [Tl–R]3 + [P–R]3 → [RTl≡PR]1

(model [II]). It is worthy of note that since the lone pair of phosphorus has significant amount of s
character, this could reduce the bonding overlaps between Tl and P elements (see the black lines in
model [I] and model [II] in Figure 1). As a consequence, the Tl≡P triple bond should be very weak,
which is in contrast to the traditional triple bond of acetylene. This prediction is confirmed in the
following section. Both models are used in this study clearly show that the Tl≡P triple bond is mostly
attributed to electron donation from the lone pair of P to the empty p-orbital of Tl.

This bonding analysis is used to interpret the bonding properties of the triply bonded RTl≡PR
molecule in the next section.
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Figure 1. The interaction models, [I] and [II], for the triply bonded RTl≡PR molecule.

4. Results and Discussion

4.1. Small Ligands on Substituted RTl≡PR

The effect of small substituents on the stability of the triply bonded RTl≡PR species is discussed
from the kinetic and the thermodynamic viewpoints. Five small substituents (R = H, F, OH, CH3

and SiH3) are used for the RTl≡PR model molecule. The important geometrical parameters for
the RTl≡PR compounds are calculated at the three computational methods (M06-2X/Def2-TZVP,
B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp) and the results are listed in Table 1. The Cartesian
coordinates for the triply bonded minima are given in the Supplementary Information.
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Table 1. The important geometrical parameters, the natural charge densities (QTl and QP), the binding
energies (BE), the HOMO-LUMO energy gaps and the Wiberg Bond Index (WBI) for RTl≡PR using the
M06-2X/Def2-TZVP, B3PW91/Def2-TZVP (in round brackets) and B3LYP/LANL2DZ+dp (in square
brackets) levels of theory.

R F OH H CH3 SiH3

Tl≡P (Å)
2.422 2.437 2.320 2.339 2.313

(2.425) (2.443) (2.327) (2.349) (2.336)
[2.455] [2.480] [2.331] [2.360] [2.337]

R-P-Tl (◦)
179.7 179.1 179.1 175.2 174.6

(179.7) (176.5) (178.5) (174.5) (175.7)
[178.5] [177.9] [178.2] [171.3] [179.1]

P-Tl-R (◦)
94.63 98.92 86.51 100.4 94.76

(96.59) (101.5) (86.82) (102.2) (92.71)
[94.22] [100.1] [86.36] [102.6] [90.78]

R-P-Tl-R (◦)
180.0 179.4 179.1 178.0 177.0

(180.0) (178.8) (179.2) (178.8) (179.1)
[180.0] [179.2] [179.8] [179.9] [179.4]

QP
(1)

0.16 0.076 −0.63 −0.37 −0.83
(0.17) (0.13) (−0.60) (−0.33) (−0.72)

[0.096] [0.021] [−0.62] [−0.39] [−0.76]

QTl
(2)

1.19 1.14 1.12 1.07 0.82
(1.11) (1.03) (0.87) (0.99) (0.75)
[1.25] [1.17] [0.99] [1.13] [0.89]

∆EST for Tl–R
(kcal/mol) (3)

102.1 83.57 84.85 66.82 75.96
(103.7) (80.69) (85.69) (67.38) (77.63)
[102.2] [83.15] [83.05] [67.94] [74.40]

∆EST for P–R
(kcal/mol) (4)

−28.91 −17.53 −30.75 −26.43 −15.84
(−33.35) (−21.29) (−35.49) (−30.26) (−18.68)
[−31.76] [−20.24] [−33.16] [−29.21] [−14.46]

HOMO—LUMO
(kcal/mol)

184.1 167.6 210.6 151.2 142.1
(131.6) (118.1) (212.0) (149.3) (145.1)
[182.5] [169.1] [215.4] [146.5] [148.5]

BE (kcal/mol) (5)
95.58 83.57 84.85 66.82 75.96

(95.74) (82.10) (85.69) (67.38) (77.63)
[93.43] [83.15] [83.05] [67.94] [74.40]

WBI (6)
1.159 1.162 1.456 1.382 1.404

(1.194) (1.197) (1.491) (1.415) (1.417)
[1.191] [1.178] [1.475] [1.403] [1.372]

(1) The natural charge density on the central phosphorus atom; (2) The natural charge density on the central thallium
atom; (3) ∆EST (kcal mol−1) = E(triplet state for R–Tl) – E(singlet state for R–Tl); (4) ∆EST (kcal mol−1) = E(triplet
state for R–P) – E(singlet state for R–P); (5) BE (kcal mol−1) = E(singlet state for R–Tl) + E(triplet state for R–P) –
E(singlet for RTl≡PR); (6) The Wiberg bond index (WBI) for the Tl≡P bond: see reference [59–61].

There are four noteworthy features of Table 1:

(1) The central Tl≡P triple bond distances (Å) for R = F, OH, H, CH3 and SiH3 are respectively
estimated to be 2.313–2.422 Å, 2.336–2.443 Å and 2.331–2.480 Å, at the M06-2X/Def2-TZVP,
B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp levels of theory. As mentioned in the Introduction,
neither experimental nor theoretical results for the triply bonded RTl≡PR species are available to allow
a definitive comparison. However, to the author’s best knowledge, there are only a few published
reports concerning the singly bonded R3Tl–PR3 molecules and these report the Tl–P bond length to be
2.922 Å [44], 3.246–3.301 Å [45] and 3.032–3.168 Å [46]. These single bond distances are all longer than
the sum of the covalent radii (i.e., 2.62 Å) [62] for the Tl and P elements.

(2) The three DFT calculations shown in Table 1 demonstrate that the R–Tl and R–P components
have a singlet and triplet ground state, respectively. The three DFT computational results also show
that the singlet-triplet energy differences (∆EST) for R–Tl and R–P fragments are estimated to be at
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least +67 and −15 kcal/mol, respectively. These energy values strongly suggest that model [I], which
is shown in Figure 1, is superior to model [II] in describing the bonding characters of triply bonded
RTl≡PR molecules that feature small substituents (R). Model [I] shows that the bonding structure of
the triple bond in RTl≡PR can be represented as Tl

 

Molecules 2017, 22, 1111; doi:10.3390/molecules22071111 www.mdpi.com/journal/molecules 

Article 

Substituent Effects on the Stability of Thallium and 
Phosphorus Triple Bonds: A Density Functional 
Study 
Jia-Syun Lu 1, Ming-Chung Yang 1 and Ming-Der Su 1,2,* 

1 Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan; 
s1022818@mail.ncyu.edu.tw (J.-S.L.); mingchungmc@gmail.com (M.-C.Y.) 

2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, 
Taiwan 

* Correspondence: midesu@mail.ncyu.edu.tw; Tel.: +886-5-2717964 

Received: 12 June 2017; Accepted: 29 June 2017; Published: 5 July 2017 

Abstract: Three computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/ 
LANL2DZ+dp) were used to study the effect of substitution on the potential energy surfaces of RTl≡PR 
(R = F, OH, H, CH3, SiH3, SiMe(SitBu3)2, SiiPrDis2, Tbt (=C6H2-2,4,6-(CH(SiMe3)2)3), and Ar* 
(=C6H3-2,6-(C6H2-2, 4,6-i-Pr3)2)). The theoretical results show that these triply bonded RTl≡PR 
compounds have a preference for a bent geometry (i.e., ∠R�Tl�P ≈ 180° and ∠Tl�P�R ≈ 120°). Two 
valence bond models are used to interpret the bonding character of the Tl≡P triple bond. One is 
model [I], which is best described as Tl    P. This interprets the bonding conditions for RTl≡PR 
molecules that feature small ligands. The other is model [II], which is best represented as Tl    P. 
This explains the bonding character of RTl≡PR molecules that feature large substituents. 
Irrespective of the types of substituents used for the RTl≡PR species, the theoretical investigations 
(based on the natural bond orbital, the natural resonance theory, and the charge decomposition 
analysis) demonstrate that their Tl≡P triple bonds are very weak. However, the theoretical results 
predict that only bulkier substituents greatly stabilize the triply bonded RTl≡PR species, from the 
kinetic viewpoint. 

Keywords: triply bonded molecules; triple bond; acetylene; substituent effects 
 

1. Introduction 

The preparation and characterization of triply bonded heavier main group element (E14 = Si, Ge, 
Sn, and Pb) molecules (i.e., RE14≡E14R) is a popular field of study in inorganic chemistry [1–41]. From 
the valence electron viewpoint, the triply bonded RE13≡E15R compound is isoelectronic to the 
RE14≡E14R species. However, the former has been the subject of much less study than the latter, in the 
field of synthetic chemistry. Therefore, the level of understanding of the chemistry of RE13≡E15R is 
lower than that for group 14 less-coordinate alkyne analogues. 

In the group 15 family, phosphorus is more similar to its diagonal relative, carbon, than to 
nitrogen [42]. Thallium is also known to be monovalent and has an ionic radius that is similar to that 
of potassium, so it is often presumed to be a pseudo alkali metal [43]. The isolation and characterization 
of the singly bonded organothallium phosphorus molecule, (Me3SiCH2)3Tl�P(SiMe3)3, was 
experimentally reported about twenty years ago [44]. Two other novel compounds that contain the 
thallium�phosphorus single bond have also been identified [45,46]. If both thallium and phosphorus 
elements could be stabilized using a single bond to connect them, it might be possible to extend this 
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P. It must be noted that the fact that the lone
pair of phosphorus has s character and the valence p orbital of phosphorus is much smaller than that
of thallium means that both factors can vigorously affect the bonding overlaps between phosphorus
and thallium atoms. Therefore, it is anticipated that the triple bond in these RTl≡PR species is very
weak. This prediction is confirmed by the three DFT calculations shown in Table 1. All of the values
for the Wiberg bond index (WBI) [59–61] are a little bit higher than 1.0, rather than 2.0. That is to say,
regardless of whether small electropositive or small electronegative groups are attached, the RTl≡PR
systems possess a quite weak Tl≡P triple bond.

(3) As already shown, model [I] describes the bonding characters in triply bonded RTl≡PR
compounds that feature small substituents better than model [II]. This, in turn, strongly implies that an
acute bond angle ∠Tl–P–R (close to 90◦) and a linear bond angle ∠R–Tl–P (close to 180◦) is favored in
the triply bonded RTl≡PR molecule, which is verified by the three DFT calculations as shown in Table 1.
The nearly perpendicular angle on the P center can also be attributed to the “orbital non-hybridization
effect” [63–66] and the “inert s-pair effect” [63–66] as discussed previously.

(4) The binding energies (BE) that are required to cleave the central Tl≡P bond, which leads to one
R–Tl and one R–P fragment in the singlet ground state and in the triplet ground state, respectively, are
summarized in Table 1. The calculated BE values (kcal/mol) for the RTl≡PR molecules are in the range
of 67–96, 67–96 and 68–93, at the M06-2X, B3PW91 and B3LYP levels of theory, respectively. This data
confirms that the central thallium and phosphorus atoms in the substituted RTl≡PR compounds are
strongly bonded.

Considering the stability of RTl≡PR, the theoretical results for the potential energy surfaces of the
model molecule, RTlPR (R = F, OH, H, CH3 and SiH3), are described in Figure 2. This figure shows a
number of stationary points exist, including local minima that correspond to RTl≡PR, R2Tl=P, Tl=PR2

and the transition states that connect them. The three DFT computational results show that all of
the triply bonded RTl≡PR compounds that feature small substituents immediately transfer to the
corresponding doubly bonded species via facile 1,2-migration reactions. In other words, the theoretical
evidence shows that triply bonded RTl≡PR species that feature small ligands are both kinetically and
thermodynamically unstable, regardless of whether they are electronegative or electropositive, so it is
unlikely that they could be prepared or synthesized in a laboratory.

4.2. Large Ligands on Substituted R′Tl≡PR′

As previously mentioned, in order to stabilize R′Tl≡PR′ from the kinetic viewpoint, three types of
large substituents (R´) are used in this study. These are SiMe(SitBu3)2, SiiPrDis2, Tbt (=C6H2-2,4,6-
(CH(SiMe3)2)3), and Ar* (=C6H3-2,6-(C6H2-2,4,6-i-Pr3)2) [67,68], as shown in Figure 3. The geometrical
structures of R′Tl≡PR′ are optimized at the dispersion-corrected M06-2X/Def2-TZVP [53] level of
theory. Their important calculated parameters are listed in Table 2.

Table 2. The Bond Lengths (Å), Bond Angels (◦), Singlet—Triplet Energy Splitting (∆EST), Natural
Charge Densities (QTl and QP), Binding Energies (BE), the HOMO-LUMO Energy Gaps, the
Wiberg bond index (WBI), and Some Reaction Enthalpies for R′Tl≡PR′ at the dispersion-corrected
M06-2X/Def2-TZVP Level of Theory. See also Figure 4.

R′ SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

Tl≡P (Å) 2.386 2.384 2.385 2.336
∠R′–Tl–P (◦) 166.9 166.4 168.9 161.2
∠Tl–P–R′ (◦) 122.3 113.7 116.2 115.6

∠R′–Tl–P–R′ (◦) 171.4 179.5 173.9 174.4
QTl

(1) 0.975 0.739 1.166 1.218
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Table 2. Cont.

R′ SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

QP
(2) −0.860 −0.826 −0.344 −0.257

∆EST for Tl—R′ (kcal/mol) (3) 35.91 35.52 31.27 30.24
∆EST for P—R′ (kcal/mol) (4) −43.10 −37.47 −39.74 −40.52
HOMO—LUMO (kcal/mol) 71.27 27.21 58.05 39.34

BE (kcal/mol) (5) 80.24 85.43 62.51 67.89
∆H1 (kcal/mol) (6) 91.34 90.49 89.22 87.11
∆H2 (kcal/mol) (6) 73.98 72.83 71.27 74.01

WBI (7) 2.116 2.273 2.127 2.201
(1) The natural charge density on the central thallium atom; (2) The natural charge density on the central phosphorus
atom; (3) ∆EST (kcal mol−1) = E(triplet state for R′–Tl) – E(singlet state for R′–Tl); (4) ∆EST (kcal mol−1) = E(triplet
state for R′–P) – E(singlet state for R′–P); (5) BE (kcal mol−1) = E(triplet state for R′–Tl) + E(singlet state for R′–P) –
E(singlet for R′Tl≡PR′); (6) See Figure 4; (7) The Wiberg bond index (WBI) for the Tl≡P bond: see reference [59–61].
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Figure 4. The potential energy surface for the 1,2-migration reaction of the R′Tl≡PR′ molecules with
balky groups (R′).

Five important conclusions can be drawn from these theoretical results:

(i) The results presented in Table 2 predict that the Tl≡P triple bond lengths (Å) are about 2.386 Å,
2.384 Å, 2.385 Å, and 2.336 Å, for (SiMe(SitBu3)2)Tl≡P(SiMe(SitBu3)2), (SiiPrDis2)Tl≡P(SiiPrDis2),
(Tbt)Tl≡P(Tbt), and (Ar*)Tl≡P(Ar*), respectively. These theoretically estimated values are shorter than
the experimentally reported Tl–P single bond distance, as mentioned previously [44–46]. Similarly to
the case for small substituents, the DFT optimized results show that all of the triply bonded R′Tl≡PR′

molecules that feature bulky ligands studied adopt a bent structure, as shown in Table 2.
(ii) If the R´Tl≡PR’ compound is cut in half, the Tl–R’ and P–R′ two fragments are obtained. The

DFT results shown in Table 2 demonstrate that the ∆EST for the Tl–R′ unit is greater than 30 kcal/mol
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and the modulus of ∆EST for the P–R′ moiety is greater than 37 kcal/mol. That is to say, the promotion
energy from the singlet ground state to the triplet excited for Tl–R′ is smaller than the energy that is
required for promotion from that for Tl–R (Table 1). The bonding model that is shown in Figure 1 shows
that model [II] can be used to interpret the bonding character in triply bonded R′Tl≡PR′ molecules
that feature bulky ligands, R′. Namely, the bonding structure of the triple bond in R′Tl≡PR′ is best
described as Tl
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1. Introduction 

The preparation and characterization of triply bonded heavier main group element (E14 = Si, Ge, 
Sn, and Pb) molecules (i.e., RE14≡E14R) is a popular field of study in inorganic chemistry [1–41]. From 
the valence electron viewpoint, the triply bonded RE13≡E15R compound is isoelectronic to the 
RE14≡E14R species. However, the former has been the subject of much less study than the latter, in the 
field of synthetic chemistry. Therefore, the level of understanding of the chemistry of RE13≡E15R is 
lower than that for group 14 less-coordinate alkyne analogues. 

In the group 15 family, phosphorus is more similar to its diagonal relative, carbon, than to 
nitrogen [42]. Thallium is also known to be monovalent and has an ionic radius that is similar to that 
of potassium, so it is often presumed to be a pseudo alkali metal [43]. The isolation and characterization 
of the singly bonded organothallium phosphorus molecule, (Me3SiCH2)3Tl�P(SiMe3)3, was 
experimentally reported about twenty years ago [44]. Two other novel compounds that contain the 
thallium�phosphorus single bond have also been identified [45,46]. If both thallium and phosphorus 
elements could be stabilized using a single bond to connect them, it might be possible to extend this 
field to the study of other triply bonded RTl≡PR inorganic molecules. This work reports the first 
theoretical study of the possible synthesis of the RTl≡PR molecule, which may be isolable as a 
long-lived compound. The study determines potential inorganic complexes that can stabilize the 

P. In this model, the electrons that are donated from the lone pair of phosphorus have
s character, as shown in Figure 1. Moreover, the size of 2p orbital of P is also much smaller than the 6p
orbital of Tl. These two factors combined produce a weak Tl≡P triple bond in the R′Tl≡PR′ species.
Supporting theoretical evidence in Table 2 shows that the WBI for R′Tl≡PR′ is 2.21, 2.37, 2.13, and 2.20
for R = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*, respectively. These WBI values are much smaller than
the value for acetylene (2.99).

(iii) In order to determine the effect of bulky substituents on the stability of triply bonded R′Tl≡PR′

compounds, the dispersion-corrected M06-2X/Def2-TZVP level of theory is used to determine the
potential energy surfaces for the isomerization reaction. As shown in Table 2, the triply bonded
R′Tl≡PR′ molecules have values that are at least 87 (∆H1) and 71 (∆H2) kcal/mol lower than that for
the corresponding doubly bonded isomers. Therefore, the theoretical results show that a triply bonded
R′Tl≡PR′ compound that features bulky substituents is more stable than its corresponding doubly
bonded R′2Tl=P: and: Tl=PR′2 isomers, from the kinetic viewpoint.

(iv) In order to verify the conclusion from point (ii), “charge decomposition analysis” (CDA), reported
by Dapprich and Frenking [69] is used in the present study. For instance, the computational results
concerning (SiMe(SitBu3)2)Tl≡P(SiMe(SitBu3)2) based on the dispersion-corrected M06-2X/Def2-TZVP
method are collected in Table 3. As seen in the X column, the biggest contribution from R′–Tl to R′–P is
No.227 (HOMO–1) orbital. However, the largest contribution from R′–P to R′–Tl is No.228 (HOMO)
orbital. As a result, the net electron transfer (−0.213) is from R′–P to R′–Tl, which is shown in the
(X – Y) column. Namely, the R′–P unit donates more electrons to the R′–Tl unit. The theoretical
evidence is in good agreement with the valence-electron bonding model (Figure 1; model [II]) as stated
earlier. Consequently, the bonding nature of R′Tl≡PR′ can be considered as R′Tl
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of the singly bonded organothallium phosphorus molecule, (Me3SiCH2)3Tl�P(SiMe3)3, was 
experimentally reported about twenty years ago [44]. Two other novel compounds that contain the 
thallium�phosphorus single bond have also been identified [45,46]. If both thallium and phosphorus 
elements could be stabilized using a single bond to connect them, it might be possible to extend this 
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PR′.
(v) The NBO [59–61] and NRT [70–72] are also used to determine the bonding properties of the

electronic structures of the R′Tl≡PR′ molecules, as shown in Table 4. This table clearly shows that
the major bonding character between Tl and P comes from electron donation from 2p(P) to 6p(Tl),
which is denoted as 6p(Tl)← 2p(P). In the (SiMe(SitBu3)2)Tl≡P(SiMe(SitBu3)2) molecule, for instance,
the dispersion-corrected M06-2X/Def2-TZVP calculations show that the Tl≡P π bonding occurs as
follows: π⊥ (Tl≡P) = 0.3114(sp4.77)Tl + 0.9503(sp1.42)P. That is, a polarized π⊥ bond exists between Tl
and P, which arises from the donation of the P lone pair to the empty Tl p orbital. As seen in Table 4,
the Tl≡P π⊥ bonding orbitals comprise 9.7% natural Tl orbitals and 90% natural P orbitals (Figure 5).
The similar theoretical results can also be found in the Tl≡P π‖ bonding orbitals as already represented
in Table 4.
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Figure 5. The natural Tl≡P π bonding orbitals ((a) and (b)) for (SiMe(SitBu3)2)Tl≡P(SiMe(SitBu3)2).  
For comparison, see also Figure 3. 

Table 3. The charge decomposition analysis (CDA) (a) for R′Tl≡PR′ (R′ = SiMe(SitBu3)2) system based 
on M06-2X orbitals, where the X term indicates the number of electrons donated from R′⎼Tl fragment 
to R′⎼P fragment, the Y term indicates the number of electrons back donated from R′⎼P fragment to 
R′⎼Tl fragment and the Q term indicates the number of electrons involved in repulsive polarization. 
Significant X and Y terms are bolded for easier comparison. (a),(b) 

 Orbital Occupancy X Y X – Y Q 
 218 2.000000 0.000757 0.000586 0.000171 −0.002462 
 219 2.000000 0.001036 0.000522 0.000513 −0.004450 
 220 2.000000 0.000932 0.000539 0.000394 −0.006342 
 221 2.000000 0.000026 0.004350 −0.004325 −0.002504 
 222 2.000000 0.001151 −0.000164 0.001315 −0.001354 
 223 2.000000 0.000081 0.003145 −0.003064 −0.001960 
 224 2.000000 0.000037 0.002403 −0.002366 −0.000054 
 225 2.000000 0.001777 0.029263 −0.027486 −0.030329 
 226 2.000000 0.000477 0.013735 −0.013259 −0.007124 
 227 2.000000 0.008445 0.068258 −0.059813 −0.018272 

HOMO 228 2.000000 −0.005339 0.003033 −0.008432 −0.004437 
LUMO 229 0.000000 0.000000 0.000000 0.000000 0.000000 

 230 0.000000 0.000000 0.000000 0.000000 0.000000 
sum  456.000000 0.028853 0.241774 −0.212922 −0.107250 

(a) For clearness, only list the X, Y, and Q terms for HOMO (No.228) ⎼10 ~ LUMO+2. (b) Summation of 
contributions from all unoccupied and occupied orbitals. 

Table 4. The natural bond orbital (NBO) and the natural resonance theory (NRT) analysis for 
R′Tl≡PR′ molecules that feature ligands (R′ = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*) at the 
dispersion-corrected M06-2X/Def2-TZVP level of theory (1,2). 

R′Tl≡PR′ WBI 

NBO Analysis NRT Analysis 

Occupancy Hybridization Polarization 
Total/ 

Covalent/ 
Ionic 

Resonance 
Weight 

R′ = SiMe(SitBu3)2 2.11 

σ = 2.21 σ : 0.5116 Tl (sp1.27) + 0.8592 P (sp2.07) 
26.18% (Tl) 

2.22/1.55/0.67 
Tl⎼P: 23.17% 
Tl=P: 66.87% 
Tl≡P: 9.94% 

73.82% (P) 

π⊥ = 1.84 π⊥: 0.3114 Tl (sp4.77) + 0.9503 P (sp1.42) 
9.70% (Tl) 
90.30% (P) 

π‖ = 1.92 π‖: 0.6833 Tl (sp99.87) + 0.7556 P (sp99.99) 
5.69% (Tl) 
94.31% (P) 

R′ = SiiPrDis2 2.37 

σ = 1.83 σ : 0.6422 Tl (sp0.86) + 0.7665 P (sp20.18) 
41.24% (Tl) 

2.59/0.83/1.76 
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Figure 5. The natural Tl≡P π bonding orbitals ((a) and (b)) for (SiMe(SitBu3)2)Tl≡P(SiMe(SitBu3)2).
For comparison, see also Figure 3.

Table 3. The charge decomposition analysis (CDA) (a) for R′Tl≡PR′ (R′ = SiMe(SitBu3)2) system based
on M06-2X orbitals, where the X term indicates the number of electrons donated from R′–Tl fragment
to R′–P fragment, the Y term indicates the number of electrons back donated from R′–P fragment to
R′–Tl fragment and the Q term indicates the number of electrons involved in repulsive polarization.
Significant X and Y terms are bolded for easier comparison. (a),(b)

Orbital Occupancy X Y X – Y Q

218 2.000000 0.000757 0.000586 0.000171 −0.002462
219 2.000000 0.001036 0.000522 0.000513 −0.004450
220 2.000000 0.000932 0.000539 0.000394 −0.006342
221 2.000000 0.000026 0.004350 −0.004325 −0.002504
222 2.000000 0.001151 −0.000164 0.001315 −0.001354
223 2.000000 0.000081 0.003145 −0.003064 −0.001960
224 2.000000 0.000037 0.002403 −0.002366 −0.000054
225 2.000000 0.001777 0.029263 −0.027486 −0.030329
226 2.000000 0.000477 0.013735 −0.013259 −0.007124
227 2.000000 0.008445 0.068258 −0.059813 −0.018272

HOMO 228 2.000000 −0.005339 0.003033 −0.008432 −0.004437
LUMO 229 0.000000 0.000000 0.000000 0.000000 0.000000

230 0.000000 0.000000 0.000000 0.000000 0.000000
sum 456.000000 0.028853 0.241774 −0.212922 −0.107250

(a) For clearness, only list the X, Y, and Q terms for HOMO (No.228) –10 ~LUMO+2. (b) Summation of contributions
from all unoccupied and occupied orbitals.

Table 4. The natural bond orbital (NBO) and the natural resonance theory (NRT) analysis for R′Tl≡PR′

molecules that feature ligands (R′ = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*) at the dispersion-corrected
M06-2X/Def2-TZVP level of theory (1,2).

R′Tl≡PR′ WBI
NBO Analysis NRT Analysis

Occupancy Hybridization Polarization Total/Covalent/
Ionic

Resonance
Weight

R′ = SiMe(SitBu3)2 2.11

σ = 2.21 σ : 0.5116 Tl (sp1.27) + 0.8592 P (sp2.07)
26.18% (Tl)

2.22/1.55/0.67
Tl–P: 23.17%
Tl=P: 66.87%
Tl≡P: 9.94%

73.82% (P)

π⊥ = 1.84 π⊥: 0.3114 Tl (sp4.77) + 0.9503 P (sp1.42)
9.70% (Tl)
90.30% (P)

π‖ = 1.92 π‖: 0.6833 Tl (sp99.87) + 0.7556 P (sp99.99) 5.69% (Tl)
94.31% (P)

R′ = SiiPrDis2 2.37

σ = 1.83 σ : 0.6422 Tl (sp0.86) + 0.7665 P (sp20.18)
41.24% (Tl)

2.59/0.83/1.76
Tl–P: 17.35%
Tl=P: 71.14%
Tl≡P: 11.51%

58.76% (P)

π⊥ = 1.92 π⊥: 0.4064 Tl (sp99.99) + 0.9137 P (sp44.72)
16.51% (Tl)
83.49% (P)

π‖ = 1.93 π‖: 0.4551 Tl (sp99.99) + 0.8997 P (sp94.99) 14.79% (Tl)
85.21% (P)
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Table 4. Cont.

R′Tl≡PR′ WBI
NBO Analysis NRT Analysis

Occupancy Hybridization Polarization Total/Covalent/
Ionic

Resonance
Weight

R′ = Tbt 2.13

σ = 1.77 σ: 0.6888 Tl (sp0.94) + 0.7249 P (sp38.46)
47.45% (Tl)

2.08/1.59/0.49
Tl–P: 27.42%
Tl=P: 63.76%
Tl≡P: 8.82%

52.55% (P)

π⊥ = 1.94 π⊥: 0.4133 Tl (sp35.51) + 0.9244 P (sp87.83)
23.43% (Tl)
82.74% (P)

π‖ = 1.90 π‖: 0.4118 Tl (sp99.89) + 0.9077 P (sp99.99) 17.28% (Tl)
82.72% (P)

R′ = Ar* 2.20

σ = 1.96 σ: 0.7362 Tl (sp0.04) + 0.6767 P (sp64.96)
54.20% (Tl)

2.17/1.66/0.51
Tl–P: 19.82%
Tl=P: 71.69%
Tl≡P: 8.49%

45.80% (P)

π⊥ = 1.77 π⊥: 0.3177 Tl (sp99.99) + 0.9482 P (sp99.99)
10.09% (Tl)
89.91% (P)

π‖ = 1.92 π‖: 0.4083 Tl (sp99.99) + 0.9128 P (sp99.99) 16.67% (Tl)
83.33% (P)

(1) The value of the Wiberg bond index (WBI) for the Tl–P bond and the occupancy of the corresponding σ and π

bonding NBO (see reference [59–61]). (2) NRT; see reference [70–72].

5. Conclusions

In summary, the theoretical observations strongly support the idea that both electronic and steric
effects determine the relative stability of molecules that contain a Tl≡P triple bond, as well as its
corresponding doubly bonded isomers. The simple bonding models schematically illustrated in
Figure 1 show that model [I], whose bonding character is symbolized by Tl
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P, better describes the triple bond in R′Tl≡PR′ molecules that feature bulky ligands
(Figure 6). However, regardless of whether the substituents in triply bonded RTl≡PR compound are
large or small, their Tl≡P triple bonds are quite weak. Two effects can explain these phenomena.
The different sizes of the p orbitals in the Tl and P elements mean that their overlapping populations
are pretty small and the lone pair of the phosphorus atom has significant amount of s character, which
results in poor overlaps between thallium and phosphorus. It is hoped that the results of experimental
synthesis and structural characterization will confirm these predictions.
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