Asymmetric Michael Addition Organocatalyzed by α,β-Dipeptides Under Solvent-free Reaction Conditions

C. Gabriela Avila-Ortiz ¹, Lenin Díaz-Corona, Erika Jiménez-González, ¹ Eusebio Juaristi ^{1,2,*}

- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Avenida I. P. N. 2508, 07360-Ciudad de México, Mexico.
- ² El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020-Ciudad de México, México.
- * Author to whom correspondence should be addressed; E-Mail: juaristi@relaq.mx; Tel.: +52-55-5747-3722; Fax: +52-55-5747-3897.

Supporting Information

Table of contents

1. 3	Synthesis of L-phenylalanylglycine	. 2
2.	Reaction Optimization Tables	. 3
3.	Experimental Properties of the Michael Adducts	. 6
4	Rihliography 3	ลก

1. Synthesis of L-phenylalanylglycine

Scheme A: Synthetic route of L-phenylalanylglycine

2. Reaction Optimization Tables

Table A. Effect of the solvent on the Michael addition reaction of isobutyraldehyde to N-phenylmaleimide.

Essay ^[a]	Solvent	Yield ^[b]	er ^[c]
		[%]	
1	EtOH	n.r.	n.d.
2	Toluene	n.r.	n.d.
3	H ₂ O	n.r.	n.d.
4	CH ₂ Cl ₂	77	88 : 12
5	Brine	n.r.	n.d.
6	THF	n.r.	n.d.
7	DMSO	n.r.	n.d.
8	MeOH	n.r.	n.d.
9	CH₃CN	n.r.	n.d.

[[]a] Reaction conditions: aldehyde (5.5 mmol), maleimide (0.5 mmol), NaOH was used in the same amount as **2**, and 0.5 mL of the indicated solvent. [b] Isolated yield. [c] Determined by chiral HPLC.

Table B: Effect of additives and temperature on the Michael addition reaction of isobutyraldehyde to *N*-phenylmaleimide.

Essay ^[a]	HDonor	Base	Temperature [° C]	Yield ^[b] [%]	er ^[c]
1	Urea	NaOH	25	80	68 : 32
2	Urea	DMAP	25	40	71 : 29
3	Thiourea	NaOH	25	75	73 : 27
4	Thiourea	DMAP	25	43	n. d.
5	Sulphamide	NaOH	25	67	75 : 25
6	Sulphamide	DMAP	25	16	n. d.
7	Urea	NaOH	2	80	65 : 35
8	Thiourea	NaOH	2	81	70 : 30
9	Sulphamide	NaOH	2	82	66 : 34
10		NaOH	2	79	86 : 14

[[]a] Reaction conditions: aldehyde (2.75 mmol), maleimide (0.5 mmol), additives were used in the same amount as catalyst **2**. [b] Isolated yield. [c] Determined by chiral HPLC

Table C. Effect of the solvent on the Michael addition reaction of isobutyraldehyde to $\textit{trans-}\beta$ -nitrostyrene.

Essay ^[a]	Solvent	Yield ^[b] [%]	er ^[c]
1	DMSO	n.r.	n.d.
2	H ₂ O	81	93 : 7
3	DMF	n.r.	n.d.
4	MeOH	n.r.	n.d.
5	CH₃CN	n.r.	n.d.
6	CH ₂ Cl ₂	64	94 : 6
7	iPrOH	n.r.	n.d.
8	Brine	n.r.	n.d.
9	THF	n.r.	n.d.

[a] Reaction conditions: aldehyde (2.75 mmol), trans- β -nitrostyrene (0.5 mmol), Additives (DMAP + Hydrogen-bond donor were used in 10% mol) and 0.5 mL of the solvent. [b] Isolated yield. [c] Determined by chiral HPLC.

Table D. Michael Addition Reaction of Aldehydes to Additional Substrates.

Essay ^[a]	R	Ar	Product	Yield ^[b]	er ^[c]
1	CH ₃	2-NO ₂ -C ₄ H ₄ -	23	n.r.	n.d.
2	-(CH ₂) ₄ -	C ₆ H ₅ -	24	n.r.	n.d.

[a] Reaction conditions: aldehyde (2.75 mmol), *N*-substituted maleimide (0.5 mmol), cat* and KOH both 10% mol (0.05 mmol). [b] Isolated yield. [c] Determined by chiral HPLC.

Table E. Michael Addition Reaction of Aldehydes to Different Substrates.

Essay ^[a]	Cat*	R	Ar	Product	Yield ^[b]	er ^[c]
7	4	-(CH ₂) ₄ - C ₆ H ₅ -	25	n.r.	n.d.	
,	6	-(Cl 12)4-	C ₆ H ₅ -	23	n.r.	n.d.
0	4	(CH.)	C ₆ H ₅ -	20	n.r.	n.d.
8	6	-(CH ₂) ₅ -	C 6∏5 -	26	n.r.	n.d.
0	4	CH ₂ CH ₃	C.H	27	n.r.	n.d.
9	6 CH2CH3	C ₆ H ₅ -	27	n.r.	n.d.	

[a] Reaction conditions: aldehyde (2.75 mmol), *trans*-β-nitrostyrene (0.5 mmol), Additives (DMAP + thiourea were used in 10% mol). [b] Isolated yield. [c] Determined by chiral HPLC.

3. Experimental Properties of the Michael Adducts

(S)-2-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2-methylpropanal, 7

Optical rotation were in agreement with those reported in the literature.^[1,2] NMR spectra and HPLC chromatograms were in agreement with those reported for the enantiomer in the literature.^[3]

¹H NMR (270 MHz, CDCl₃) (ppm): 1.25 (s, 3H), 1.30 (s, 3H), 2.59 (dd, $J_1 = 5.5$, $J_2 = 18.1$ Hz, 1H), 2.77 (dd, $J_1 = 9.5$, $J_2 = 18.1$ Hz, 1H), 3.12 (dd, $J_1 = 5.4$, $J_2 = 9.5$ Hz, 1H), 7.23-7.48 (m, 5H), 9.48 (s, 1H)

¹³C NMR (67.93 MHz, CDCl₃) (ppm): 19.6, 20.4, 31.9, 45.06, 48.6, 126.6, 128.8, 129.3, 131.8, 174.9, 177.0, 202.8.

$$[\alpha]_D^{25^{\circ}C} = -1.1$$
 (c = 0.333, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 1 mL/min, λ = 210 nm): t_{major} = 17 min, t_{minor} = 22 min.

	Peak Results							
	RT	Area	Height	% Area				
1	17.199	446710	11149	48.56				
2	22.075	473221	10096	51.44				

	Peak Results							
		RT	Area	Height	% Area			
	1	17.021	1266540	31437	90.36			
	2	22.255	135076	2753	9.64			

(S)-2-(1-(4-Chlorophenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal, 9

Optical rotation was in agreement with that previously reported in the literature.^[2] NMR and HPLC in agreement with those reported in the literature for the enantiomeric compound.^[3]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.25 (s, 3H), 1.32 (s, 3H), 2.59 (dd, J_1 = 5.6, J_2 = 18.4 Hz, 1H), 2.94 (dd, J_1 = 9.6, J_2 = 18.3 Hz, 1H), 3.08 (dd, J_1 = 5.6, J_2 = 9.5 Hz, 1H), 7.23 (d, J_{A-B} = 8.8 Hz, 2H), 7.32 (d, J_{AB} = 8.8, 2H), 9.46 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 19.9, 20.6, 32.0, 45.0, 48.8, 127.9, 129.5, 130.4, 134.6, 174.6, 176.8, 202.9.

 $[\alpha]_D^{25^{\circ}C} = -1.5$ (c = 0.333, CH₂Cl₂).

HPLC (Chiralcel OD-H, hexane/i-PrOH 75/25, 0.6 mL/min, λ = 210 nm); t_{major} = 27 min, t_{minor} = 44 min.

$$\begin{array}{c} O \\ N \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \\ \begin{array}{c} O \\ \end{array} \\ \\ \begin{array}{c}$$

(S)-2-(1-(4-Bromophenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal, 10.

Optical rotation was in agreement with that previously reported.^[1] NMR spectra and HPLC in agreement with those reported in the literature for the enantiomeric compound.^[3]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.27 (s, 3H), 1.34 (s, 3H), 2.59 (dd, $J_1 = 5.6$, $J_2 = 18.4$ Hz, 1H), 2.95 (dd, $J_1 = 9.5$, $J_2 = 18.3$ Hz, 1H), 3.09 (dd, $J_1 = 5.6$, $J_2 = 9.5$ Hz, 1H), 7.17 (d, $J_{A-B} = 8.6$ Hz, 2H), 7.58 (d, $J_{AB} = 8.6$, 2H), 9.47 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 20.0, 20.6, 32.0, 45.1, 48.8, 122.6, 128.1, 130.9, 132.4, 174.5, 176.6, 202.8.

 $[\alpha]_D^{25^{\circ}C} = -1.2$ (c = 0.3, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 75/25, 0.6 mL/min, λ = 210 nm): t_{major} = 28.5 min, t_{minor} = 47.6 min.

(S)-2-(1-(3-Chlorophenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal, 12

NMR spectra and HPLC were in agreement with those reported in the literature for the enantiomeric compound.^[3]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.28 (s, 3H), 1.36 (s, 3H), 2.61 (dd, $J_1 = 5.6$, $J_2 = 18.3$ Hz, 1H), 2.97 (dd, $J_1 = 9.5$, $J_2 = 18.3$ Hz, 1H), 3.10 (dd, $J_1 = 5.6$, $J_2 = 9.7$ Hz, 1H), 7.10-7.42 (m, 4H), 9.48 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 20.0, 20.6, 32.0, 45.0, 48.8, 124.8, 126.9, 129.0, 130.2, 132.9, 134.8, 174.4, 176.6, 202.8.

$$[\alpha]_D^{25^{\circ}C} = -5.0$$
 (c = 0.3, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 75/25, 0.9 mL/min, λ = 210 nm): t_{major} = 20.8 min, t_{minor} = 25.2 min.

(S)-2-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2-ethylbutanal, 14

Optical rotation was in agreement with that reported in the literature. [1] NMR spectra and HPLC in agreement with those reported in the literature for the enantiomeric compound. [3]

¹H NMR (500 MHz, CDCl₃) (ppm): 0.94 (t, J = 4.5 Hz. 3H), 0.98 (t, J = 4.5, 3H), 1.62-2.20 (m, 4H), 2.64 (dd, $J_1 = 5.8$, $J_2 = 18.4$ Hz, 1H), 2.93 (dd, $J_1 = 9.5$, $J_2 = 18.3$ Hz, 1H), 3.22 (dd, $J_1 = 5.8$, $J_2 = 9.5$ Hz, 1H), 7.23-7.45 (m, 5H), 9.59 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 8.14, 8.23, 23.3, 24.4, 31.8, 41.9, 54.6, 126.6, 128.7, 129.2, 132.0, 175.1, 177.4, 204.2.

$$[\alpha]_D^{25^{\circ}C} = -8.0 \text{ (c} = 0.3, CH_2Cl_2).$$

HPLC (Chiralcel OD-H, hexane/i-PrOH 75/25, 0.5 mL/min, λ = 210 nm): t_{major} = 30.0 min, t_{minor} = 52.3 min.

(S)-2,2-Dimethyl-4-nitro-3-phenylbutanal, 8

Optical rotation was in agreement with that previously reported.^[4,5] NMR spectra and HPLC in agreement with those reported in the literature.^[6]

¹H NMR (500 MHz, CDCl₃) (ppm): 0.99 (s, 3H), 1.12 (s, 3H), 3.78 (dd, $J_1 = 3.9$, $J_2 = 11.3$ Hz, 1H), 4.68 (dd, $J_1 = 3.9$, $J_2 = 13.1$ Hz, 1H), 4.85 (dd, $J_1 = 11.3$, $J_2 = 13$ Hz, 1H), 6.86-6.93 (m, 2H), 7.17 (dd, $J_1 = 1.6$, $J_2 = 7.6$ Hz, 1H), 7.24 (m, 1H), 9.49 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 18.9, 21.8, 48.3, 48.5, 76.4, 128.2, 128.8, 129.2, 135.4, 204.4. $[\alpha]_D^{25^{\circ}C} = -1.5 \ (c = 0.4, CHCl_3).$

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 1 mL/min, λ = 210 nm): t_{minor} = 12.0 min, t_{major} = 17.1 min.

(S)-3-(2-Methoxyphenyl)-2,2-dimethyl-4-nitrobutanal, 15

NMR spectra and HPLC were in agreement with those reported in the literature. [6]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.03 (s, 3H), 1.08 (s, 3H), 3.80 (s, 3H), 4.23 (a, 1H), 4.71 (dd, $J_1 = 4.6$, $J_2 = 13.1$ Hz, 1H), 4.89 (dd, $J_1 = 10.9$, $J_2 = 13.1$ Hz, 1H), 6.87-7.28 (m, 4H), 9.51 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 20.0, 21.1, 48.5, 55.4, 55.4, 75.9, 111.4, 120.8, 124.1, 129.4, 129.8, 157.4, 204.2.

 $[\alpha]_D^{25^{\circ}C}$ = +11.7 (c = 0.47, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 0.8 mL/min, λ = 210 nm): t_{minor} = 8.9 min., t_{major} = 13.4 min.

(R)-3-(2-Bromophenyl)-2,2-dimethyl-4-nitrobutanal, 16.

Optical rotation was in agreement with that previously reported in the literature. [4] NMR spectra and HPLC were in agreement with those reported in the literature. [6]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.09 (s, 3H), 1.17 (s, 3H), 4.62 (dd, J_1 = 3.6, J_2 = 11.3 Hz, 1H), 4.72 (dd, J_1 = 4.2, J_2 = 13.6 Hz, 1H), 4.80 (dd, J_1 = 11.3, J_2 = 13.1 Hz, 1H), 7.13-7.63 (m, 4H), 9.55 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 18.9, 21.1, 45.4, 49.2, 76.5, 127.0, 127.9, 128.4, 129.6, 134.0, 135.6, 203.9.

 $[\alpha]_D^{25^{\circ}C} = -0.66$ (c = 0.46, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 1 mL/min, λ = 210 nm): t_{minor} = 10.9 min., t_{major} = 29.0 min.

(S)-3-(4-Methoxyphenyl)-2,2-dimethyl-4-nitrobutanal, 17.

Optical rotation was in agreement with that previously reported in the literature.^[4] NMR spectra and HPLC were in agreement with those reported in the literature.^[6]

¹H NMR (400 MHz, CDCl₃) (ppm): 0.99 (s, 3H), 1.12 (s, 3H), 3.74 (dd, J_1 = 4.2, J_2 = 11.5 Hz, 1H), 3.78 (s, 3H), 4.66 (dd, J_1 = 4.3, J_2 = 12.9 Hz, 1H), 4.80 (dd, J_1 = 11.2, J_2 = 12.9 Hz, 1H), 6.85 (d, J_{AB} = 8.6 Hz, 2H), 7.11 (d, J_{AB} = 8.8 Hz, 2H), 9.52 (s, 1H).

¹³C NMR (100.52 MHz, CDCl₃) (ppm): 19.0, 21.7, 47.9, 48.5, 55.3, 76.6, 114.2, 127.2, 130.2, 159.4, 204.6.

 $[\alpha]_D^{25^{\circ}C} = +2.7$ (c = 0.41, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 75/25, 0.8 mL/min, λ = 210 nm): t_{minor} = 13.7 min., t_{major} = 19.9 min.

(S)-2,2-Dimethyl-4-nitro-3-(p-tolyl)butanal, 18.

NMR spectra and HPLC data were in agreement with those reported for the enantiomeric compound in the literature. [6]

¹H NMR (500 MHz, CDCl₃) (ppm): 0.98 (s, 3H), 1.11 (s, 3H), 2.30 (s, 3H), 3.73 (dd, $J_1 = 4.2$, $J_2 = 11.3$ Hz, 1H), 4.65 (dd, $J_1 = 4.2$, $J_2 = 12.7$ Hz, 1H), 4.81 (dd, $J_1 = 11.3$, $J_2 = 12.7$ Hz, 1H), 7.09 (m, 4H), 9.51 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 18.9, 21.1, 21.6, 48.2, 48.3, 76.5, 129.0, 129.5, 132.2, 138.0, 204.5.

 $[\alpha]_D^{25^{\circ}C} = -1.2$ (c = 0.40, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 1.0 mL/min, λ = 210 nm): t_{minor} = 10.0 min., t_{major} = 14.0 min.

(S)-3-(4-Chlorophenyl)-2,2-dimethyl-4-nitrobutanal, 19

NMR spectra and HPLC data in agreement with those reported for the enantiomeric compound in the literature. [6]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.00 (s, 3H), 1.11 (s, 3H), 3.76 (dd, J_1 = 4.2, J_2 = 11.3 Hz, 1H), 4.68 (dd, J_1 = 4.3, J_2 = 13.1 Hz, 1H), 4.81 (dd, J_1 = 11.3, J_2 = 13.1 Hz, 1H), 7.14 (d, J_{AB} = 8.5 Hz, 2H), 7.27 (d, J_{AB} = 8.4 Hz, 4H), 9.49 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 19.0, 21.8, 48.0, 48.3, 76.2, 129.1, 130.5, 134.0, 134.3, 203.9. $[\alpha]_D^{25^\circ C} = -3.0 \ (c = 0.333, CHCl_3).$

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 0.8 mL/min, λ = 210 nm): t_{minor} = 14.6 min., t_{major} = 23.0 min.

(S)-3-(4-Fluorophenyl)-2,2-dimethyl-4-nitrobutanal, 20

NMR spectra and HPLC data were in agreement with those reported in the literature for the enantiomeric compound. [6]

¹H NMR (500 MHz, CDCl₃) (ppm): 1.00 (s, 3H), 1.16 (s, 3H), 3.77 (dd, $J_1 = 4.0$, $J_2 = 11.6$ Hz, 1H), 4.68 (dd, $J_1 = 3.9$, $J_2 = 12.9$ Hz, 1H), 4.81 (dd, $J_1 = 11.6$, $J_2 = 12.9$ Hz, 1H), 7.00-7.19 (m, Hz, 4H), 9.5 (s, 1H).

¹³C NMR (125.76 MHz, CDCl₃) (ppm): 19.0, 21.8, 47.9, 48.3, 76.9, 115.8 (d, $J_{C-F} = 21.1 \text{ Hz}$), 130.8 (d, $J_{C-F} = 8.6 \text{ Hz}$), 131.2, 162.5 (d, $J_{C-F} = 247.6 \text{ Hz}$), 203.9.

 $[\alpha]_D^{25^{\circ}C}$ = +8.0 (c = 0.29, CHCl₃).

HPLC (Chiralcel OD-H, hexane/i-PrOH 80/20, 1.0 mL/min, λ = 210 nm): t_{minor} = 10.1 min., t_{major} = 17.2 min.

4. Bibliography

- 1. Kokotos, C.G. An asymmetric Michael addition of α , α -disubstituted aldehydes to maleimides leading to a one-pot enantioselective synthesis of lactones catalyzed by amino acids. *Org. Lett.* **2013**, *15*, 2406–2409.
- 2. Yu, F.; Jin, Z.; Huang, H.; Ye, T.; Liang, X.; Ye, J. A highly efficient asymmetric Michael addition of α , α -disubstituted aldehydes to maleimides catalyzed by primary amine thiourea salt. *Org. Biomol. Chem.* **2010**, *8*, 4767–4774.
- 3. Avila, A.; Chinchilla, R.; Gómez-Bengoa, E.; Nájera, C. Enantioselective synthesis of succinimides by Michael Addition of aldehydes to maleimides organocatalyzed by chiral primary amine-guanidines. *Eur. J. Org. Chem.* **2013**, 2013, 5085-5092.
- 4. Yoshida, M.; Sato, A.; Hara, S. Asymmetric Michael addition of aldehydes to nitroalkenes using a primary amino acid lithium salt. *Org. Biomol. Chem.* **2010**, *8*, 3031-3036.
- 5. Luo, C.; Du, D.-M. Highly enantioselective Michael addition of ketones and an aldehyde to nitroalkenes catalyzed by a binaphthyl sulfonimide in water. *Synthesis* **2011**, 1968-1973.
- 6. Nugent, T.C.; Shoaib, M.; Shoaib, A. Practical access to highly enantioenriched quaternary carbon Michael adducts using simple organocatalysts. *Org. Biomol. Chem.* **2011**, *9*, 52–56.