Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis

Federica Zarrilli ${ }^{1,2}$, Felice Amato ${ }^{2,3}$, Carmine M. Morgillo ${ }^{4}$, Brunella Pinto ${ }^{4}$, Giuliano Santarpia ${ }^{4}$,Nicola Borbone ${ }^{4}$, Stefano D'Errico ${ }^{4}$, Bruno Catalanotti ${ }^{4}$, Gennaro Piccialli ${ }^{4}$, Giuseppe Castaldo ${ }^{2,3}$ and Giorgia Oliviero ${ }^{3, *}$
1 Department of Biosciences and Territory, University of Molise, Isernia, Italy
2 CEINGE - Advanced Biotechnologies Scarl, Napoli, Italy
${ }^{3}$ Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
4 Department of Pharmacy, University of Naples Federico II, Napoli, Italy
* Correspondence: golivier@unina.it; Tel.: +39-081-679-896

Text S1: Correlation between torsion angles in the PNA strands.

The analysis of PNA torsion angles performed with Curves + showed a high degree of deviation and flexibility, and particularly pronounced in the case of α and ε torsion angles. Indeed, in all MD simulations, two main average values were found, for $\alpha\left(-100^{\circ}\right.$ and $\left.100^{\circ}\right)$ and $\varepsilon\left(-20^{\circ}\right.$ and $\left.180^{\circ}\right)$ (Figure S2). The analysis of distribution of torsion angles revealed that in our simulation 80% of values ranged around -100°, in both 1 /RNA and $2 /$ RNA heteroduplexes, while ε assumed preferentially values around 180° (Figure S1). To check whether the discrete values assumed by these torsion angles were correlated, the Pearson correlation coefficient was calculated on the torsion angle ε of the residue i and the torsion $\alpha_{(i+1)}$ of the subsequent base, sampled on 0.1 ns interval. Indeed, it has been previously reported that these angles were correlated in PNA containing duplexes [S-1].

The results, reported in Table S5, showed that for both 1 /RNA and 2 /RNA heteroduplexes the Pearson correlation coefficients between ε_{i} and $\alpha_{(i+1)}$ are all below 0.3 , suggesting the lack of consistent correlation.

To further explore structural features of PNA/RNA heteroduplexes, was also analysed the correlation between the pseudo torsion v_{i} and the torsion angle α of the subsequent base. The torsion angle v, defined as the angle between $\mathrm{C}^{\prime}-\mathrm{N} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 1^{\prime}$ (Main text, Figure 8 , red circles), has been proposed as a pointer of the orientation of the backbone carbonyl with respect to the strand terminus [S 2]. The high Pearson correlation coefficients calculated revealed that there is a strong anti-correlation between the pseudo torsion angle v_{i} and $\alpha_{(i+1)}$ of the subsequent base (Main text, Table 3).

The correlation found between negative values of $\alpha_{(i+1)}$ and positive values of v_{i} in both $1 /$ RNA and $\mathbf{2} /$ RNA duplexes determines the orientation of the backbone carbonyl towards the N -terminus. Accordingly, the measure of the distance between the two carbonyl oxygens in each PNA base resulted in the range $3.4 \AA-4.1 \AA$, in good agreement with previously reported data [S-2].

References

S-1. He, W.; Hatcher, E.; Balaeff, A.; Beratan, D.N.; Gil, R.R.; Madrid, M.; Achim, C. Solution structure of a peptide nucleic acid duplex from NMR data: features and limitations. J. Am. Chem. Soc. 2008, 130(40), 13264-13273.

S-2. Soliva, R.; Sherer, E.; Luque, F.J.; Laughton, C.A.; Orozco, M. Molecular dynamics simulations of PNA•DNA and PNA•RNA duplexes in aqueous solution. J. Am. Chem. Soc. 2000, 122(25), 5997-6008.

Table S1. Heteroduplexes systems modelled and analysed by MD simulations. The tetrapeptide tail at PNA C-end is reported in italics characters.

PNA $1 / \mathrm{RNA}$	$\mathrm{G}_{1}-\mathrm{A}_{2}-\mathrm{A}_{3}-\mathrm{G}_{4}-\mathrm{A}_{5}-\mathrm{A}_{6}-\mathrm{G}_{7}-\mathrm{C}_{8}-\mathrm{A}_{9}-\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{A}_{12}-\mathrm{A}_{13}-\mathrm{U}_{14}-\mathrm{C}_{15}-\mathrm{A}_{16}-\mathrm{U}_{17}-\mathrm{G}_{18}-\mathrm{A}_{19}$ $G_{36}-S(P)_{35}-S(P)_{34}-G_{33}-\mathbf{C}_{32}-\mathbf{t}_{31}-\mathbf{t}_{30}-\mathbf{C}_{29}-\mathbf{g}_{28}-\mathbf{t}_{27}-\mathbf{g}_{26}-\mathbf{g}_{25}-\mathbf{t}_{24}-\mathbf{t}_{23}-\mathbf{a}_{22}-\mathbf{g}_{21}-\mathbf{t}_{20}$
PNA $2 / R N A$	

Table S2. Output of the hierarchical clusterization performed with Ambertools 15 using a RMS metric comparing the heavy atoms in the central duplex base-pairs. Only clusters with population higher than 0.1% were reported.

\#Run1 PNA 1						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	2315	0.772	1.941	0.518	1285	3.029
1	481	0.160	1.947	0.551	2693	3.085
2	127	0.042	1.862	0.485	1748	2.916
3	74	0.025	1.788	0.388	1473	3.783
4	2	0.001	2.385	0.000	2355	3.798
\#Run2 PNA 1						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	6263	0.973	1.881	0.557	3612	2.836
1	171	0.027	1.871	0.557	5365	3.676
\#Run3 PNA 1						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	408	0.816	3.498	0.828	207	5.008
1	49	0.098	3.407	0.740	161	4.975
2	37	0.074	3.555	0.773	143	5.312
3	5	0.010	3.327	0.808	167	5.616
4	1	0.002	0.000	0.000	444	6.192
\#Run1 PNA 2						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	3063	0.974	1.099	0.237	96	1.538
1	31	0.010	1.062	0.207	1431	1.796
2	29	0.009	1.246	0.226	2317	1.937
3	20	0.006	1.211	0.251	246	1.676
\#Run2 PNA 2						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	2937	0.987	1.144	0.243	1030	1.739
1	29	0.010	1.221	0.256	884	1.889
2	5	0.002	1.205	0.157	1409	1.906
3	3	0.001	1.385	0.284	1044	1.996
4	3	0.001	1.283	0.328	1248	1.898
\#Run3 PNA 2						
\#Cluster	Frames	Frac	AvgDist	Stdev	Centroid	AvgCDist
0	2991	0.997	1.198	0.263	1163	1.802
1	5	0.002	1.543	0.271	2172	1.967
2	2	0.001	0.933	0.000	2143	1.996

Table S3. RMSD in \AA i between the average structures of clusters with population higher than 5% obtained from the MD simulation of $\mathbf{1}$ /RNA heteroduplex.

\#Cluster	run2_0	run3_0
run1_0	0.118	0.234
run2_0	-	0.242

Table S4: RMSD in \AA between the average structures of clusters with population higher than 5% obtained from the MD simulation of $\mathbf{2}$ /RNA heteroduplex.

\#Cluster	run1_1	run2_0	run3_0	run3_1	run3_2
run1_0	2.207	0.305	0.216	1.902	1.793
run1_1	-	2.268	2.240	1.504	2.880
run2_0	-	-	0.196	1.806	1.703
run3_0	-	-	-	1.893	1.797
run3_1	-	-	-	-	2.013

Table S5: Pearson correlation coefficients between torsion angles ε_{i} and $\alpha_{(i+1)}$ and between the pseudo torsion angle v_{i} and the torsion angle $\alpha_{(i+1)}$. Indexes were calculated on the central bases of $1 /$ RNA or $2 /$ RNA heteroduplexes, on the basis of 0.1 ns sampling of torsion angles. Definition of torsion angles is given in Main text, Figure 8.

		Pearson		$\varepsilon_{i}: \alpha_{(i+1)}$	Pearson		$v_{i:} \alpha_{(i+1)}$	
$\mathbf{1}$		Run1	Run2	Run3	Run1	Run2	Run3	
	g_{21}	-0.01	-0.17	-0.24	-0.48	-0.68	-0.76	
	a_{22}	0.05	0.03	0.04	-0.42	-0.45	-0.43	
	t_{23}	-0.30	-0.31	-0.28	-0.79	-0.80	-0.79	
	t_{24}	-0.27	-0.20	-0.30	-0.78	-0.79	-0.82	
	$\mathrm{~g}_{25}$	-0.26	-0.18	-0.18	-0.81	-0.76	-0.75	
	$\mathrm{~g}_{26}$	-0.24	-0.17	-0.15	-0.74	-0.68	-0.69	
	t_{27}	-0.27	-0.28	-0.30	-0.81	-0.79	-0.83	
	$\mathrm{~g}_{28}$	-0.29	-0.22	-0.23	-0.79	-0.79	-0.78	
	c_{29}	-0.16	-0.10	-0.10	-0.71	-0.68	-0.61	
	t_{30}	-0.24	-0.26	-0.19	-0.81	-0.81	-0.78	
$\mathbf{2}$								
	$\mathrm{~g}_{15}$	-0.21	-0.32	-0.16	-0.69	-0.85	-0.78	
	a_{16}	0.03	0.01	-0.02	-0.56	-0.49	-0.52	
	t_{17}	-0.37	-0.35	-0.37	-0.84	-0.82	-0.85	
	t_{18}	-0.17	-0.23	-0.20	-0.68	-0.76	-0.69	

Figure S1. Up: Root-mean-square deviation versus time in the three MD runs on 2/RNA (A) and 1/RNA (B). Superpositions were made on the central base-pairs using thermalized structures as reference. Down: Root-meansquare fluctuations in the three MD runs on $2 / \mathrm{RNA}(\mathrm{C})$ and $1 / \mathrm{RNA}(\mathrm{D})$ where the X -axis represents the residue numbering in the sequence (see Table S 1 for residue numbering). Colour codes: PNA strand run 1: yellow; RNA strand run 1: red; PNA strand run 2: green; RNA strand run 2: blue; PNA strand run 3: black; RNA strand run 3: orange.

Figure S2. Distribution of the torsion angles α (blue) and ε (red) and the pseudo torsion angle v (green) of PNA strand during the MD run of $\mathbf{2}(\mathrm{A}$ and C) and $\mathbf{1}(\mathrm{B}$ and D$)$ heteroduplexes. Angles were sampled every 0.01 ns .

