Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis

Federica Zarrilli ^{1,2}, Felice Amato ^{2,3}, Carmine M. Morgillo ⁴, Brunella Pinto ⁴, Giuliano Santarpia ⁴, Nicola
 Borbone ⁴, Stefano D'Errico ⁴, Bruno Catalanotti ⁴, Gennaro Piccialli ⁴, Giuseppe Castaldo ^{2,3} and Giorgia
 Oliviero ^{3,*}

- 6 ¹ Department of Biosciences and Territory, University of Molise, Isernia, Italy
- 7 ² CEINGE Advanced Biotechnologies Scarl, Napoli, Italy
- 8 ³ Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
- 9 ⁴ Department of Pharmacy, University of Naples Federico II, Napoli, Italy
- 10 * Correspondence: golivier@unina.it; Tel.: +39-081-679-896

12 Text S1: Correlation between torsion angles in the PNA strands.

The analysis of PNA torsion angles performed with Curves + showed a high degree of deviation 14 15 and flexibility, and particularly pronounced in the case of α and ε torsion angles. Indeed, in all MD 16 simulations, two main average values were found, for α (-100 ° and 100 °) and ϵ (-20 ° and 180 °) (Figure S2). The analysis of distribution of torsion angles revealed that in our simulation 80% of values ranged 17 around -100°, in both 1/RNA and 2/RNA heteroduplexes, while ε assumed preferentially values around 18 19 180° (Figure S1). To check whether the discrete values assumed by these torsion angles were correlated, 20 the Pearson correlation coefficient was calculated on the torsion angle ε of the residue i and the torsion 21 $\alpha_{(i+1)}$ of the subsequent base, sampled on 0.1 ns interval. Indeed, it has been previously reported that 22 these angles were correlated in PNA containing duplexes [S-1].

The results, reported in Table S5, showed that for both 1/RNA and 2/RNA heteroduplexes the Pearson correlation coefficients between ε_i and $\alpha_{(i+1)}$ are all below 0.3, suggesting the lack of consistent correlation.

To further explore structural features of PNA/RNA heteroduplexes, was also analysed the correlation between the pseudo torsion v_i and the torsion angle α of the subsequent base. The torsion angle v, defined as the angle between C8 -N4 -C -O1 - (Main text, Figure 8, red circles), has been proposed as a pointer of the orientation of the backbone carbonyl with respect to the strand terminus [S-2]. The high Pearson correlation coefficients calculated revealed that there is a strong anti-correlation between the pseudo torsion angle v_i and $\alpha_{(i+1)}$ of the subsequent base (Main text, Table 3).

32 The correlation found between negative values of $\alpha_{(i+1)}$ and positive values of v_i in both 1/RNA 33 and 2/RNA duplexes determines the orientation of the backbone carbonyl towards the N-terminus. 34 Accordingly, the measure of the distance between the two carbonyl oxygens in each PNA base resulted 35 in the range 3.4 Å - 4.1 Å, in good agreement with previously reported data [S-2].

36 37

11

13

References

- S-1. He, W.; Hatcher, E.; Balaeff, A.; Beratan, D.N.; Gil, R.R.; Madrid, M.; Achim, C. Solution
 structure of a peptide nucleic acid duplex from NMR data: features and limitations. *J. Am. Chem. Soc.* **2008**, 130(40), 13264-13273.
- 42 S-2. Soliva, R.; Sherer, E.; Luque, F.J.; Laughton, C.A.; Orozco, M. Molecular dynamics
- 43 simulations of PNA DNA and PNA RNA duplexes in aqueous solution. J. Am. Chem. Soc. 2000,
- 44 *122(25)*, 5997–6008.
- 45
- 46

Table S1. Heteroduplexes systems modelled and analysed by MD simulations. The tetrapeptide tail at PNA C-end is reported in italics characters.

PNA 1 /RNA	$\begin{array}{c c} G_{1}-A_{2}-A_{3}-G_{4}-A_{5}-A_{6}-G_{7}-C_{8}-A_{9}-C_{10}-C_{11}-A_{12}-A_{13}-U_{14}-C_{15}-A_{16}-U_{17}-G_{18}-A_{19}\\ & & & & & & & & & \\ G_{36}-S\left(P\right)_{35}-S\left(P\right)_{34}-G_{33}-\mathbf{c}_{32}-\mathbf{t}_{31}-\mathbf{t}_{30}-\mathbf{c}_{29}-\mathbf{g}_{28}-\mathbf{t}_{27}-\mathbf{g}_{26}-\mathbf{g}_{25}-\mathbf{t}_{24}-\mathbf{t}_{23}-\mathbf{a}_{22}-\mathbf{g}_{21}-\mathbf{t}_{20} \end{array}$
PNA 2 /RNA	$\begin{array}{c} G_{1}-C_{2}-A_{3}-C_{4}-C_{5}-A_{6}-A_{7}-U_{8}-C_{9}-A_{10}-U_{11}-G_{12}-A_{13}\\ & & & & \\ G_{36}-S\left(P\right)_{35}-S\left(P\right)_{34}-G_{33}-\mathbf{g}_{20}-\mathbf{g}_{19}-\mathbf{t}_{18}-\mathbf{t}_{17}-\mathbf{a}_{16}-\mathbf{g}_{15}-\mathbf{t}_{14} \end{array}$

> Table S2. Output of the hierarchical clusterization performed with Ambertools 15 using a RMS metric comparing the heavy atoms in the central duplex base-pairs. Only clusters with population higher than 0.1% were reported.

#Run1 PNA	1					
#Cluster	Frames	Frac	AvaDist	Stdev	Centroid	AvaCDis
0	2315	0.772	1.941	0.518	1285	3.02
1	481	0.160	1.947	0.551	2693	3.08
2	127	0.042	1.862	0.485	1748	2.91
3	74	0.025	1.788	0.388	1473	3.78
4	2	0.001	2.385	0.000	2355	3.79
#Run2 PNA	1					
#Cluster	Frames	Frac	AvqDist	Stdev	Centroid	AvgCDis
0	6263	0.973	1.881	0.557	3612	2.83
1	171	0.027	1.871	0.557	5365	3.67
#Run3 PNA	1					
#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDis
0	408	0.816	3.498	0.828	207	5.00
1	49	0.098	3.407	0.740	161	4.97
2	37	0.074	3.555	0.773	143	5.31
3	5	0.010	3.327	0.808	167	5.61
4	1	0.002	0.000	0.000	444	6.19
#Run1 PNA	.2					
#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDis
0	3063	0.974	1.099	0.237	96	1.53
1	31	0.010	1.062	0.207	1431	1.79
2	29	0.009	1.246	0.226	2317	1.93
3	20	0.006	1.211	0.251	246	1.67
#Run2 PNA	.2					
#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDis
0	2937	0.987	1.144	0.243	1030	1.73
1	29	0.010	1.221	0.256	884	1.88
2	5	0.002	1.205	0.157	1409	1.90
3	3	0.001	1.385	0.284	1044	1.99
4	3	0.001	1.283	0.328	1248	1.89
#Run3 PNA	2					
#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDis
0	2991	0.997	1.198	0.263	1163	1.80
1	5	0.002	1.543	0.271	2172	1.96
2	2	0.001	0.933	0.000	2143	1.99

 Table S3. RMSD in Å between the average structures of clusters with population higher than 5% obtained from the MD simulation of 1/RNA heteroduplex.

run2_0

0.118

-

#Cluster

run1 0

run2_0

Table S4: RMSD in Å between the average structures of clusters with population higher than 5% obtained from the MD simulation of 2/RNA heteroduplex.

#Cluster	run1_1	run2_0	run3_0	run3_1	run3_2
run1_0	2.207	0.305	0.216	1.902	1.793
run1_1	-	2.268	2.240	1.504	2.880
run2_0	-	-	0.196	1.806	1.703
run3_0	-	-	-	1.893	1.797
run3_1	-	-	-	-	2.013

run3_0

0.234

0.242

Table S5: Pearson correlation coefficients between torsion angles ε_i and $\alpha_{(i+1)}$ and between the pseudo torsion angle v_i and the torsion angle $\alpha_{(i+1)}$. Indexes were calculated on the central bases of 1/RNA or 2/RNA heteroduplexes, on the basis of 0.1 ns sampling of torsion angles. Definition of torsion angles is given in Main text, Figure 8.

_		Pearson $\varepsilon_i:\alpha_{(i+1)}$			Pearson Vi: α (i+1)		
-	1	Run1	Run2	Run3	Run1	Run2	Run3
-	g 21	-0.01	-0.17	-0.24	-0.48	-0.68	-0.76
	a22	0.05	0.03	0.04	-0.42	-0.45	-0.43
	t ₂₃	-0.30	-0.31	-0.28	-0.79	-0.80	-0.79
	t 24	-0.27	-0.20	-0.30	-0.78	-0.79	-0.82
	g 25	-0.26	-0.18	-0.18	-0.81	-0.76	-0.75
	g 26	-0.24	-0.17	-0.15	-0.74	-0.68	-0.69
	t 27	-0.27	-0.28	-0.30	-0.81	-0.79	-0.83
	g ₂₈	-0.29	-0.22	-0.23	-0.79	-0.79	-0.78
	C29	-0.16	-0.10	-0.10	-0.71	-0.68	-0.61
	t ₃₀	-0.24	-0.26	-0.19	-0.81	-0.81	-0.78
-	2						
-	g 15	-0.21	-0.32	-0.16	-0.69	-0.85	-0.78
	a 16	0.03	0.01	-0.02	-0.56	-0.49	-0.52
	t 17	-0.37	-0.35	-0.37	-0.84	-0.82	-0.85
	t ₁₈	-0.17	-0.23	-0.20	-0.68	-0.76	-0.69
-							

Figure S1. Up: Root-mean-square deviation versus time in the three MD runs on 2/RNA (A) and 1/RNA (B). Superpositions were made on the central base-pairs using thermalized structures as reference. Down: Root-meansquare fluctuations in the three MD runs on 2/RNA (C) and 1/RNA (D) where the X-axis represents the residue numbering in the sequence (see Table S1 for residue numbering). Colour codes: PNA strand run 1: yellow; RNA strand run 1: red; PNA strand run 2: green; RNA strand run 2: blue; PNA strand run 3: black; RNA strand run 3: orange.

- 160
- 161
- 162
- 163

165

Figure S2. Distribution of the torsion angles α (blue) and ϵ (red) and the pseudo torsion angle v (green) of PNA strand during the MD run of 2 (A and C) and 1 (B and D) heteroduplexes. Angles were sampled every 0.01 ns.