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Abstract: The aim of this study was to explore the role of p-coumaroyl in the antioxidant and
cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were
compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging,
•O2

– scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin
and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50

values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at
510 nm than astragalin, and was also found to be darker in color. Both of these compounds
were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC) damaged
assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin.
Tiliroside bearing a 6′ ′-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects
than astragalin. The 6′ ′-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of
electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood
of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential
approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC
implantation therapy.

Keywords: tiliroside; astragalin; p-coumaroyl; flavonoid glycoside; mesenchymal stem cells

1. Introduction

Several new flavonoid glycosides bearing a p-coumaroyl (p-coumaryl) moiety, including
kaempferol-3-O-[2-O-(trans-p-coumaroyl)-3-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside [1], 8,3′,4′-
trihydroxyflavone-7-O-(6′ ′-O-p-coumaroyl)-β-D-glucopyranoside [2], hirtacoumaroflavonoside (7-O-
(p-coumaroyl)-5,7,4′-trihydroxy-6-(3,3-dimethyl allyl)-flavonol-3-O-β-D-glucopyranosyl- (2′ ′→1′ ′ ′)-O-
α-L-rhamnopyranoside) [3], dihydrokaempferide-3-O-p-coumaroylhexoside-like flavanone, isorhamnetin-
3-O-p-coumaroylglucoside, chrysoeriol-p-coumaroylhexoside-like flavone [4], delphinidin-3-(4′ ′ ′-O-
trans-p-coumaroyl)-rutinoside-5-O-glucoside and petunidin-3-(4′ ′ ′-O-trans-p-coumaroyl)-rutinoside-5-
O-glucoside [5], have recently been isolated from a wide range of medicinal and dietary plant materials.
The pharmacological evaluation of several similar flavonoid glycosides bearing a p-coumaroyl
moiety revealed that these compounds exhibit various beneficial effects [6,7]. For example,
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apigenin-7-O-β-D-(6′ ′-p-coumaroyl)-glucopyranoside has been reported to exhibit neuroprotective
effects in an experimental ischemic stroke mode [8], whereas tiliroside has been reported to inhibit
neuroinflammation [9] and acute inflammation [10]. Notably, all of these effects have been attributed
to the antioxidant activity of these compounds [10–12]. However, the role of the p-coumaroyl moiety
found in these flavonoid glycoside compounds in their antioxidant activity remains unknown, despite
numerous studies towards the structure–activity relationships of flavonoids and flavonols [13–15].
In this study, we have selected astragalin and tiliroside as model compounds to evaluate the role of the
coumaroyl moiety in the antioxidant activity of these compounds.

Astragalin occurs naturally in Zanthoxylum bungeanum [16], Flaveria bidentis (L.) Kuntze [17], and
Morus alba [18], whereas tiliroside can be found in Tilia americana L. (basswood) [19] and the Malvaceae
family [20]. As shown in Figure 1, astragalin is actually kaempferol-3-O-β-D-glucopyranoside; whereas
tiliroside is kaempferol-3-O-β-D-(6′ ′-O-p-coumaroyl)-glucopyranoside. The only difference between
these two compounds is the p-coumaroyl moiety at the 6"-O position of tiliroside. A structure–activity
relationship (SAR) analysis of these two compounds could therefore enhance our understanding of the
role of p-coumaroyl moiety in the antioxidant activity of related flavonoid glycosides.
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In this study, we investigated the SAR of these two compounds using several typical antioxidant
models, including ferric ion reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl radical
(DPPH•) scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+)
scavenging, •O2

– radical anion-scavenging, and Fe-chelating UV spectroscopy assays. We also used
mesenchymal stem cells (MSCs) to evaluate the cytoprotective effects of astragalin and tiliroside. MSCs
could potentially be used in cell-based therapies for various diseases; however, a major problem in the
clinical application of MSC-based therapies is the poor viability of transplanted MSCs at the site of the
graft. This problem has been attributed to the harsh conditions associated with the microenvironment
of the graft, including the increased production of reactive oxygen species (ROS). ROS can hinder cell
adhesion and induce the detachment of cells, which can lead to anoikis signals in the implanted MSCs.
The development of new strategies to regulate oxidative stress following the implantation of MSCs is
therefore therapeutically attractive [21].

Coumaroylation can also occur in plant cell walls and coumaroylation status can be used as an
indicator of the type of tissue in a plant [22,23]. With this in mind, the results of this study could also
be used to develop a deeper understanding of the antioxidant defense system in plants.

Oxygen is widely distributed in the biosphere and can react to form various ROS, especially
•OH and •O2

–. Notably, ROS of this type can be found in nearly all of the animals and plants found
on earth, where excessive ROS may bring about cellular oxidative damage. In plant cells, small
molecule phytophenols act as antioxidants to eliminate excessive ROS [24]. Phytophenols, including
the flavonoids typically found in Chinese herbal medicine, have also been used as effective natural
antioxidants for the treatment and prevention of several human diseases.
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2. Results and Discussion

Flavonoids are believed to scavenge ROS via multiple pathways, with electron transfer (ET) being
regarded as one of the most common of these pathways [25–27]. This suggestion is also consistent with
the fact that ROS are generated from oxygen through an ET process [24]. In this study, we used a FRAP
assay to determine whether an ET pathway was responsible for the antioxidant activity of astragalin
and tiliroside. As shown in Figure 2A, astragalin and tiliroside both gave good dose response curves
for concentrations in the range of 0–348 µg/mL in the FRAP assay. These results suggested that
these compounds operated via an ET pathway, because the FRAP assay was conducted under acidic
conditions (pH 3.6), thereby inhibiting the deprotonation of the phenolic groups of the flavonoids.
The IC50 values of astragalin and tiliroside were also found to be considerably different in the FRAP
assay (Table 1). This result therefore implied that the p-coumaroyl moiety was enhancing the ET ability
of tiliroside compared with astragalin.
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Table 1. The IC50 values of astragalin and tiliroside in various assays.

Assay Tiliroside µg/mL (µM) Atragalin µg/mL (µM) Trolox µg/mL (µM)

Fe3+-reducing 246.8 ± 19.3 b (550.5 ± 42.9) b 465.8 ± 16.3 c (1038.9 ± 36.4) c 6.8 ± 0.4 a (26.3 ± 1.8) a

ABTS•+ scavenging 57.6 ± 8.9 b (96.8 ± 14.9) b 170.7 ± 16.0 c (332.4 ± 11.1) c 8.6 ± 2.5 a (34.3 ± 10.0) a

DPPH• scavenging 138.0 ± 5.6 b (232.2 ± 9.4) b 144.1 ± 25.1 c (321.3 ± 55.8) c 6.8 ± 0.9 a (27.4 ± 3.5) a

•O2
− scavenging 26.6 ± 2.3 a (44.8 ± 3.9) a 45.7 ± 3.6 b (102.0 ± 8.0) b 109.2 ± 8.9 c (436.3 ± 35.9) c

Note: Each IC50 value was calculated from dose−response curves in Figure 2. The mass units of the IC50 values
(µg/mL) were converted to molar unit, and the resulting values are shown in parentheses. The linear regression
was analyzed using version 6.0 of the Origin professional software. Each experiment was performed in triplicate,
and the IC50 values were presented as the mean ± SD (standard deviation, n = 3). Means values (µM) with different
superscripts in the same row were significantly different (p < 0.05). Trolox was used as the positive control.

A similar trend was also observed in the results of the ABTS scavenging assay, which indicated
that the antioxidant activity mainly occurred via an ET reaction [28–30]. As shown in Figure 2B and
Table 1, the trends in the dose–response curves of Trolox, astragalin, and tiliroside were similar to
those observed in the FRAP assay. Furthermore, the relative antioxidant levels decreased in the order
Trolox > tiliroside > astragalin. This further confirmed that at least one ET pathway was involved in
the antioxidant activity of astragalin and tiliroside.
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Astragalin and tiliroside were also analyzed using a DPPH scavenging assay. Previous reports
have suggested that the DPPH-scavenging activities of different compounds mainly involve hydrogen
atom transfer (HAT) pathways, leading to the formation of stable DPPH-H molecules [15]. However,
several other minor pathways could also be involved in these scavenging processes, including ET,
radical adduct formation (RAF), sequential electron proton transfer (SEPT), and proton coupled
electron transfers (PCET) [31,32]. DPPH scavenging therefore involves a variety of different HAT-based
pathways. As shown in Figure 2C and Table 1, astragalin and tiliroside both efficiently scavenged
DPPH radicals; however, tiliroside showed higher DPPH radical scavenging ability than astragalin,
indicating that its p-coumaroyl moiety enhanced the efficiency of the HAT-based pathways.

As a typical ROS, •O2
– can be scavenged through HAT, ET [33], proton transfer [34], and RAF [35]

pathways. The dose-response curves in Figure 2D revealed that astragalin and tiliroside could both
effectively scavenge •O2

– radicals. Similarly, the relative antioxidant levels of these compounds
were of the order Trolox > tiliroside > astragalin (Figure 2D and Table 1). This result suggested
that the p-coumaroyl moiety in tiliroside enhanced the possibility of multi-pathway-mediated •O2

–

radical-scavenging processes.
It is well known that transit metal species (especially Fe2+) play an important role in the formation

of ROS. For example, Fe2+ can catalyze the Fenton reaction to yield •OH Radicals (1) [36].

Fe2+ + H2O2 → Fe3++ •OH + OH- (1)

The introduction of Fe2+-chelating groups could therefore be used as an efficient strategy to
reduce the formation of ROS and enhance the antioxidant activity of flavonoids [36]. Furthermore,
Fe2+-chelating has been developed as a therapeutic approach for many diseases related to ROS [37].
The results of the Fe2+-chelating assay conducted in the current study revealed that astragalin and
tiliroside both gave a shoulder peak around 510 nm and became much darker in color when they were
mixed with Fe2+(Figure 3). Furthermore, the UV absorbance spectra of these solutions shifted to a
longer wavelength. This implied that the Fe2+-chelating ability of these compounds was acting as an
indirect pathway to scavenge ROS. However, these results also suggested that tiliroside possessed
higher Fe2+-chelating activity. This difference was attributed to the p-coumaroyl moiety of tiliroside.

Molecules 2017, 21, 1165 4 of 11 

 

order Trolox > tiliroside > astragalin. This further confirmed that at least one ET pathway was 
involved in the antioxidant activity of astragalin and tiliroside. 

Astragalin and tiliroside were also analyzed using a DPPH scavenging assay. Previous reports 
have suggested that the DPPH-scavenging activities of different compounds mainly involve 
hydrogen atom transfer (HAT) pathways, leading to the formation of stable DPPH-H molecules [15]. 
However, several other minor pathways could also be involved in these scavenging processes, 
including ET, radical adduct formation (RAF), sequential electron proton transfer (SEPT), and 
proton coupled electron transfers (PCET) [31,32]. DPPH scavenging therefore involves a variety of 
different HAT-based pathways. As shown in Figure 2C and Table 1, astragalin and tiliroside both 
efficiently scavenged DPPH radicals; however, tiliroside showed higher DPPH radical scavenging 
ability than astragalin, indicating that its p-coumaroyl moiety enhanced the efficiency of the 
HAT-based pathways. 

As a typical ROS, •O2– can be scavenged through HAT, ET [33], proton transfer [34], and RAF [35] 
pathways. The dose-response curves in Figure 2D revealed that astragalin and tiliroside could both 
effectively scavenge •O2– radicals. Similarly, the relative antioxidant levels of these compounds were 
of the order Trolox > tiliroside > astragalin (Figure 2D and Table 1). This result suggested that the 
p-coumaroyl moiety in tiliroside enhanced the possibility of multi-pathway-mediated •O2– radical- 
scavenging processes. 

It is well known that transit metal species (especially Fe2+) play an important role in the 
formation of ROS. For example, Fe2+ can catalyze the Fenton reaction to yield •OH Radicals (1) [36]. 

Fe2+ + H2O2 → Fe3++ •OH + OH– (1) 

The introduction of Fe2+-chelating groups could therefore be used as an efficient strategy to 
reduce the formation of ROS and enhance the antioxidant activity of flavonoids [36]. Furthermore, 
Fe2+-chelating has been developed as a therapeutic approach for many diseases related to ROS [37]. 
The results of the Fe2+-chelating assay conducted in the current study revealed that astragalin and 
tiliroside both gave a shoulder peak around 510 nm and became much darker in color when they 
were mixed with Fe2+(Figure 3). Furthermore, the UV absorbance spectra of these solutions shifted to 
a longer wavelength. This implied that the Fe2+-chelating ability of these compounds was acting as 
an indirect pathway to scavenge ROS. However, these results also suggested that tiliroside possessed 
higher Fe2+-chelating activity. This difference was attributed to the p-coumaroyl moiety of tiliroside. 

 
Figure 3. UV spectra of astragalin and tiliroside (A); and the physical appearances of the astragalin-Fe 
and tiliroside-Fe complexes (B). 

As shown in the ball-and-stick models in Figure 4, the 6′′-O preferentially sat in an equatorial 
position (e bond) (Figure 4). This orientation placed the 6′′-O in close proximity to the flavone moiety 
(especially the A and C rings), allowing the p-coumaroyl moiety at 6′′-O to participate in binding 
interactions with 4-position and with 5-position via the free rotation of the σ bond between the 5′′- 
and 6′′-positions (Figure 5). 

This would allow the conjugated p-coumaroyl moiety to reinforce the pentacyclic Fe2+-chelating 
around the 4- and 5-positions. These structural considerations therefore explain why the peaks in the 
UV spectrum of tiliroside were much more intense than those of astragalin and why it formed a 

Figure 3. UV spectra of astragalin and tiliroside (A); and the physical appearances of the astragalin-Fe
and tiliroside-Fe complexes (B).

As shown in the ball-and-stick models in Figure 4, the 6′ ′-O preferentially sat in an equatorial
position (e bond) (Figure 4). This orientation placed the 6′ ′-O in close proximity to the flavone moiety
(especially the A and C rings), allowing the p-coumaroyl moiety at 6′ ′-O to participate in binding
interactions with 4-position and with 5-position via the free rotation of the σ bond between the 5′ ′-
and 6′ ′-positions (Figure 5).

This would allow the conjugated p-coumaroyl moiety to reinforce the pentacyclic Fe2+-chelating
around the 4- and 5-positions. These structural considerations therefore explain why the peaks in
the UV spectrum of tiliroside were much more intense than those of astragalin and why it formed a
much darker solution. It must be emphasized that the 6′ ′-O-p-coumaroyl moiety would not be able to
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access the 4′-OH and 7-OH positions to form a complex with Fe2+ because this would not allow for the
formation of a pentacycle or hexacycle.
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Figure 5. Proposed reaction of tiliroside chelating Fe2+.

Finally, we used an MSC-based model to evaluate the cytoprotective effects of astragalin and
tiliroside. According to this model, the MSCs were initially oxidatively damaged using a Fenton
reaction (i.e., FeCl2 plus H2O2) to generate •OH radicals. The results revealed that astragalin and
tiliroside both protected the MSCs from •OH radical-induced damage. These results therefore
suggested that astragalin and tiliroside exhibited cytoprotective effects towards MSCs. However,
tiliroside was slightly more effective than astragalin, since 168.0 µM tiliroside could increase 20 percent
points (38.8→58.0%) cell viability and such increase (46.1→68.5%) required 223.0 µM astragalin
(Figure 6). Previous reports have shown that tiliroside can inhibit the oxidation of human low density
lipoprotein [38] and inflammation in lipopolysaccharide-activated RAW 264.7 macrophages [39], both
of which can be rationalized by the results of the current study. However, it is noteworthy that
the structure of tiliroside was incorrectly presented in a previous report [39]. Our findings could
also be used to develop a deeper understanding of the role of the p-coumaroyl moiety in plant
physiology [22,23].
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3. Materials and Methods

3.1. Animals and Chemicals

Sprague-Dawley (SD) rats of four weeks of age were obtained from the Animal Center at
the Guangzhou University of Chinese Medicine, China. Tiliroside (C30H26O13, M.W. 594.52, CAS
number: 20316-62-5, 98%) and astragalin (C21H20O11, M.W. 448.38, CAS number: 480-10-4, 98%)
were obtained from Sichuan Weikeqi Biological Technology Co., Ltd (Chengdu, China). Pyrogallol,
2,4,6-tripyridyl triazine (TPTZ), and (±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid
(Trolox) were obtained from Sigma-Aldrich (Shanghai, China). 1,1-Diphenyl-2-picrylhydrazyl radical
(DPPH•) was obtained from Aladdin Chemical, Ltd. (Shanghai, China). Tris-hydroxymethyl amino
methane (Tris) was obtained from Dinggguo Biotechnology, Ltd. (Beijing, China). 2,2′-Azino-bis
(3-ethylbenzothiazoline -6-sulfonic acid diammonium salt [(NH4)2ABTS] were obtained from
Amresco Inc. (Solon, OH, USA). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum
(FBS) were purchased from Gibco (Grand Island, NY, USA). CD44 and 3-(4,5-dimethyl-2-thiazoyl)-
2,5-diphenyl-2-H-tetrazolium bromide (MTT) was from Duchefa were purchased from Boster, Ltd.
(Wuhan, China). FeCl2·4H2O, K2S2O8, FeCl3·6H2O, Na2EDTA, hydrochloric acid, and all of the other
reagents were purchased as the analytical grade from Guangdong Guanghua Chemical Plants Co., Ltd.
(Shantou, Country).

3.2. Ferric Ion Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was based on the method of Benzie and Strain [40]. In brief, the assay was
performed in pH 3.6 buffer. Briefly, according to ratio of 1:1:10, the FRAP reagent was freshly prepared
by mixing together 10 mM TPTZ and 20 mM FeCl3 in 0.25 M HOAc-NaOAc buffer (pH 3.6). The test
sample (x = 10–50 µL, 1 mg/mL) was added to 100 µL of FRAP reagent. The absorbance was read
at 593 nm after 2 h of incubation at 37 ◦C against a blank consisting of acetate buffer. The relative
reducing power of the sample compared with the maximum absorbance was calculated using the
following formula.

Relative reducing power % =
A−Amin

Amax −Amin
× 100% (2)

where, Amax is the maximum absorbance in this experiment, Amin is the minimum absorbance in this
experiment, and A is the absorbance of sample.

3.3. ABTS ·+ Radical Scavenging Assay

ABTS ·+ scavenging activity was evaluated by the method [41]. The ABTS ·+ was produced by
mixing 200 µL ABTS diammonium salt (7.4 mM) with 200 µL K2S2O8 (2.6 mM). After incubation in the
dark for 12 h, the mixture was diluted with methanol (about 1:50) so that its absorbance at 734 nm was
0.3 ± 0.02. Then, the diluted ABTS ·+ solution (80 µL) was brought to 20 µL astragalin and tiliroside
methanolic solution at various concentrations, thoroughly mixed. After the reaction mixture stood for
6 min, the absorbance at 734 nm was read on a spectrophotometer. The ABTS ·+-scavenging activity of
each solution was calculated as percent inhibition, according to the equation

Inhibition% =
A0 −A

A0
100% (3)

where A0 indicates the absorbance of the blank and A indicates the absorbance of the sample.

3.4. DPPH• Radical Scavenging Assay

Scavenging activity on DPPH• radicals was assessed according to the method reported by Li [42].
Briefly, 5–25 µL of the sample methanolic solution (at least five different concentrations were prepared)
was mixed with 100 µL DPPH• solution (prepared daily) in a 96-well plates. The mixture was shaken
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vigorously and left to stand for 30 min in the dark, and the absorbance was then measured at 519 nm
by ELIASA (Thermo, Shanghai, China).The percentage inhibition was calculated by the formula above.

3.5. •O2
− Radical Scavenging Assay

The superoxide anion (•O2
−)-scavenging activity was determined using a method previously

developed in our laboratory [43]. Briefly, a 50–150 µL sample solution (0.5 mg/mL) was added to
Tris-HCl buffer (0.05 M, pH 7.4) containing Na2EDTA (1 mM) and the total volume was adjusted to
990 µL using buffer. Ten microliters of pyrogallol solution (60 mM in 1 mM HCl) was added to the
sample, and the resulting mixture was vigorously agitated before being analyzed at 325 nm every 30 s
for 5 min by a UV spectrophotometer (Unico 2100, Shanghai, China). The •O2

− radical-scavenging
ability was calculated as

Inhibition % =

(
∆A325nm,control

T

)
−

(∆A325nm,sample
T

)
(

∆A325m,control
T

) × 100 % (4)

where ∆A325 nm, control is the increase in the A325 nm value of the mixture without the sample,
∆A325 nm, sample is the increase in the A325 nm value of the mixture with the sample and T is the
time required for the determination (5 min in this case).

3.6. Ultraviolet (UV) Spectra Determination of Fe2+-Chelating

The Fe-binding effects of astragalin and tiliroside were evaluated by UV spectroscopy. In these
experiments, the Fe-binding reactions between astragalin and tiliroside were monitored based on their
UV spectra. Briefly, 250 µL methanolic solution of tiliroside (2 mg/mL) or astragalin (2 mg/mL) was
added to 1.5 mL of an aqueous solution of FeCl2·4H2O (5 mg/mL) and mixed vigorously. The resulting
mixture was then incubated at 37 ◦C for 10 min. The product mixtures were photographed using a
camera (Samsung GALAXY A7, Huizhou, China). The supernatant of each mixture was collected and
analyzed on a UV–Vis spectrophotometer (Jinhua 754 PC, Shanghai, China).

3.7. Protective Effect Towards the •OH-Induced Damage of MSCs (MTT Assay)

The MSCs were cultured according to a previously reported method [44] and then oxidatively
damaged by Fenton reagents, which were used to generate •OH radicals; the most harmful form
of ROS. Briefly, bone marrow samples were obtained from the femurs and tibias of rats, and the
resulting samples were diluted with DMEM (LG: low glucose) containing 10% FBS. The MSCs were
obtained by gradient centrifugation at 900 g/min for 30 min on a 1.073 g/mL Percoll system. The cells
were then detached by treatment with 0.25% trypsin and passaged into culture flasks at a density of
1 × 104 cells/cm2. The homogeneity of the MSCs was evaluated at the third passage based on their
CD44 expression by flow cytometry. These cells were then used for the following experiments.

The cultured MSCs were seeded into 96-well plates (4 × 103 cells/well). After adherence for 24 h,
the cells were divided into three groups, including control, model, and sample groups. The MSCs in
the control group were incubated for 24 h in DMEM. The MSCs in the model group were injured for
5 min using FeCl2·4H2O (100 µM) followed by H2O2 (50 µM). The resulting mixture of FeCl2·4H2O and
H2O2 was removed and the MSCs were incubated for 24 h in DMEM. The MSCs in the sample groups
were injured and incubated for 24 h in DMEM in the presence of various concentrations of astragalin
and tiliroside. After being incubated, the cells were treated with 20 µL of MTT (5 mg/mL in PBS),
and the resulting mixtures were incubated for 4 h. The culture medium was subsequently discarded
and replaced with 150 µL of DMSO. The absorbance of each well was then measured at 490 nm using
a Bio-Kinetics plate reader (PE-1420; Bio-Kinetics Corporation, Sioux Center, IA, USA). The serum
medium was used for the control group and each sample test was repeated in five independent wells.
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3.8. Statistical Analysis

The results were reported as the mean ± SD of three independent measurements, the IC50 values
were calculated from dose−response curves and independent-samples T tests were performed to
compare the different groups. A P value of less than 0.05 was considered statistically significant.
Statistical analyses were performed using the SPSS software 17.0 (SPSS Inc., Chicago, IL, USA) for
windows. All of the linear regression analyses described in this paper were processed using version
6.0 of the Origin professional software.

4. Conclusions

Taken together, the results of the current study have shown that tiliroside bearing a
6′ ′-O-p-coumaroyl moiety exhibits much greater antioxidant and cytoprotective activities than
astragalin. The 6′ ′-O-p-coumaroyl moiety therefore not only enhanced the ET and HAT-based pathways
available to this compound, but also enhanced its Fe2+-chelating ability. The p-coumaroylation of the
6′ ′-OH moiety of flavonoid glycosides therefore represents a useful strategy for the development of
novel antioxidant and cytoprotective agents for MSC implantation therapy.
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DMSO dimethyl sulfoxide
DPPH 1,1-diphenyl-2-picrylhydrazyl radical
ET electron transfer
FBS fetal bovine serum
FRAP ferric ion reducing power assay
MSCs mesenchymal stem cells
MTT 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2-H-tetrazolium bromide
RAF radical adduct formation
ROS reactive oxygen species
SAR structure–activity relationship
SD standard deviation
SPSS statistical product and service solutions
TPTZ 2,4,6-tripyridyl triazine
Tris tris-hydroxymethyl amino methane
Trolox (±)-6-hydroxyl-2,5,7,8-tetramethlychroman-2-carboxylic acid
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