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Abstract: Quick access to cadmium (Cd) contamination in lettuce is important to supervise the leafy
vegetable growth environment and market. This study aims to apply laser-induced breakdown
spectroscopy (LIBS) technology for fast determination of Cd content and diagnosis of the Cd
contamination degree in lettuce. Emission lines Cd II 214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm
were selected to establish the univariate analysis model. Multivariate analysis including partial least
squares (PLS) regression, was used to establish Cd content calibration models, and PLS model based
on 22 variables selected by genetic algorithm (GA) obtained the best performance with correlation
coefficient in the prediction set Rp2 = 0.9716, limit of detection (LOD) = 1.7 mg/kg. K-Nearest
Neighbors (KNN) and random forest (RF) were used to analyze Cd contamination degree, and RF
model obtained the correct classification rate of 100% in prediction set. The preliminary results
indicate LIBS coupled with chemometrics could be used as a fast, efficient and low-cost method to
assess Cd contamination in the vegetable industry.

Keywords: cadmium contamination; lettuce; laser-induced breakdown spectroscopy; multivariate
analysis; genetic algorithm

1. Introduction

Toxic heavy metal cadmium (Cd) has become a common concern as it is ubiquitous in the
environment and highly toxic for human [1]. Some lakes in industrialized areas in China have high Cd
concentrations exceeding 0.8 µg/L [2], such as Luan river with Cd concentrations 1.120–4.474 µg/L
and East Lake which is close to 8 µg/L [3]. Soil also have an excessive accumulation of Cd due to some
human activities, such as the release of waste, usage of chemical fertilizers, pesticides, and sewage
sludge in agricultural lands [4]. Cd pollution in water, soil, and other environments has increased
the Cd accumulation possibility in food, such as vegetables and cereals. Then, Cd easily enters the
human body through the food chain and increases the risk of cancer, mutation, endocrine disorder,
renal failure, and chronic anemia for human [5].
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Lettuce (Lactuca sativa L. var. longifolia) is a plant species produced and consumed worldwide. As a
common leafy vegetable, lettuce is rich in fiber, vitamins (A, B, C, and K), chlorophyll, and carotenoids
which are vital for human health [6]. Nevertheless, it has been reported that lettuce has a comparatively
high accumulation of cadmium in its leaves [7], and it has been proposed as an indicator plant to
test cadmium polluted soils and plant tissues [8]. The characteristic of high Cd accumulation in
lettuce leaves, unquestionably, increases human dietary risk. Heavy metals in food are hidden and
irreversible. Due to the advantages of a high accumulation of Cd, determination of lettuce cadmium
levels is beneficial for judging whether lettuce is a healthy food, supervising the growth environment
of vegetables, and decreasing the risk associated with Cd toxicity.

Atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectroscopy
(ICP-OES), and inductively coupled plasma with mass spectrometry (ICP-MS) are common methods
to detect concentrations of heavy metal Cd in food [9]. Though the results are accurate, these
traditional methods are expensive and need complex sample preparation with a strongly acidic
environment and high temperatures for sample digestion [10]. This process is time-consuming.
Obviously, the above deficiencies limit the potential of real-time monitoring and rapid detection of
heavy metals which are highly desirable in regulating heavy metal pollution in the lettuce market and
for efficient lettuce growth.

Laser-induced breakdown spectroscopy (LIBS) is a recently developed elemental analytical
technique that has a fast responsive, micro-destructive and chemical-free with no or little sample
preparation [10]. Given these merits, LIBS has been widely used in different food detection
methods, such as meat classification [11], Cu determination in fruits [12], Na determination in bakery
products [13], and bacterial pathogen determination in milk [14]. Studying the rapid detection of
heavy metals in plants is conducive to quickly determining concealed characteristic of heavy metal
pollution in food, providing a decision-making basis for early and rapid diagnosis of heavy metal
pollution, and is capable of carrying out targeted measures to cut off the accumulation of heavy metal
pollution and its irreversible damage for lettuce safety. Recently, there have also been some reports
focusing on heavy metal detection in plants. Yao et al. successively mixed cabbages with lead [15] and
cadmium [16], then used LIBS to detect the heavy metals. The high determination coefficient and low
root mean square error (RMSE) of the detection models indicate it is feasible to use LIBS to determine
heavy metals in leafy vegetables. However, the uniformity of mixing is a concern and the sample
size needs to be improved. To get close to the actual plant-environment system and reflect the heavy
metals in plant tissues, some plants under different heavy metal stresses, are better planted. Chromium
content in rice leaves [17] and copper content in Tobacco leaves [18] were detected by LIBS technology,
and good detection models were obtained. To our best knowledge, Cd analysis in lettuce—high Cd
accumulation plant-based—with LIBS has not been investigated.

In this study, we focused on Cd fast analysis in lettuce based on LIBS technology and
chemometrics, including Cd concentration fast detection and Cd pollution level fast discrimination.
The specific objectives of this study were (1) to preprocess raw LIBS spectra by the autoscaling method,
and to investigate univariate analysis based on Cd emission lines and obtain the most sensitive
Cd emission line; (2) to compare multivariate analyses based on full spectra, Cd emission bands,
and discontinuous variables selected by genetic algorithm (GA) and obtain the best and stable partial
least squares (PLS) regression model to quickly detect Cd content; (3) to apply principal component
analysis (PCA) to show the Cd pollution level in a three-dimensional perspective, and to use K-Nearest
Neighbors (KNN) and random forest (RF) based on full spectra and variables selected by PCA loadings
to classify Cd contamination level of lettuce.
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2. Materials and Methods

2.1. Sample Preparation

Lettuce (Lactuca sativa L. var. longifolia) leaves with different degrees of cadmium stress were used
in this experiment. Romaine lettuce seeds were purchased from Qingxian Chunfeng Vegetable Variety
Breeding Farm (Cangzhou, Hebei, China). The hydroponic experiment was carried out on Zijingang
Campus, Zhejiang University, Hangzhou, China. The seeds were sterilized with 1% NaClO solution
for 25 min, rinsed with sterile distilled water, and then germinated on sterile Murashige and Skoog
culture medium at 35 ◦C and 65% relative humidity for 5 days. The seedlings with root length of
approximately 3 cm were transplanted into 10 L full strength Yamazaki’s nutrient solution [19], and
the culture solutions were renewed every 3 days. Growth conditions [20] were adjusted to 27/22 ◦C
(16:8 h light-dark cycle), 65% relative humidity and a light intensity of 200 µmol m−2 s−1. After 9 days,
5 different cadmium treatments (0, 10, 30, 60, and 100 µM cadmium prepared by CdCl2 solution) were
adopted in this experiment with similar size plants. The cultivation process of lettuce samples is shown
in Appendix A. On the 30th day after treatment, leaves of each plant lettuce were cleaned by distilled
water, dried at 60 ◦C for 5 h in an oven, and ground to powder separately. The cultivation process
of lettuce samples and the lettuce leaves after 30 days of different Cd stress treatment showed no
differences with visual observation. One hundred and fifty milligrams of single lettuce powders were
pressed into a square pellet by a tablet pressing machine (FY-24, SCJS, Tianjin, China) with a pressure
of 600 MPa for 30 s.

2.2. LIBS Measurements

The self-assembled LIBS device used in this experiment is presented in Figure 1. Combined with
previous research [17], Q-switched Nd:YAG pulse laser (Vlite 200, Beamtech, Beijing, China) was used
to generate laser pulses at 532 nm with a maximum energy of 200 mJ and 8 ns pulse width. After passing
through our self-made optical system, the laser was finally focused on the sample surface through
a plano-convex lens (f = 100 mm). After the laser ablated the sample mass, plasma was generated and
diffused outward to emit electromagnetic waves. The waves were collected by a light collector and
received by a spectrometer (SR-500i-A-R, Andor Technology, Belfast, UK) combined with an intensified
charge coupled device (ICCD) camera (DH334T-18F-03, Andor Technology, Belfast, UK), and spectra
between 211.92 nm–232.90 nm with 0.02 nm resolution was collected. A delay generator (DG645,
Stanford Research Systems, Sunnyvale, CA, USA) was used to control the delay time between the
ICCD camera and laser Q-switch. Before the experiment, we optimized the experimental parameters
and obtained optimal parameters with a laser energy of 60 mJ, delay time of 1.5 µs, and gate width of
10 µs. An automatic x–y–z translation was used to place lettuce pellets and control the laser ablation
path with 4 × 4 array craters and each crater had 5 times the accumulation of laser pulses. To reduce
fluctuation between the laser point-to-point, the spectrum for each sample was recorded by an average
of the 80 spectra (4 × 4 × 5). Time of LIBS information collection for one sample was about 1min.
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Figure 1. Schematic diagram of the laser-induced breakdown spectroscopy (LIBS) experimental setup.

2.3. Detection of Lettuce’ Cd Content by AAS

Each pellet after LIBS acquisition was weighed and added into a Modified polytetrafluoroethylene
vessel and mixed with 5 mL of 65% HNO3 and 1 mL of 30% H2O2 for microwave digestion. The
digested liquid was diluted to a volume of 30 mL with high-purity water by a weighing method after
acid elimination at high temperatures. The reference Cd contents of the solution were determined
with a flame atomic absorption spectrophotometer (AAS) (AA800, PerkinElmer, Waltham, MA, USA).
Standard material, GBW10020 (Beijing, China), was used to control the analysis quality. The above
pretreatment to obtain the solution for AAS needed more than 150 min. The reference cadmium values,
which are statistically significant, accumulated in the 70 lettuce leaves and are shown in Table 1. As
shown in Table 1, the mean Cd content of each group shows that the accumulation of cadmium in
lettuce increases with the increase of cadmium stress even if not linearly.

Table 1. Cadmium (Cd) content of lettuce leaves obtained by atomic absorption spectrophotometer
(AAS) (mg/kg).

Groups CK 1 2 3 4

Number 10 15 15 15 15
Min 0 28.4 58.2 202 221
Max 0.004 81.3 98.9 352 492

Mean 0.001 43.9 69.8 287 318
S.D. 0.003 22.8 7.14 37.3 64.0

Note: Group CK means the group for control check (CK) and represents 0 µM Cd stress; Group 1 represents 10 µM
Cd stress; Group 2 represents 30 µM Cd stress; Group3 represents 60 µM Cd stress; Group 4 represents 100 µM Cd
stress. These expressions apply to the full text. “S.D.” means standard deviation.

2.4. Data Analysis

Autoscaling method, also called normalized standard score method, could eliminate the
magnitude influence of different variables [21] and reduce random noise from instruments and
the experimental environment. The principle is to generate a normalized standard score by finding
the normal curve Z-score equivalent for a given percentile rank, then transforming this Z-score to a
score representing a distribution having a specified mean and standard deviation [22]. The formula is
as follows:

Z− score = (X−mean(X))/Std(X) (1)
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For spectral matrix X, the Z-score is computed using the mean and standard deviation along each
column of X.

As one of the most important branches of intelligent computing, genetic algorithm (GA) has
the characteristics of stronger robustness, global rand search, and the ability to find the global
optimal solution in complex, multi-peak large solution spaces [23]. The calculations consist of the
following steps [24]: Creating the initial population; sorting chromosomes and retaining the top hall;
recombining, breeding, and mutating until achieving the maximum number of generations; bringing
in an independent test set to find the top best chromosomes. A chromosome represents a bit vector,
and the size of the chromosome population is defined by the number of chromosome-variables.

K-Nearest Neighbors (KNN) is based on the idea that the category of a data point is determined
according to the classification of the nearest k [25]. In reality, the k-value is usually an odd number
and defines the locality of KNN [26]. A k-value was chosen for optimal results with a minimum
prediction error.

Random forest (RF) is an ensembled learning technique and has the merit of being correct for
decision trees’ tendency to overfit their training data [27,28]. For RF, the operation is as follows: n tree
bootstrap samples are drawn from the calibration set and stored as a new set; each bootstrap sample
grew an unpruned regression tree, and each node of the tree chose the best split among those variables;
predict majority voted for classification by aggregating the predictions of the n trees.

2.5. Performance Evaluation

For Cd content quantitative detection, root mean square cross validation error of calibration
set (RMSECV) and root mean square error of prediction set (RMSEP) suggest the accuracy of the
calibration and prediction model, respectively. The correlation coefficient (R2) between reference Cd
content and measured Cd content by the quantitative model was used to evaluate the detectability of
different variables; sensitivity informs what fraction of the analytical signal is due to the increase of
the concentration of a particular analyte at unit concentration [29]. In multivariable PLS calibration
models, sensitivity is defined as:

SEN = 1/‖bk‖ (2)

where bk is the regression coefficients of PLS calibration model, means the Euclidean norm of the
bk vector.

In addition, limit of detection (LOD) was used to evaluate the sensitivity of univariate calibration
and is expressed as:

LOD = 3s/b (3)

where s is the standard deviation of the background intensities and b is the slope of the calibration curve.
LOD in the multivariate domain has recently been discussed in several

multivariate techniques [30,31] and an approximation LOD of multivariable PLS calibration
models can be estimated by combining Equations (2) and (3) [32,33]

LOD = 3s(1/SEN) = 3s‖bk‖ (4)

for qualitative determination of cadmium pollution degree, accuracy of classified rate was used to
demonstrate the results [34].

2.6. Software Tools

LIBS spectra acquisition was carried out by Andor SOLIS for Imaging (v4.26, Andor Technology,
Belfast, UK). Data analysis was executed by MATLAB R2017a (The MathWorks, Inc., Natick, MA, USA).
Origin Pro 2015 (Origin Lab Corporation, Northampton, MA, USA) was applied for graphs designing.



Molecules 2018, 23, 2930 6 of 15

3. Results and Discussion

3.1. Spectra Analysis

The average raw LIBS spectra (line) and standard deviation (shadow on the line) profiles of the
five different Cd-stress group lettuces are shown in Figure 2a. LIBS spectra of the five Cd-stress groups
show similar tendencies which indicate that the samples contained similar elementary compositions
and matrices. System instability and environmental fluctuations would cause unnecessary information
redundancy and random errors on the acquired spectra. Therefore, autoscaling method was used to
reduce random errors and correct baselines, and the preprocessed spectra are displayed in Figure 2b.
All spectra remained the in the same dimension and background baseline.

Based on the Kurucz database and the National Institute of Standards and Technology (NIST)
Atomic Spectra Database (ASD), three Cd emission lines (ionic emission lines Cd II 214.44 nm and
Cd II 226.50 nm, atomic emission lines Cd I 228.80 nm) were observed in all Cd stress lettuce samples.
We also found that ionic emission lines Fe II 213.70 nm, Fe II 214.93 nm, and Cu II 227.62 nm all
emerged near the cadmium emission lines. This phenomenon indicated the micronutrients Fe and Cu
belonged to the matrix atoms of lettuce leaves and had a similar stimulated absorption energy with
Cd. As Figure 2b shows, the intensity of the same element in different Cd-stress treatment has obvious
differences which are not shown in Figure 2a, such as Fe emission lines in Group 1 have the highest
intensity, and Cd emission lines in Group 4 have the highest intensity. Those differences indicated that
heavy metal Cd stress significantly changed the content of elements in lettuce leaves.

Figure 2. Average ± standard deviation plot of (a) original spectra and (b) those after autoscaling
method pre-treatment.

3.2. Cd Content Prediction

The LIBS spectra after the autoscaling method were evaluated for Cd content of lettuce samples
by univariate and multivariate data analysis with the partial least squares (PLS) regression method.
Before quantitative analysis, 70 samples were partitioned into a calibration set (47 samples) and
a prediction set (23 samples) based on Kennard-Stone (KS) algorithm which could avoid bias in sample
selection [35].

3.2.1. Univariate Analysis

As a traditional calibration method, univariate analysis for LIBS analysis relates spectral intensities
of only one emission line with reference element content values to generate a calibration curve. Figure 3
presents the average spectrum of each group lettuce samples in Cd II 214.44 nm, Cd II 226.50 nm,
and Cd I 228.80 nm, respectively. As shown in Figure 3, there is no self-absorption or interruption of
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other emissions in the three Cd emission lines. So, the spectral intensities of the three Cd emission
lines were used as input variables for univariate analysis, respectively, and these three lines were also
discussed in the report of Yao et al. [16].

Figure 3 shows univariable calibration results based on Cd II 214.44 nm, Cd II 226.50 nm, and Cd
I 228.80 nm, respectively. The three univariable calibrations all demonstrate the predictive capability
with Rp2 value of more than 0.94 and LODs of less than 5.5 mg/kg. The results also indicate that the
peak intensity of emission line 226.50 nm has the best capability (Rc2 = 0.9646, RMSECV = 23.9 mg/kg,
Rp2 = 0.9566, RMSEP = 27.4 mg/kg, LOD = 2.9 mg/kg) to predict cadmium content, which obtained
higher R2 values and lower RMSEs, and LODs in all univariate calibration models. Univariate analysis
based on the above Cd emission lines are more beneficial for exploiting a portable instrument for rapid
detection of heavy metal Cd in Lettuce Market, undoubtedly.

Figure 3. Cd II 214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm peaks and corresponding univariate
analysis curve fitting plots.
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3.2.2. Multivariable Analysis

As an effective calibration method, multivariate analysis utilizes more useful spectral information
to analyze the relationship between LIBS spectra and Cd content in lettuce leaves. PLS
regression was tried to establish calibration models, and full-cross validation was performed to
avoid overfitting [36,37]. The number of latent variables (LVs) was optimized in the calibration model
for all the PLS models. The range of full LIBS spectra from 211.70 nm to 232.68 nm with 2014 variables
were selected to construct the PLS model. The whole peak band of each strong Cd emission line—the
range of 214.17–214.67 nm, 225.94–227.07 nm, 228.27–229.35 nm—was also used as the input for the
PLS model, respectively. We combined the intensity of Cd II 214.44 nm, Cd II 226.50 nm, and Cd I
228.80 nm and also used GA to select the most relevant variables from the full spectra to improve
PLS model after 1000 iterations. With a decrease of 46.5 times, the 22 variables selected by GA are
shown in Table 2. Most variables in the 22 variables were located at the left and right sides of the three
strong Cd emission lines, such as 226.42 nm, 226.44 nm, 226.46 nm, 226.54 nm, and 226.56 nm which
were in the near vicinity of Cd II 226.50 nm; 228.64 nm, 228.74 nm, 228.72 nm, 228.66 nm, 228.68 nm,
228.76 nm, 228.80 nm, 228.78 nm were in the near vicinity of Cd II 228.80 nm, and 214.44 nm, 214.36
nm, 214.48 nm, 214.58 were in the near vicinity of Cd II 214.44 nm. In total, the above 18 variables
belonged to part of Cd information in LIBS spectra. Among the 22 variables, 222.23 nm, 222.25 nm,
222.27 nm, 230.94 nm represented LIBS background information. After a thousand iterations, the
background information still preserved, and this phenomenon indicated that the four variables might
have a unique relationship with the lettuce matrix and could explain lettuce matrix information in PLS
calibration model.

Table 2. The detail of 22 variables selected by genetic algorithm (GA) based on National Institute of
Standards and Technology (NIST) database.

Elements Emission Line (nm) Selected Variables (nm)

Cd I 228.80 228.64, 228.74, 228.72, 228.66, 228.68, 228.76, 228.80, 228.78
Cd II 226.50 226.44, 226.42, 226.56, 226.50, 226.46, 226.54
Cd II 214.44 214.44, 214.36, 214.48, 214.58

background / 222.23, 222.25, 222.27, 230.94

The results for the multivariate analysis by PLS regression with different variables are shown
in Appendix B and Figure 4 shows the scatter plots of the models. As Figure 4 shows, all the PLS
models achieved good performance in the calibration set and prediction set, with Rc2 and Rp2 higher
than 0.9494. The model based on Cd peaks 214.39–214.89 nm, 226.15–227.29 nm, and 228.49–229.57
nm were all better than the univariable analysis based on the intensity of single wavelength (Cd II
214.44 nm, Cd II 226.50 nm, or Cd I 228.80 nm). This is because Cd peaks did not only contain features
near the three strong Cd emission lines but also contained some background information and matrix
information which had relevance to the substrate of the lettuces. The PLS model of full spectra had
better results with Rc2 of 0.9779 and Rp2 of 0.9699 because full LIBS spectral contained all emission
lines for elements and continuous background information. But full LIBS spectra inevitably introduced
noise or irrelevant information which resulted in model complexity and instability [38,39]. GA was
used to screen the 22 most effective variables associated with Cd content and obtained the best result
in the calibration set with Rc2 = 0.9799 and the prediction set with Rp2 = 0.9716, and the LOD of PLS
model was 1.7 mg/kg.

Compared with univariate analysis, all models for multivariable analysis were found to reasonably
fit because of the merit of combining useful multi-variables to deal with matrix effect and shot-to-shot
fluctuation of the LIBS spectra. PLS regression could correlate the maximal variance in independent
variables (LIBS variables) with the dependent variable (Cd values by AAS) using the regression method
and reduced multicollinearity of independent variables [36]. Genetic algorithm selected the effective
variables through thousands of iterations, so the screened variables were representative for Cd content
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in lettuce leaves. Therefore, multivariate analysis combining with GA-PLS is more suitable for accurate
detection of Cd content in lettuce leaves for rigorous laboratory research and food market regulation.
Compared with univariate analysis, the calibration model based on the three Cd emission lines is more
beneficial for fast detection in the lettuce growth source and market.

Figure 4. The relationship between reference Cd value and LIBS measured Cd value that predicted by
partial least squares (PLS) regression models based on different variables.

3.3. Cd Pollution Degree Analysis

Under the stress of Cd pollution, concentrations of some elements in lettuce leaves changed
gradually. As a fingerprinting atomic spectroscopy, LIBS could capture these variations in elements.
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It was difficult to distinguish Cd pollution degree of lettuce leaves by visual observation, so LIBS,
combined with chemometrics, was applied to solve this problem.

3.3.1. PCA

PCA converted the original LIBS variables into new variables (PCs) so that a few new variables
(PCs) were linear combinations of the original LIBS variables. These PCs were orthogonal and unrelated
to each other, eliminating the possible multicollinearity between the original variables. In general,
the first few PCs interpreted the most useful data and could be applied to observe the distribution
of the samples and identify the differences between them visually [40,41]. So, principal component
analysis (PCA) was applied to display the classification trend of lettuce samples in three-dimensional
principal components (PCs) plot first.

All LIBS spectra for principal component analysis were pretreated by the autoscaling method.
The accumulated variance contribution rate was up to 95.8% LIBS raw variables of lettuce leaf samples
for the first three PCs. Figure 5a shows score scatter plots of the first three PCs with PC1, PC2, PC3 and
explains 85.2%, 6.25%, 4.33% of total LIBS variables, respectively. The Cd2+ group 0 µM, 10 µM, and
30 µM were close but completely separated from each other. The samples of group 0 µM distributed
closely which meant there was almost no difference between lettuce leaves in group 0 µM. The Cd2+

group 60 µM and 100 µM were far away from other groups, and there was overlap between these two
groups. The good separation signified obvious differences of lettuce leaves between the different Cd
pollution degrees, while the overlaps may come from the obstruction of similar leaf matrix ingredients.
The Cd2+ group 60 µM and 100 µM belonged to more severe Cd pollution and presented some similar
matrix components.

PCA loadings are the coefficients of the original variables on the PCs and reflect the degree of
correlation between the principal component and the original wavelength variable of the spectrum.
A greater absolute value of one loading indicates its corresponding LIBS raw variable contains more
useful and important information. The first three PCs expressed 95.8% LIBS raw variables, and the
first three PCA loadings are plotted in Figure 5b,c,d. The variables with an absolute value of loading
larger than 0.04 were selected as the important variable for LIBS spectra of lettuce leaves with Cd
pollution. As Figure 5 shows, 16 variables were selected by PCA loadings and represent the important
and characteristic LIBS spectral information for lettuce leaf matrix with Cd pollution. The three Cd
emission lines and the variables which belonged to the Cd peaks (226.86 nm and 214.48 nm) were
screened, and some emission lines for Iron (Fe) and copper (Cu) also belonged to high contribution
rate variables. Fe and Cu are important nutrients in the growth of lettuce, and different Cd stress
forced absorption differences of these important elements in lettuce leaves.

3.3.2. Classification Models for Cd Pollution Degree

A three-dimensional principal components plot showed the distribution trends of lettuce samples
and could not define the boundaries of each category definitely, so classification methods were used
for discriminating samples in different Cd pollution degrees. KNN and RF were applied to establish
the classification models. Three kinds of variables, including raw full spectra, full spectra after
autoscaling method (Z-score) and the 16 important variables selected by PCA loadings, were input
to the classification models and compared to obtain stable and efficient classification models. KNN
models were built with k ranging from 3 to 10, and the best results were obtained with a k of three for
the three kinds of variables as shown in Table 3. For RF models, the number of regression trees in the
forest was optimized from 50 to 200 with a step size of one and nodes per tree were optimized from 1
to 50 with a step size of five.
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Figure 5. Three-dimensional principal components plot (a) of for different Cd pollution groups of
lettuce leaves, the first three principal component analysis (PCA) loadings plot (b–d) with the variables
selected by PCA.

For raw full spectra, the KNN model and the RF model obtained unpleasant results with correct
recognition rates of 84.6% and 80.0% in prediction set, respectively. The reason for the poor performance
was that the original spectra contained many random errors such as environmental differences,
instrument noise, and background noise, etc. After the autoscaling preprocesssing, the full spectra
performed better with 95.5% correct recognition rates in the prediction set for the KNN model and
100% for the RF model. After removing random noise, the spectral information purely expressed the
similarities and differences of lettuce ingredients. Therefore, the optimal classification models for
classifying Cd contamination level of lettuce is the RF model (68 trees and 25 nodes per tree) based on
the Z-score full spectra with correct recognition rates 100% and 100% in the calibration and prediction
set as shown in Table 3. The RF model based on Z-score full LIBS spectra performed better than the
KNN model, because RF could deal with irrelevant features and assign data features to different
weights through the order of branch bifurcation.

As shown in Table 3, all models of variables screened by PCA loadings obtained acceptable results
with classification accuracies over 92.0%. RF classification model (50 trees and 1 node per tree) based
on 16 optimal emission lines obtained the best performance, with the classification rate of 100% in the
calibration set and the classification rate of 96.0% in the prediction set. The results indicated that it
is feasible to fast detect Cd pollution degree on lettuce leaves using an accurate single model based
on the 16 optimal variables selected from the LIBS spectra. Another advantage is that the number of
input variables reduced from 1024 to 16, leading to a reduction of 98.4%. However, the PCA loading
selection method still loses a small amount of LIBS information so the recognition rate of the prediction
set could reach 100%, and more variable screening methods can be tried subsequently.



Molecules 2018, 23, 2930 12 of 15

Table 3. Results of classification models using different variables.

Variables
(Number) Number Model Parameter [a] Calibration

Set (%) Prediction Set (%)

Raw spectra 1024
KNN 3 91.1 84.6

RF (58, 5) 100 80.0

Z-score Spectra 1024
KNN 3 96.0 95.6

RF (68, 25) 100 100

PCA selected 16
KNN 3 93.3 92.0

RF (50, 1) 100 96.0
[a] Parameter means the parameters of the models: k value of K-Nearest Neighbors (KNN), number of trees in the
forest and nodes per tree for random forest (RF).

4. Conclusions

In this experiment, we have shown the potential of rapid analysis of heavy metal cadmium
contamination in lettuce using laser-induced breakdown spectroscopy. The rapid analysis focused
on the fast detection of Cd content and the diagnosis of Cd contamination levels of lettuce leaf
samples with accurate results. A total of three Cd emission lines Cd II 214.44 nm, Cd II 226.50 nm,
and Cd I 228.80 nm were selected to establish univariate analysis model, and the intensity of Cd II
226.50 nm performed the best with Rc2 value of 0.9646, Rp2 value of 0.9566, and LOD = 2.9 mg/kg.
For multivariable analysis, all PLS models based on six variables achieved better performance than
univariable analysis, with Rc2 and Rp2 higher than 0.9494. The best prediction result was achieved
by GA-PLS model based on 22 variables with Rc2 = 0.9799, Rp2 = 0.9716, and the LOD of PLS model
was 1.7 mg/kg. For the 22 variables, there were 18 variables featured on left and right sides for the
three strong Cd emission lines and four variables represented in the LIBS background. KNN and RF
models based on raw LIBS spectra, Z-score LIBS full spectra, and variables selected by PCA loadings
were established to rapidly diagnose Cd contamination levels of lettuce leaves. The RF model (68 trees
and 25 nodes per tree) based on Z-score spectra performed the best with correct recognition rates of
100% in both the calibration and prediction set. The RF model of variables selected by PCA loadings
also obtained acceptable results with a prediction accuracy of 96.0% with input variables reducing
from 1024 to 16.

The proposed approach provides a fast, simple, and precise method for effective quantitative
and qualitative detection of heavy metal Cd contamination in biological samples of lettuce leaves by
LIBS technology based on the appropriate chemometric methods. In addition, the proposed three Cd
emission lines are available for the development of a portable instrument to detect Cd contamination
in the vegetable market. However, based on our study, further advances are still needed. More
samples with other chemometric methods to detect heavy metals in plant and growth environments,
such as soils, water and gas, should be quickly explored for safe growth environment regulation to
ultimately provide a fast and accurate technique for regulation and relief of heavy metal pollution in
the food market.
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Appendix

Figure A1. The cultivation process of lettuce samples in different cadmium treatments (0, 10, 30, 60,
100 µM).

Appendix

Table A1. Table A1. The results for multivariate analysis by PLS regression with different variables.

Variables Number LVs LOD
mg/kg

Calibration Set Prediction Set

Rc
2 RMSECV

mg/kg Rp
2 RMSEP

mg/kg

Full Spectra 1024 4 2.0 0.9779 19.2 0.9699 23.1
214.17–214.67 nm 25 5 2.9 0.9749 20.4 0.9572 28.3
225.94–227.07 nm 56 4 2.5 0.9656 23.8 0.9607 27.0
228.27–229.35 nm 54 4 3.2 0.9761 19.9 0.9494 29.0

214.44 nm, 226.50 nm, 228.80 nm 3 1 4.0 0.9714 21.7 0.9578 27.2
GA Selected 22 5 1.7 0.9799 18.2 0.9716 22.4
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