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Abstract: In this study, a series of di-O-caffeoylquinic acids (di-COQs) were systematically 
investigated for their antioxidant and cytoprotective effects towards •OH-damaged bone marrow-
derived mesenchymal stem cells (bmMSCs). Five di-COQs were measured using a set of 
antioxidant assays. The results show that adjacent 4,5-Di-O-caffeoylquinic acid (4,5-COQ) and 3,4-
di-O-caffeoylquinic acid (3,4-COQ) always gave lower IC50 values than did non-adjacent di-COQs. 
In the Fe2+-chelating assay, 4,5-COQ and 3,4-COQ presented greater UV-Vis spectra and darker 
colors than did non-adjacent di-COQs. In the UPLC-ESI-MS/MS analysis, no corresponding radical 
adduct formation (RAF) peak was found in the reaction products of di-COQs with PTIO•. In the 
MTT assay, all di-COQs (especially 1,5-COQ, 1,3-COQ, and 4,5-COQ) dose-dependently increased 
the cellular viabilities of •OH-damaged bmMSCs. Based on this evidence, we conclude that the five 
antioxidant di-COQs can protect bmMSCs from •OH-induced damage. Their antioxidant 
mechanisms may include electron-transfer (ET), H+-transfer, and Fe2+-chelating, except for RAF. 
Two adjacent di-COQs (4,5-COQ and 3,4-COQ) always possessed a higher antioxidant ability than 
the non-adjacent di-COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ) in chemical models. However, non-
adjacent 1,3-COQ and 1,5-COQ exhibited a higher cytoprotective effect than did adjacent di-COQs. 
These differences can be attributed to the relative positions of two caffeoyl moieties and, ultimately, 
to the conformational effect from the cyclohexane skeleton. 
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1. Introduction 
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The activity of synthetic and natural antioxidants is derived from the molecular phenolic moiety, 
but it can be affected by structural factors such as hydrogen-bonding [1], the amount of phenolic –
OHs [2,3], O-methylation [4], glycosidation [5], anisylation [6], and heterocycles [6]. Even the 6”-OH 
group of the sugar residue in flavonoid glycosides could alter the antioxidant levels [7]. 

However, these structural factors are limited to molecular “structure” and are not involved in 
the molecular “conformation.” From the perspective of organic chemistry [8], molecular 
conformation derives from the σ-bond free rotation, which can alter the spatial relative position of 
the moieties (or atoms). A representative example is the cyclohexane molecule, which can give two 
distinctive conformations: chair conformation and boat conformation. The chair conformation has 
been proven to be preferential; in it, the axial bond (a bond) and equatorial bond (e bond) are 
alternately arrayed. The difference between the a bond and e bond results in the chemical 
characteristics of the moieties (or atoms), which has been called the conformational effect. Recently, 
the conformational effect has been found to change some of the chemical properties, such as red-
shifted emission, of luciferin [9]. It is hypothesized that, if an antioxidant moiety is attached to the 
cyclohexane skeleton and occupies different bond types (a/e bonds), its antioxidant potential may be 
distinctive. However, such conformational effects towards antioxidant ability have not, to our 
knowledge, yet been reported. 

In this study, five di-O-caffeoylquinic acids (di-COQ), which are distributed in different plants 
[10–14], were selected as references for the conformational effect investigation. As shown in Figure 1, 
the five di-COQs comprise 1,3-di-O-caffeoylquinic acid (1,3-COQ), 1,5-di-O-caffeoylquinic acid (1,5-
COQ), 3,4-di-O-caffeoylquinic acid (3,4-COQ), 3,5-di-O-caffeoylquinic acid (3,5-COQ), and 4,5-di-O-
caffeoylquinic acid (4,5-COQ). In the five molecules, the caffeoyl moiety, with antioxidant potential, 
is attached to hexacyclic quinic acid; thus, these five acids may be the ideal reference for such an 
investigation. 
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Figure 1. Structures (left) and preferential conformation-based ball-stick models (right) of five di-O-
caffeoylquinic acids (di-COQs). The ball-stick models were created in Chem3D Pro 14.0. The 
screenshots from models are from the same perspective; i.e., C-1 was deposited on the right end, and 
–COOH is upward. The three-dimensional perspective animations are shown in Video S1–5. 
However, the relative degree of crowd for caffeoyl moieties remains unchanged. 

It is worth noting that some of these compounds have already been explored for their 
antioxidant ability using a DPPH•-scavenging assay, ABTS•+-scavenging assay, anti-low-density 
lipoprotein (LDL) oxidation assay [11,15], and cellular assay [13]. However, each of these studies was 
based on the plant origin: Hung focused on antioxidants from Dipsacus asper, Zhang only explored 
antioxidants in Lonicera japonica, and Wan was only engaged in the phytochemical work of 
Chrysanthemum coronarium [14]. Thus, for di-COQs, these works are non-systematical. For instance, 
the phytochemical work of Wan lacks 1,3-COQ [14] and is irrelevant to the antioxidant study, and 
Hung’s work lacks two important members: 1,3-COQ and 1,5-COQ. However, some mono-O-
caffeoylquinic acids (e.g., chlorogenic acid) and flavonoids were involved in these studies [10,11,14]. 
Hence, these works are non-comparative and cannot be used to analyze the structure–activity 
relationship of the di-COQs antioxidant family. 

The present study, however, used five di-COQs for comparative study, based on chemical and 
cellular models. The cellular model is based on oxidatively stressed bone marrow-derived 
mesenchymal stem cells (bmMSCs). bmMSCs are considered a highly promising cell type candidate 
for cell-based tissue transplantation engineering and regeneration, but they are limited by their lower 
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cellular viability derived from oxidative stress [16]. Our study will also provide new information 
about the di-COQs family regarding bmMSCs transplantation engineering. 

2. Results and Discussion 

Iron overload can induce oxidative stress to severely damage cells, which can cause a series of 
diseases (including neurodegeneration), resulting from the ability of iron (particularly Fe2+) to 
promote the generation of ROS [17]. A typical example is the Fenton reaction, which can produce 
•OH radicals. Thus, iron chelation has now been developed as a therapy for these diseases [18,19], 
and the iron chelation level of a natural antioxidant is regularly evaluated using colorimetric methods 
and UV-Vis spectra analysis [20,21]. However, UV-Vis spectra analysis is considered direct evidence 
of an iron chelating reaction [22,23]. 

In the present study, we used UV-Vis spectra to analyze the Fe2+-chelating ability of the five di-
COQs. As shown in Figure 2, after incubation with Fe2+, each of the five di-COQs gave rise to an 
absorption maximum around 750 nm and a green product mixture, suggesting that an Fe2+-chelating 
reaction between Fe2+ and each of the di-COQs occurs. Therefore, each of the di-COQs may undergo 
an Fe2+-chelating approach to reduce the oxidative stress from ROS (especially •OH). A typical Fe2+-
chelating reaction could be proposed, as shown in Figure 3. Since Fe2+-chelating can indirectly release 
oxidative stress, it is sometimes called the indirect antioxidant mechanism. 

Correspondingly, radical-scavenging is termed a direct antioxidant mechanism. In this study, 
five di-COQs were observed to dose-dependently scavenge various radicals in chemical models, 
including PTIO•, DPPH•, and ABTS+• radicals (Figure S1). PTIO• is an oxygen-centered radical, 
whereas both DPPH• and ABTS+• are nitrogen-centered radicals. The ability of the five di-COQs to 
scavenge the three radicals implies that they can scavenge not only ROS but also reactive nitrogen 
species (RNS, e.g., ONOO− and NO) in cells and may undergo a direct antioxidant approach to reduce 
the oxidative stress. 

 
Figure 2. (A) UV-Vis spectra of the five di-COQs and their chelating products with excess Fe2+. (B) 
The colors of complexes, resulting from the product mixtures, were taken by a camera. 

 
Figure 3. The proposed chelating reaction of 4,5-COQ (4,5-di-O-caffeoylquinic acid) with excessive 
Fe2+ (the reaction formula is proposed based on previous studies [11,22–24]). 

Furthermore, these free radical-scavenging reactions are mediated by different antioxidant 
pathways. PTIO• scavenging at pH 4.5 is an electron transfer (ET) pathway [25]. The effectiveness of the 
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five di-COQs with PTIO• scavenging at pH 4.5 shows that they can undergo ET to exert their antioxidant 
action, which is further supported by evidence from the FRAP assay, a mere ET process [26]. 

However, PTIO• scavenging at pH 7.4 was proven to be an H+-transfer pathway [27]. Since the 
five di-COQs can efficiently scavenge PTIO• at pH 7.4, this implies that a H+-transfer may play a role 
in their antioxidant action. It is worth noting that the so-called ET or H+-transfer is a unidirectional 
process, where the antioxidant donates an electron or H+ to the radical rather than the antioxidant 
accepting an electron or H+ from the radical [21,27,28]. 

Unlike the FRAP assay (or PTIO• scavenging at pH 4.5), DPPH•-scavenging and ABTS+•-
scavenging assays are mediated via complicated pathways. DPPH•-scavenging includes multiple 
hydrogen atom transfer (HAT)-based pathways [27], and ABTS+• is scavenged through multiple ET-
based pathways [26]. The DPPH•-scavenging and ABTS+•-scavenging by the five di-COQs indicated 
that their antioxidant actions may also be fulfilled via multiple antioxidant pathways, including H+-
transfer, ET, and HAT. 

It should be noted that the radical adduct formation (RAF) may also occur in the radical-
scavenging action of phenolic antioxidants [28,29]. However, no RAF product peak was observed in 
the UPLC-ESI-MS/MS spectra of the di-COQs reaction products with PTIO•. By comparison, 
chlorogenic acid (a mono-O-caffeoylquinic acid) generated a peak at m/z 708, which is the value of 
the chlorogenic acid–chlorogenic acid dimer (Figure S2). This suggests that the five di-COQs cannot 
mediate RAF to exert the antioxidant action. The inactivity of di-COQs in the RAF pathway is 
presumed to be from steric hindrance, although this presumption needs further identification. 
Therefore, the evidence from the chemical models indicated that as natural antioxidants, di-COQs 
may undergo multiple antioxidant pathways (including H+-transfer, ET, or HAT, but not RAF) to 
exert their antioxidant action. 

From the perspective of quantitative analysis, the IC50 values of the five di-COQs were different 
from each other (Table 1), which indicates that there are differences in the relative antioxidant levels. 
In general, adjacent di-COQs (4,5-COQ and 3,4-COQ) always possess higher levels than do non-
adjacent di-COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ). Interestingly, the relative levels are similar to 
the anti-inflammatory activities [30]. 

Table 1. The IC50 values of five di-COQs in various antioxidant assays. 

Compounds 
PTIO•-Scavenging 

(pH 4.5, mg/mL, 
mM) 

PTIO• Scavenging 
(pH 7.4, mg/mL, 

mM) 

FRAP 
(μg/mL, μM) 

DPPH•-
Scavenging 

(μg/mL, μM) 

ABTS+•-
Scavenging 

(μg/mL, μM) 

1,3-COQ 47.2 ± 1.6 57.7 ± 1.0 3.4 ± 0.2 2.9 ± 0.1 3.6 ± 0.0 
(91.4 ± 3.6 e) (111.8 ± 2.0 c) (6.5 ± 0.4 c) (5.7 ± 0.3 b) (6.9 ± 0.1 c) 

1,5-COQ 35.5 ± 2.8 63.0 ± 7.6 3.3 ± 0.1 4.7 ± 0.6 3.5 ± 0.0 
(68.7 ± 5.4 d) (121.9 ± 14.8 c) (6.4 ± 0.2 c) (9.2 ± 1.1 c) (6.7 ± 0.1 c) 

3,4-COQ 
19.1 ± 0.4 22.3 ± 6.2 2.6 ± 0.1 2.9 ± 0.5 3.2 ± 0.0 

(37.0 ± 0.5 c) (43.1 ± 12.0 b) (5.1 ± 0.2 b) (5.7 ± 0.9 b) (6.2 ± 0.1 b) 

3,5-COQ 
55.9 ± 2.6 60.2 ± 2590 3.4 ± 0.0 3.2 ± 0.5 3.6 ± 0.1 

(108.0 ± 5.1 f) (116.5 ± 5.0 c) (6.7 ± 0.1 c) (6.1 ± 0.9 b) (7.0 ± 0.3 c) 

4,5-COQ 
4.3 ± 0.3 23.3 ± 0.3 2.6 ± 0.1 1.7 ± 0.9 2.8 ± 0.0 

(8.3 ± 0.3 b) (45.2 ± 0.6 b) (3.4 ± 2.9 a) (3.4 ± 1.8 a) (5.4 ± 0.1 a) 

Trolox 
33.4 ± 0.5 26.8 ± 1.5 16.4 ± 2.9 6.2 ± 0.0 6.9 ± 0.1 

(0.1 ± 0.0 a) (0.1 ± 0.0 a) (31.7 ± 5.5 d) (12.0 ± 0.1 d) (13.4 ± 0.2 d) 

The IC50 value (in μg/mL unit) was defined as the final concentration of 50% radical inhibition or 
relative reducing power, calculated by linear regression analysis, and expressed as the mean ± SD (n 
= 3). The linear regression was analyzed by Origin 6.0 professional software. The IC50 value was also 
expressed in μM/mM unit. The IC50 value in the μM/mM unit, with different superscripts (a, b, c, d, 
e, or f) in the same diagram, are significantly different (p < 0.05). Trolox is the positive control. 1,3-
COQ: 1,3-di-O-caffeoylquinic acid; 1,5-COQ: 1,5-di-O-caffeoylquinic acid; 3,4-COQ: 3,4-di-O-
caffeoylquinic acid; 3,5-COQ: 3,5-di-O-caffeoylquinic acid; 4,5-COQ: 4,5-di-O-caffeoylquinic acid. 
The dose-response curves are listed in Figure S1. 
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As shown in Figure 1 (right), 4,5-COQ and 3,4-COQ contain two adjacent caffeoyl moieties and 
belong to adjacent di-COQs. Caffeoyl moieties are attached to the chair conformation-preferred 
hexacyclic skeleton, where the a and e bonds are alternately arrayed [9]. In 4,5-COQ, two caffeoyl 
moieties present a trans-configuration; in 3,4-COQ, however, two caffeoyl moieties display a cis-
configuration. Despite having two adjacent caffeoyl moieties in a trans-configuration and an e bond, 
they are still very crowded. The degree of crowd increases the molecular energy, thereby elevating 
the redox potential. Thus, in the redox-based antioxidant assays, 4,5-COQ and 3,4-COQ, which 
contain two adjacent caffeoyl moieties, are always more effective than are the three non-adjacent di-
COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ). In each of the three non-adjacent di-COQs, two caffeoyl 
moieties are distant from each other, regardless of the a/e bonds and trans-/cis- configurations. The 
distance effectively releases the crowd to decrease the molecular energy and redox reactivity. 
Correspondingly, the antioxidant potential has been lowered. 

The difference between adjacent and non-adjacent di-COQs can also be observed in the Fe2+-
chelating assay. As shown in Figure 2A, compared by three non-adjacent di-COQs, both 4,5-COQ 
and 3,4-COQ gave stronger peaks in the UV spectra when treated by excessive Fe2+. In the aspect of 
complex color, 4,5-COQ and 3,4-COQ also yielded a darker color than did the three non-adjacent di-
COQs (Figure 2B). These results imply that adjacent 4,5-COQ and 3,4-COQ also displayed a higher 
Fe2+-chelating ability than did the three non-adjacent di-COQs. 

In each member of the di-COQs family, the ligand for the Fe2+-chelating reaction is the caffeoyl 
moiety [11]. As shown in Figure 1 (right), two caffeoyl moieties in 3,4-COQ and 4,5-COQ molecules 
stretch out of the skeleton on the same side, in which they can surround excessive Fe2+ to participate 
in the chelating reaction. In contrast, two caffeoyl moieties in non-adjacent di-COQs (especially 1,3-
COQ and 1,5-COQ) extended from two directions and can hardly surround excessive Fe2+ for joint 
chelation. As a result, 3,4-COQ and 4,5-COQ are more effective Fe2+-chelators than are the three non-
adjacent di-COQs. It should be noted that the dihydroxyl groups in the quinic acid ring cannot 
chelate metals to form a stable ringed complex, such as the 4,5-dihydroxyl groups in 1,3-COQ and 
the 3,4-dihydroxyl groups in 1,5-COQ [21,23,31]. In a word, two adjacent di-COQs (4,5-COQ and 
3,4-COQ) always possess a higher antioxidant ability than the three non-adjacent di-COQs (1,3-
COQ, 1,5-COQ, and 3,5-COQ) in chemical models. 

In the cellular model, their relative cytoprotective levels exhibit only small changes. As shown 
in Table 2, all five di-COQs could concentration-dependently enhance the viability percentages of 
•OH-treated bmMSCs in the MTT assay. Furthermore, 1,3-COQ, 1,5-COQ, and 4,5-COQ gave higher 
viability percentages than did the other compounds. Generally speaking, two non-adjacent di-COQs 
(1,3-COQ and 1,5-COQ) exhibit a higher cytoprotective effect than adjacent di-COQs. It is 
hypothesized that 1,3-COQ and 1,5-COQ exhibited a better cytoprotective effect due to their 
molecular shapes. In 1,3-COQ and 1,5-COQ, two caffeoyl moieties extend from the molecule in 
different directions, resulting in a long and narrow structure, which may help them freely cross the 
cytomembrane to the nucleus. However, the above hypothesis requires further study. In short, these 
differences among the five di-COQs in terms of antioxidant or cytoprotective effects may result from 
the conformation of the coral cyclohexane skeleton. 

Table 2. The viability percentages of five di-COQs towards •OH-damaged bmMSCs in the MTT 
assay. 

Compounds Control Model 10 μg/mL 30 μg/mL 50 μg/mL 100 μg/mL
1,3-COQ 100% 12.67% 17.03%* 20.23%* 23.97%* 47.15%* 
1,5-COQ 100% 12.67% 19.09%* 21.65%* 24.90%* 44.93%* 
3,4-COQ 100% 12.67% 13.02% 13.97% 15.53%* 21.15%* 
3,5-COQ 100% 12.67% 13.06% 16.21%* 19.55%* 23.38%* 
4,5-COQ 100% 12.67% 14.14% 21.78%* 22.72%* 42.04%* 

Experiments were performed with 3 different batches of cells and each batch was tested in triplicate. The 
Fenton reagent (FeCl2 plus H2O2) was used to generate •OH radicals. These data represent the mean ± 
SD (n = 3). * p < 0.05 vs. model. MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 1,3-
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COQ: 1,3-di-O-caffeoylquinic acid; 1,5-COQ: 1,5-di-O-caffeoylquinic acid; 3,4-COQ: 3,4-di-O-
caffeoylquinic acid; 3,5-COQ: 3,5-di-O-caffeoylquinic acid; 4,5-COQ: 4,5-di-O-caffeoylquinic acid. 

3. Materials and Methods 

3.1. Chemicals and Animals 

1,3-Di-O-caffeoylquinic acid (CAS 30964-13-7, 97%), 1,5-di-O-caffeoylquinic acid (CAS 19870-46-
3, 97%), 3,4-di-O-caffeoylquinic acid (CAS 14534-61-3, 97%), 3,5-di-O-caffeoylquinic acid (CAS 2450-
53-5, 97%), and 4,5-di-O-caffeoylquinic acid (CAS 57378-72-0, 97%) were obtained from Chengdu 
Biopurify Phytochemicals Ltd. (Chengdu, China). The 1,1-diphenyl-2-picryl-hydrazl radical 
(DPPH•), (±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid (Trolox), 2,4,6-
tripyridyltriazine (TPTZ), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
were purchased from Sigma-Aldrich Shanghai Trading Co. (Shanghai, China). (NH4)2ABTS [2,2′-
azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt)] was obtained from Amresco 
Chemical Co. (Solon, OH, USA). The 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical 
(PTIO•) was from TCI Chemical Co. (Shanghai, China). Dulbecco’s modified Eagle’s medium 
(DMEM), fetal bovine serum (FBS), and trypsin were purchased from Gibco (Grand Island, NY, USA). 
CD44 and Proteinase K were purchased from Wuhan Boster Co., Ltd. (Wuhan, China). All other 
reagents were of analytical grade. 

Sprague–Dawley (SD) rats of 4 weeks of age were obtained from the Animal Center of Guangzhou 
University of Chinese Medicine (Guangzhou, China). The protocol of this experiment was performed 
under the supervision of the Institutional Animal Ethics Committee in Guangzhou University of 
Chinese Medicine (Approval number 20170306A). 

3.2. UV-Vis Spectra Analysis of Fe2+-Chelating with di-COQs 

This method was based on the previous study [20]. Briefly, 100 μL of a methanolic solution of 
di-COQs (3 mg/mL) was added to 400 μL of an aqueous solution of FeCl2·4H2O (10 mg/mL). The 
solution was then mixed vigorously. Subsequently, the resulting mixture was incubated at room 
temperature for 30 min, and the spectrum was obtained using a UV-Vis spectrophotometer (Jinhua 
754 PC, Shanghai, China) from 200–1000 nm. Then, 200 μL of the supernatant was transferred to a 
96-well plate and photographed using a camera. 

3.3. PTIO•-Scavenging Assay 

The PTIO•-scavenging assay was conducted based on our method [32]. In brief, 80 μL of an 
aqueous PTIO• solution (0.1 mM) was mixed with 20 μL of phosphate buffer (pH 4.5, 7.4) containing 
sample (5 mg/mL) at the indicated concentrations. The mixture was maintained at 37 °C for 2 h, and 
the absorbance was measured at 560 nm on a microplate reader (Multiskan FC, Thermo Scientific, 
Shanghai, China). The PTIO• inhibition percentage was calculated as follows: ܵܿܽ݃݊݅݃݊݁ݒ% = ଴ܣ − ଴ܣܣ  (1) 

where A0 indicates the absorbance of the blank and A indicates the absorbance of the sample. 

3.4. FRAP Assay 

The FRAP assay was established by Benzie and Strain [33]. In the present study, the FRAP 
reagent was prepared freshly by mixing 10 mM TPTZ, 20 mM FeCl3, and 0.25 M acetate buffer (pH 
3.6) at 1:1:10. The sample solution (x = 1–9 μL, 0.1 mg/mL) was added to (20 − x) μL of 95% ethanol 
followed by 80 μL of FRAP reagent. After incubation at ambient temperatures for 30 min, the 
absorbance was measured at 595 nm using distilled water as the blank. The relative reducing power 
of the sample was calculated using the formula: 
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݃݊݅ܿݑ݀݁ݎ ݁ݒ݅ݐ݈ܴܽ݁ %ݐ݂݂ܿ݁݁ = ܣ − maxܣminܣ −  min (2)ܣ

where Amax is the maximum absorbance, and Amin is the minimum absorbance in the test. A is the 
absorbance of sample. 

3.5. DPPH•-Scavenging Assay 

DPPH• radical-scavenging activity was determined as previously described [34]. Briefly, 80 μL 
of DPPH• solution (0.1 mol/L) was mixed with the indicated concentrations of sample (0.05 mg/mL, 
2–10 μL) dissolved in methanol. The mixture was maintained at room temperature for 30 min, and 
the absorbance was measured at 519 nm on a microplate reader. The percentage of DPPH• 
scavenging activity was calculated based on the formula presented in Section 3.3. 

3.6. ABTS•+-Scavenging Assay 

The ABTS•+-scavenging activity was evaluated according to the method [24]. The ABTS•+ was 
produced by mixing 0.2 mL of (NH4)2ABTS (7.4 mmol/L) with 0.35 mL of potassium persulfate (2.6 
mmol/L). The mixture was kept in the dark at room temperature for 12 h to allow completion of 
radical generation and then diluted with distilled water (about 1:20), so that its absorbance at 734 nm 
was measured on a microplate reader. To determine the scavenging activity, the test sample (x = 1–9 
μL, 0.1 mg/mL) was added to (20 − x) μL of distilled water followed by 80 μL of ABTS•+ reagent, and 
the absorbance at 734 nm was measured 3 min after the initial mixing, using distilled water as the 
blank. The percentage inhibition of the samples was calculated based on the formula listed in Section 
3.3.  

3.7. UPLC-ESI-Q-TOF-MS/MS Analysis of Reaction Products of di-COQs and Chlorogenic Acid with PTIO• 

This method was based on the previous study [27]. The methanol solution of di-COQs was 
mixed with a solution of PTIO• radical in methanol at a molar ratio of 1:2, and the resulting mixture 
was incubated for 24 h at room temperature. The product mixture was then filtered through a 0.22 
μm filter and analyzed using a UPLC-ESI-Q-TOF-MS/MS system equipped with a C18 column (2.0 
mm i.d. × 100 mm, 2.2 μm, Shimadzu Co., Kyoto, Japan). The mobile phase was used for the elution 
of the system and consisted of a mixture of methanol (Phase A) and water (Phase B). The column was 
eluted at a flow rate of 0.3 mL/min with the following gradient elution program: 0–10 min, 60%–100% 
A; 10–15 min, 100% A. The sample injection volume was set at 1 μL for the separation of the different 
components. Q-TOF-MS/MS analysis was performed on a Triple TOF 5600plus Mass spectrometer (AB 
SCIEX, Framingham, MA, USA) equipped with an ESI source, which was run in the negative 
ionization mode. The scan range was set at 100–2000 Da. The system was run with the following 
parameter: ion spray voltage: −4500 V; ion source heater: 550 °C; curtain gas (CUR, N2): 30 psi; 
nebulizing gas (GS1, Air): 50 psi; Tis gas (GS2, Air): 50 psi. The declustering potential (DP) was set at 
−100 V, whereas the collision energy (CE) was set at −40 V with a collision energy spread (CES) of 20 V. 
The RAF products were quantified by extracting corresponding formula (e.g., [C43H36N5O18-H]− for 
di-COQs-DPPH•) from the Total Ion Chromatogram, integrating the corresponding peak. We used 
chlorogenic acid as a positive control to repeat the above experiments, instead of di-COQs. 

3.8. Cytoprotective Effect towards •OH-Damaged bmMSCs (MTT Assay) 

The bmMSCs were cultured according to our previous report [35] with slight modifications. In 
brief, bone marrow was obtained from the femur and tibia of rat. The marrow samples were diluted 
with DMEM (low glucose) containing 10% FBS. The bmMSCs were prepared by gradient 
centrifugation at 900 g for 30 min on 1.073 g/mL Percoll. The prepared cells were detached by 
treatment with 0.25% trypsin and passaged into cultural flasks at 1 × 104/cm2. The bmMSCs at Passage 
3 were evaluated for cultured cell homogeneity. 
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The MTT assay was used to evaluate cytoprotective effect of di-COQs towards bmMSCs 
[34,36,37]. The experimental protocol is briefly illustrated in Figure 4. 

 
Figure 4. Experimental procedures for the MTT assay. (PE-1420 Bio-Kinetics reader: Bio-Kinetics 
Corporation, Sioux Center, IA, USA. Each test was repeated in five independent wells. MTT was used 
at 5 mg/mL (in PBS), and the addition volume was 20 μL. The addition of Fenton reagent was 
conducted by injection of FeCl2 (100 μM) followed by H2O2 (50 μM). 

3.9. Statistical Analysis 

Each experiment was performed in triplicate and the data were recorded as mean ± SD (standard 
deviation). The dose response curves were plotted using Origin 6.0 professional software (OriginLab, 
Northampton, MA, USA). The IC50 value was defined as a final concentration of 50% radical 
inhibition (or relative reducing power) [38]. Statistical comparisons were made by one-way ANOVA 
to detect significant difference using SPSS 13.0 (SPSS Inc., Chicago, IL, USA) for Windows. p < 0.05 
was considered to be statistically significant. 

4. Conclusions 

Five antioxidant di-COQs can protect bmMSCs from •OH-induced damage. Their antioxidant 
mechanisms may include ET, H+-transfer, and Fe2+-chelating, except for RAF. However, the 
antioxidant (or cytoprotective) levels are different among them. These differences can be attributed 
to the positions of the two caffeoyl moieties and, ultimately, to the conformational effect from the 
cyclohexane skeleton. 

Supplementary Materials: The following are available online. Video S1–5: Animations of 1,3-COQ, 1,5-COQ, 3,4-
COQ, 3,5-COQ, and 4,5-COQ. Figure S1: Dose response curves of five di-COQs in various assays. Figure S2: 
Original Data of UPLC-ESI-MS/MS analysis. 
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The following abbreviations are used in this manuscript: 

1,3-COQ 1,3-di-O-caffeoylquinic acid 
1,5-COQ 1,5-di-O-caffeoylquinic acid 
3,4-COQ 3,4-di-O-caffeoylquinic acid 
3,5-COQ 3,5-di-O-caffeoylquinic acid 
4,5-COQ 4,5-di-O-caffeoylquinic acid 
ABTS [2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt)] 
bmMSCs bone marrow-derived mesenchymal stem cells 
DMEM Dulbecco’s modified Eagle’s medium 
DPPH• (1,1-diphenyl-2-picryl-hydrazl) 
ET electron transfer 
FBS fetal bovine serum 
FRAP ferric reducing antioxidant power 
HAT hydrogen atom transfer 
PTIO• 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical 
ROS reactive oxygen species 
RNS reactive nitrogen species 
RAF radical adduct formation 
SD standard deviation 
TPTZ 2,4,6-tris(2-pyridyl-s-triazine) 
Trolox [(±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid] 
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