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Abstract: Japanese encephalitis is a zoonotic disease caused by the Japanese encephalitis virus
(JEV). It is mainly epidemic in Asia with an estimated 69,000 cases occurring per year. However,
no approved agents are available for the treatment of JEV infection, and existing vaccines cannot
control various types of JEV strains. Drug repurposing is a new concept for finding new indication of
existing drugs, and, recently, the concept has been used to discover new antiviral agents. Identifying
host proteins involved in the progress of JEV infection and using these proteins as targets are the
center of drug repurposing for JEV infection. In this study, based on the gene expression data of
JEV infection and the phenome-wide association study (PheWAS) data, we identified 286 genes that
participate in the progress of JEV infection using systems biology methods. The enrichment analysis
of these genes suggested that the genes identified by our methods were predominantly related
to viral infection pathways and immune response-related pathways. We found that bortezomib,
which can target these genes, may have an effect on the treatment of JEV infection. Subsequently,
we evaluated the antiviral activity of bortezomib using a JEV-infected mouse model. The results
showed that bortezomib can lower JEV-induced lethality in mice, alleviate suffering in JEV-infected
mice and reduce the damage in brains caused by JEV infection. This work provides an agent with
new indication to treat JEV infection.
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1. Introduction

The Japanese encephalitis virus (JEV) is the main pathogen that causes severe encephalitis in
humans. JEV belongs to the genus of Flavivirus, which also includes other arboviruses, such as the
Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) [1]. JEV is a positive-sense
single-stranded RNA virus. The genome of JEV is approximately 11 kb in length, containing a single
open reading frame (ORF) flanked by the 5′- and 3′-untranslated regions (UTRs). The ORF encodes
a long polyprotein that is cleaved into three structural proteins (capsid [C], pre-membrane [prM],
and envelope [E]) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [2].
The structural proteins make up the infectious viral particle and the nonstructural proteins participate
in multiple steps of viral life cycle including viral replication, virion assembly, and immune evasion [2].

Since the first record of the virus in the late 1800s, JEV has posed a significant threat to global
health [3]. It is reported that there are 69,000 cases of JEV infection per year [4]. The average
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mortality rate caused by JEV can be as high as 30% in the past 30 years, and the proportion of
survival with permanent neurological or psychiatric sequelae is approximately 44% [1]. With its
epidemic area expansion, JEV affects approximately 25 countries in Asia, and approximately 60% of
the population lives with a risk of JEV infection [2]. At present, vaccination is the most effective way
to prevent JEV infection. The common vaccines include the inactivated mouse brain-derived vaccine
(JE-VAX), inactivated BHK-21 cell-derived vaccine, live-attenuated vaccine (SA14-14-2), inactivated
Vero cell-derived vaccine, and the chimeric attenuated vaccine [5]. However, approximately 80% cases
of the JEV infection occur in areas covered by the JEV vaccination program due to the failures of
immunization strategies or the limitation of vaccines themselves [1]. To date, no clinically approved
antiviral agents have been available for the treatment of JEV infection. Furthermore, few randomized
clinical trials have tested treatments for JEV. In the past 30 years, only six agents for the treatment
of JEV infection have been tested by clinical trials, but none of them have been found effective [1].
Therefore, it is essential and urgent to find a safe and effective treatment.

Drug repurposing has recently become a very popular method for drug discovery; drug repurposing
provides old drugs (including approved drugs, under research drugs, and withdrawn drugs) with new
indications by exploring new molecular pathways and targets [6,7]. With this strategy, finding an
alternative agent to treatment JEV infection will be fast and safe. During the past decades, the traditional
method for drug repurposing depends on high-throughput screening of small-molecule libraries
consisting of approved and developing drugs [8]. However, the success rate of high-throughput
screening for effective repurposed drugs has dropped dramatically [9]. With the development of
computational methods, the high-throughput omics data, virtual screening, and text mining have been
used for drug repurposing [9,10]. One of the computational methods for antiviral drug repurposing is
to target pathogen to block its lifecycle. Using the crystal structure of the E protein and the strategy of
structural-based virtual screening (SBVS), Leal et al. identified a compound exhibiting marked antiviral
activity against DENV with its EC50 being 3.1 µM [11]. The other methods for antiviral drug repurposing
are targeting host genes to inhibit pathogen infection. Identifying the proteins participating in the
pathogen infection process is the basis of host-targeted drug repurposing approaches [9]. Quan et al.
identified 170 Mycobacterium tuberculosis (Mtb) infection-associated genes by theoretical genetic analysis,
and obtained high potential anti-Mtb drugs by targeting these genes [12]. Therefore, it is possible to
rapidly identify effective therapeutics for JEV infection using the method of drug repurposing through
targeting JEV-susceptible genes.

Systems biology has been used to identify the pathogenic mechanisms of complex human diseases
by integrating genetic variation, genomics, pathways, and molecular networks [13]. The advent
of systems biology provides a powerful method for facilitating drug development and drug
repurposing [14]. The representative algorithms used in the systems biology field include GeneRank
and HotNet2 [15,16]. In this study, we applied the methods of HotNet2 and GeneRank to identify the
genes essential in JEV infection (Figure 1). Additionally, we analyzed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) athway enrichment of these genes to validate our results.
Using the information of the drug-target, we obtained the agents that have a potential treatment effect
on JEV infection. We found that multiple targets of bortezomib play critical roles in the progress of JEV
infection based on the analysis of the PheWAS data of encephalitis and of the gene expression data
of human microglial cells after JEV infection. Furthermore, we investigated the effect of bortezomib
using a JEV-infected mouse model. Overall, our research provided a novel agent for the treatment of
JEV infection.

2. Results and Discussion

2.1. Screening of Genes Associated with JEV Infection by GeneRank Algorithm

The gene expression data could reveal the relationship between genes and JEV infection. Therefore,
we resorted to the Gene Expression Omnibus (GEO)-contained gene expression datasets following
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JEV infection to identify the JEV-susceptible genes. The dataset GSE57330 includes 12 samples that
were detected at three time points (6, 24, and 48 h) post JEV infection [17]. Taking the gene expression
data detected at different time as a whole, we calculated the value of fold change using the mean-gene
expression. Thus, we determined the genes that were upregulated and downregulated after JEV
infection of human microglial cells. Ordinarily, the genes whose fold change values are at least
two-fold above those of the uninfected group and that have a p-value < 0.05 are defined as significantly
associated with JEV infection. However, this approach may ignore those genes associated with JEV
infection, for which the expression was not significantly altered. Therefore, we used the GeneRank
algorithm to identify genes associated with JEV infection.

The GeneRank algorithm was derived from the Google search engine PageRank [15]. It can take
advantage of the biological network to identify key genes associated with diseases, regardless of
whether their expression is altered significantly or not. To find the genes associated with JEV infection,
we ranked genes with the GeneRank algorithm. Taking the absolute value of fold change as the
initial importance of a gene, we obtained the order of functional genes participating in JEV infection.
According to the result calculated by GeneRank, we defined the top 1% genes as significant genes
involved in the JEV infection process (Table S1). As indicated in Table S1, several genes have been
reported to affect the process of JEV infection. For example, the expression of the 2′,5′-oligoadenylate
synthetases (OAS) family (OAS1, OAS2 and OASL) inhibited the replication of JEV in PK-15 cells in
one previous study [18]. The members of the tripartite-motif containing (TRIM) protein were reported
to be a negative regulator of IFN-β during JEV infection and to inhibit JEV replication by degrading
the viral protein in some other studies [19,20]. The results suggested that the genes identified by the
GeneRank algorithm may play critical roles in the lifecycle of JEV.
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Figure 1. The pipeline for gene screening and drug repurposing. The dataset GSE57330 obtained from
GEO database. The protein-protein interaction (PPI) network used in the HotNet2 algorithm was
obtained from HINT, iRefIndex, and MultiNet. The protein-protein interaction (PPI) network used in
the GeneRank algorithm was derived from the STRING database.

To understand the biological functional genes ranked by the GeneRank algorithm, a Gene
Ontology (GO) enrichment analysis was conducted using the clusterProfiler package in R [21].
A p-value < 0.05 was used as the cutoff criterion. The results showed that these genes were involved
in different cellular functions, including immune response, response to peptide, the regulation of
DNA metabolic process, response to virus, response to interferon-γ, and the regulation of innate
immune response (Figure 2). In addition, we investigated the involvement of these genes in signal
transduction pathways using clusterProfiler package. As shown in Figure 2, the most significant KEGG
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pathways in which the downregulated genes were enriched included human cytomegalovirus infection,
Kaposi sarcoma-associated herpesvirus infection, and proteoglycans in cancer. On the other hand,
the upregulated genes were enriched in viral infection pathways (including herpes simplex infection,
influenza A, Kaposi sarcoma-associated herpesvirus, and human papillomavirus infection) and
NOD-like receptor signaling pathway. The results suggested that the genes ranked by the GeneRank
algorithm were involved in viral infection pathways and immune response-related pathways.

Molecules 2018, 23, x FOR PEER REVIEW  4 of 16 

 

 

Figure 1. The pipeline for gene screening and drug repurposing. The dataset GSE57330 obtained from 

GEO database. The protein-protein interaction (PPI) network used in the HotNet2 algorithm was 

obtained from HINT, iRefIndex, and MultiNet. The protein-protein interaction (PPI) network used in 

the GeneRank algorithm was derived from the STRING database. 

 
(a) 

 
(b) 

Figure 2. Cont.



Molecules 2018, 23, 3346 5 of 16Molecules 2018, 23, x FOR PEER REVIEW  5 of 16 

 

 

 
(c) 

 
(d) 

Figure 2. Functional characterization of the genes ranked by the GeneRank algorithm. Downregulated 

and upregulated genes that were ranked by the GeneRank algorithm were subjected to a GO 

enrichment analysis (biological processes) and a KEGG pathway enrichment analysis using the 

clusterProfiler package in R. The top 20 of the GO and pathways in that the up- and downregulated 

genes were significantly enriched, respectively (P. adjust-value < E-8) are presented. (a) GO 

enrichment analysis of upregulated genes; (b) GO enrichment analysis of downregulated genes; (c) 

KEGG pathway enrichment analysis of upregulated genes; (d) KEGG pathway enrichment analysis 

of downregulated genes. 

Figure 2. Functional characterization of the genes ranked by the GeneRank algorithm. Downregulated
and upregulated genes that were ranked by the GeneRank algorithm were subjected to a GO enrichment
analysis (biological processes) and a KEGG pathway enrichment analysis using the clusterProfiler package
in R. The top 20 of the GO and pathways in that the up- and downregulated genes were significantly
enriched, respectively (p. adjust-value < 1 × 10−8) are presented. (a) GO enrichment analysis of
upregulated genes; (b) GO enrichment analysis of downregulated genes; (c) KEGG pathway enrichment
analysis of upregulated genes; (d) KEGG pathway enrichment analysis of downregulated genes.
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2.2. Drug Repurposing for JEV Infection by Targeting GeneRank-Derived Genes

To identify approved drugs for the treatment of JEV infection, we collected the information about
the association between chemical agents and its targets from the Drug-Gene Interaction database
(DGIdb, http://dgidb.genome.wustl.edu/), the Therapeutic Target Database (TTD, http://bidd.nus.
edu.sg/group/cjttd/) and the DrugBank (http://www.drugbank.ca/) [22–24]. By targeting the
top 1% of genes derived from the GeneRank calculation, we obtained 91 agents that might have a
potential effect on the treatment of JEV infection (Table S2). It should be noted that among these
agents, we found bortezomib, which was reported to have the ability to inhibit DENV and ZIKV
infection, with its chemical structure shown in Figure 3 [25,26]. Given that DENV, ZIKV, and JEV
all belong to the genus of flavivirus, we speculated that bortezomib may have the potential ability to
treat JEV infection. In addition to bortezomib, other agents, such as aspirin, curcumin, etanercept,
and minocycline, were also found to have effects on the inhibition of JEV infection (Table 1) [27–35].
Furthermore, according to the research of Chen et al., tumor necrosis factor-α (TNF-α) plays a key role
in JEV-induced neuronal death [36]. The inhibitors of TNF (such as lenalidomide and adalimumab) may
also have a potential effect on the treatment of JEV infection, which is consistent with the mechanism
underlying the treatment of etanercept against JEV infection. Interestingly, these inhibitors were also
found in our study. The results suggested that the drugs identified by targeting the top 1% of genes
with the GeneRank calculation may be effective in the treatment of JEV infection.
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Table 1. Agents reported to have an effect on the treatment of Japanese encephalitis virus (JEV)
infection. Among these agents, the effect of minocycline and ribavirin on the treatment for JEV has
been tested by randomized clinical trials [37,38]. Etanercept and minocycline inhibited JEV replication
both in vitro and in vivo.

Agent Anti-JEV Potential Reference

Aspirin Aspirin suppressed JEV propagation in neuronal and nonneuronal cells [27]
Chlorpromazine Chlorpromazine reduced the positive rate of JEV infection by 50% in vitro [28]

Curcumin Curcumin inhibited the production of infective JEV particle in vitro [29]

Etanercept Etanercept significantly relieved clinical symptoms and reduces mortality
in JEV-infected mice [30]

Genistein Genistein protected neurons from JEV-induced decrease in the number of
visible neurons [31]

Minocycline Minocycline protected 70% of mice from JEV-induced death, and inhibited
JEV replication in vitro [32]

Quercetin Quercetin inhibited JEV replication in vitro [33]
Ribavirin Ribavirin inhibited JEV replication in vitro [34]

Valproic acid Valproic acid reduced the cytopathic effects caused by JEV [35]

2.3. Screening of Genes Associated with JEV Infection by the HotNet2 Algorithm

The HotNet2 (HotNet diffusion-oriented subnetworks) algorithm is based on a heat diffusion
kernel algorithm that considers the heats of individual genes as well as the topology of gene-gene
interactions. Because the HotNet2 algorithm can reduce the false positive rate, can identify

http://dgidb.genome.wustl.edu/
http://bidd.nus.edu.sg/group/cjttd/
http://bidd.nus.edu.sg/group/cjttd/
http://www.drugbank.ca/
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subnetworks with high biological relevance, and can be sensitive to both real and simulated data,
it was used to find significant subnetworks associated with various diseases [16].

To further screen genes for JEV infection, we applied the HotNet2 algorithm to identify the genes
that may contribute to JEV infection. According to the SNP-to-gene mapping method, we mapped the
single nucleotide polymorphisms (SNPs) in the phenome-wide association study (PheWAS) data to
genes to identify potential genes associated with encephalitis, which exhibits similar symptoms to those
of JEV infection [39,40]. To recognize the gene-interaction networks related to encephalitis, we used
the p-values derived from PheWAS data and the HotNet2 algorithm to calculate the subnetwork.
We obtained 16 subnetworks that involved 64 genes associated with encephalitis (Table S3). It should
be noted that four genes among the three subnetworks belong to the ubiquitin proteasome system (UPS)
(Figure 4), which agrees with the results that encephalitis-related viruses, including JEV, West Nile
Virus (WNV), and Venezuelan equine encephalitis virus (VEEV), could utilize the UPS to promote
viral entry, replication, and release [41–43]. In addition, the proteins (TAP1, TAP2, TAPBP) interacting
with PSMB8 and PSMB9 belong to antigen-loading components that were important in the antiviral
innate immune response [44]. The protein ADAR in the subnetwork was reported to inhibit hepatitis
C virus (HCV) replication through eliminating HCV RNA by adenosine to inosine editing [45]. These
results confirmed that the genes identified by the HotNet2 algorithm were important in JEV infection.
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2.4. Drug Repurposing for JEV Infection by Targeting HotNet2-Derived Genes

By targeting the genes identified by the HotNet2 algorithm, we obtained 20 agents that might
have a potential effect on the treatment of JEV infection (Table 2). Interestingly, we found bortezomib
among these agents, which was consistent with the agents obtained by the GeneRank calculation.
Additionally, the targets of bortezomib belong to the ubiquitin proteasome system, which reinforced
our hypothesis that bortezomib may have the ability to treat JEV infection.

In addition to bortezomib, there were other agents that have been reported to have antiviral
activity (Table 2). These agents may also be used in the treatment of JEV infection. For example,
interferon beta-1A and interferon beta-1B belong to the interferon-I (IFN-I) family, which has antiviral
activity and has been reported to treat HCV and Middle East respiratory syndrome coronavirus
(MERS-CoV) infections [46,47]. Caffeine has been reported to inhibit HCV replication in vitro at
nontoxic concentrations [48]. However, the level of HCV RNA showed no change in patients with
long-term caffeine consumption, and the value of IC50 for caffeine to inhibit HCV replication is
0.7263 mM [48,49]. A higher dose of caffeine may be needed to treat HCV infection compared with a
regular dose. Doxorubicin, an agent with a broad-spectrum anticancer activity, has been reported to
suppress Ebola virus (EBOV) replication in vitro, and it can also inhibit other RNA virus by inducing
IFN response [50]. Thus, doxorubicin may also be used in the treatment of JEV infection. Biotin,
a B vitamin, can bind to the N protein of porcine epidemic diarrhea virus (PEDV) and inhibit the
replication of PEDV in vitro [51]. Since biotin is widely used to bind compounds or proteins to trace
them, it is feasible to tag antiviral agents with biotin to improve the antiviral activity.
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Furthermore, antibiotics, such as amoxicillin and clavulanate, were also found in our results
(Table 2). Considering the fact that JEV infection may also follow bacterial infection and that amoxicillin
and clavulanate can be used to relieve inflammation, it may be useful to treat JEV-infected patients
with amoxicillin or clavulanate. Interestingly, although there is no evidence for carfilzomib having
antiviral activity, the targets and indications of carfilzomib are the same as bortezomib [52]. Therefore,
it is possible that carfilzomib has same effect as bortezomib on JEV infection treatment.

Table 2. Agents targeting the genes identified by the HotNet2 algorithm.

Serial Number Agents Indications Evidence in Antiviral

1 Amoxicillin bacterial infections N
2 AT-406 cancer N
3 Biotin dietary shortage or imbalance Y
4 Bortezomib multiple myeloma, lymphoma Y
5 Caffeine fatigue, neurasthenia Y
6 Carfilzomib multiple myeloma N
7 Clavulanate bacterial infections N
8 Doxorubicin various cancer Y
9 GDC-0152 cancer N

10 Glatiramer Acetate multiple sclerosis N
11 Insulin diabetes N

12 Interferon Beta-1A multiple sclerosis, condyloma
acuminatum Y

13 Interferon Beta-1B multiple sclerosis Y
14 N-Acetylglucosamine osteoarthritis N

15 Niraparib ovarian cancer, fallopian tube cancer,
breast cancer N

16 Olaparib ovarian cancer, breast cancer N
17 Pyruvic Acid dietary shortage or imbalance N
18 Rucaparib ovarian cancer N
19 Talazoparib breast cancer N
20 Veliparib breast cancer, non-small cell lung cancer N

2.5. Therapeutic Effects of Bortezomib on JEV-Infected Mice

To further evaluate the above findings that bortezomib has the potential ability to inhibit JEV
infection, we established a mouse model of JEV infection. Four-week-old BALB/c mice were randomly
divided into four groups: a PBS group; a JEV-infected group; a bortezomib-treated group; and a
JEV-infected and bortezomib-treated group. The mice in the infected groups were intraperitoneally
injected with 106 PFU of the JEV P3 strain. We administered bortezomib intravenously once every
day for the first two days and then administered it every two days (Figure 5a). As anticipated, most
mice in the untreated infected group died of JEV infection with a mortality rate of 90%. In contrast,
the mortality rate of the bortezomib-treated infected group was 40% (Figure 5b). All of the mice in the
bortezomib and PBS groups survived until the end of the experiment, indicating that bortezomib has
the ability to protect mice from death caused by JEV infection.

To verify the effects of bortezomib on clinical symptoms of JEV, we scored the clinical behavior of
mice during the experiment [32]. The JEV-infected mice showed different behavior than noninfected
mice, including movement limitations, frequent blinking, body stiffening, and hind limb paralysis.
The clinical behavior of the bortezomib-treated infected group was alleviated compared with the
untreated infected group (Figure 5c), indicating that bortezomib treatment prevented the JEV-infected
mice from pain. The mice in the bortezomib and PBS groups did not show any alterations in behavior,
suggesting that bortezomib has the potential to alleviate the suffering caused by JEV infection.

Moreover, to further explore the protection of bortezomib against JEV infection in brains,
we collected the brain tissues for hematoxylin-eosin (H&E) staining on day 6 and day 23 post infection.
As is shown in Figure 5d, the mice in the JEV-infection group suffered from significant meningitis,
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vacuolar degeneration, and glial nodules, while the symptoms of mice in the bortezomib-treated
group were remarkably alleviated. The mice without JEV infection did not show any histological
changes, regardless of whether the mice were treated with bortezomib or not. The mice in all groups
showed no evidence of meningitis on day 23 post infection. This result indicated that bortezomib could
significantly reduce the damage in brains caused by JEV infection. These results further suggested the
ability of bortezomib in the treatment of flavivirus infection and confirmed the crucial role of UPS in
the lifecycle of flaviviruses. However, as an anticancer agent, bortezomib has many side effects, such as
numbness, erythematous plaques or nodules, purpuric eruptions, and folliculitis [53]. Therefore, it is
necessary to control the dose in clinical treatment and pay attention to the reaction of patients after
taking bortezomib.
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Figure 5. Therapeutic effects of bortezomib on JEV-infected mice. (a) Flow chart of animal studies. Mice
infected with JEV were treated with PBS or bortezomib (0.5 mg/kg). Brain samples were analyzed on
day 6 and day 23 of post-infection. ip: intraperitoneal injection. iv: intravenous injection. (b) Survival
of mice in each group during the 23 days after JEV infection. Data are shown as Kaplan-Meier survival
curves (n = 10 for each group). (c) Behavior score of mice in each group during 23 days after JEV
infection. 0 = no restriction of movement; no blink frequently; no body stiffening; no hind limb
paralysis. 1 = no restriction of movement; blink frequently; no body stiffening; no hind limb paralysis.
2 = restriction of movement; blink frequently; no body stiffening; no hind limb paralysis. 3 = restriction
of movement; body stiffening; no hind limb paralysis. 4 = restriction of movement; eyes closed;
body stiffening; hind limb paralysis, sometimes tremor. (d) Bortezomib reduces the damage in brains
caused by JEV infection. Hematoxylin-eosin staining of brain coronal sections was performed to
observe the pathological changes.
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3. Conclusions

At present, the treatment of JEV infection mainly depends on symptomatic therapy and supportive
therapy. Unfortunately, the effect of the existing treatment is far from perfect. Approximately 30–50%
of survivors were reported to experience serious sequelae [2]. Although many drugs have been found
to have anti-JEV activity, the evaluation of these drugs mainly focused on animal models and cellular
levels with few clinical trials reported. Therefore, it is it is necessary to rapidly identify effective
therapeutics for JEV infection using the drug repurposing method. Furthermore, since JEV belongs to
the same genus as DENV and ZIKV, identifying the agents may provide treatment strategies for those
viruses as well.

Identifying the functional genes in JEV infection is essential, not only for finding new antiviral
agents but also for understanding the virus replication and pathogenesis. This study utilized the
HotNet2 and GeneRank algorithms to identify host genes participating in the progress of JEV infection.
We combined the gene expression data with the protein-protein interaction (PPI) database to rank
JEV infection-related genes that could be used as the targets to find new antiviral agents. The results
showed that host proteins involved in JEV infection include viral infection pathways and immune
response-related pathways, which was consistent with the infection mechanism of JEV. Afterwards,
we found that bortezomib might be a potential agent for the treatment of JEV infection by targeting
these genes. In addition, we identified genetic interaction networks related to encephalitis by the
HotNet2 algorithm. Using these genes as the targets to screen drugs, we also found that bortezomib
could be used for JEV treatment.

Based on the above results, we confirmed the effect of bortezomib on the treatment of JEV infection
in mouse model. Mice treated with bortezomib showed a significant alleviation in histopathological
symptoms and clinical symptoms, and a 30% reduction in mortality caused by JEV was observed,
compared with the mortality of untreated JEV-infected mice (Figure 5). These results further support
the application of host-targeted approaches for new antiviral agents.

Above all, our results provided new insights into the molecular mechanism of JEV infection and
offered a novel agent for the treatment of JEV infection.

4. Materials and Methods

4.1. Data Resources

In this study, the PheWAS data were derived from the work by Denny et al., which included 3144
phenotype-associated single nucleotide polymorphisms (SNPs) [40]. The JEV infection datasets (GEO
accession No. GSE57330) came from GEO (www.ncbi.nlm.nih.gov/geo/) [17]. The protein-protein
interaction (PPI) network used in the HotNet2 algorithm was obtained from HINT database (http:
//hint.yulab.org), iRefIndex database (http://irefindex.org), and MultiNet, which included approximately
390,000 interactions [16,54–56]. The protein-protein interaction (PPI) network used in the GeneRank
algorithm was derived from the STRING database (Version: 10.5, http://string-db.org) [57].

Information about the association between chemical agents and its targets was obtained from the
Drug-Gene Interaction database (DGIdb, http://dgidb.genome.wustl.edu/), the Therapeutic Target
Database (TTD, http://bidd.nus.edu.sg/group/cjttd/), and the DrugBank (http://www.drugbank.ca/).

4.2. GeneRank Algorithm

Genes can be ranked by the GeneRank method, based on their expression values and interaction
information. The GeneRank algorithm was derived from PageRank [15]. The algorithm is described
as follows:

rn
j = (1− d)exj + d

N

∑
i=1

wijri
n−1

degi
(1)

www.ncbi.nlm.nih.gov/geo/
http://hint.yulab.org
http://hint.yulab.org
http://irefindex.org
http://string-db.org
http://dgidb.genome.wustl.edu/
http://bidd.nus.edu.sg/group/cjttd/
http://www.drugbank.ca/
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where the importance of gene j and i after n or n− 1 iterations is represented by rn
j and ri

n−1, respectively;
the initial importance of gene j is represented by exj, exj is defined as the fold change value in this work;
wij represents the relationship between gene j and gene i in the PPI network, if gene i interacts with
gene j, then wij = 1, otherwise wij = 0; degi is the out-degree of gene i, which means the number of
genes interacting with gene i; the total number of genes in the PPI network is represented by N; and the
parameter d (0≤ d < 1) is a constant representing the proportion of PPI network in calculation. The greater
d is, the more important PPI network is. In this study, we set the value of d to 0.5.

4.3. HotNet2 Algorithm

The HotNet diffusion-oriented subnetworks (HotNet2) algorithm is a topology-based method for
finding significant subnetworks associated with disease. Originally, the HotNet2 algorithm was used
to analyze somatic mutation data from cancer datasets [16].

The initial input in the HotNet2 algorithm is a heat vector containing the fraction of each gene
and a network of protein interactions. At each step, the nodes passed their heat and received heat
from adjacent nodes, but also a fraction β (0 ≤ β ≤ 1) of heat was retained. This process runs until
equilibrium. Therefore, the heat of each node at equilibrium depends on its initial heat, the local
topology of the network around the nodes, and the value β. The process is described as follows:

F = β (I − (1 − β) ×W) − 1 (2)

where

Wij =

{
1

deg(j) if noede i interacts with j,

0 otherwise.

where deg(i) is the number of neighbors (i.e., the degree) of protein in the interaction network.
In this study, we used the p-values of encephalitis derived from PheWAS data as heat scores in

the HotNet2 algorithm.

4.4. Agents and Virus

Bortezomib (PS-341, powder) was purchased from Selleck Chemicals (Houston, TX, USA).
DMSO and PEG300 were purchased from Sigma-Aldrich (St. Louis, MO, USA). JEV P3 strains were
kindly provided by Yun-Feng Song, State Key Laboratory of Agricultural Microbiology, Huazhong
Agricultural University, China.

4.5. Animal Studies

All female BALB/c mice (4-week-old) were purchased from the Hubei Provincial Center for
Disease Control and Prevention (Wuhan, China). The mice were randomly divided into four groups:
a PBS group (PBS, n = 15); a JEV-infected group (JEV, n = 15); a bortezomib-treated group (bortezomib,
n = 15); a JEV-infected and bortezomib-treated group (JEV-bortezomib, n = 15). For the JEV-infected
group, the mice were intraperitoneally injected with 106 PFU of JEV P3 strain in 100 µL PBS. For the
PBS group, mice were intraperitoneally injected with 100 µL PBS. For the bortezomib-treated and
vehicle-treated group, mice were intravenously injected with 0.5 mg/kg bortezomib or with PBS with
2% DMSO and 30% PEG 300.

After JEV infection, the mice were treated with bortezomib once every day for the first two days
and were then treated once every two days. On day 6 and day 23 post infection, five mice from each
group were euthanized, and the brains were used for subsequent H&E staining. Ten remaining mice
were monitored daily to assess behavior and mortality. Behavioral scoring was performed basing on
the presence of symptoms [32]. This experiment was approved by the Scientific Ethic Committee of
Huazhong Agricultural University (HZAUMO-2017-032).
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4.6. H&E Staining

For the histology analysis, brain tissues were fixed in 4% paraformaldehyde and were embedded
in paraffin. Paraffin sections were stained with hematoxylin-eosin for pathological analysis.

4.7. Data Analysis

All statistical analyses were conducted using GraphPad Prism v5.0 (GraphPad Software Inc.,
San Diego, CA, USA). Cytoscape 3.6.1 was used to visualize the subnetworks. The clusterProfiler, an R
package, was used to perform the enrichment analysis of genes.

Supplementary Materials: The following are available online. Table S1: The functional genes participating in JEV
infection; Table S2: The potential anti-JEV agents discovered by GeneRank algorithm; Table S3: The significant
subnetworks associated with encephalitis.
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