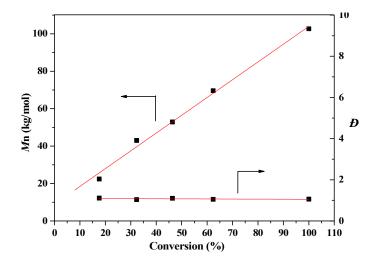
Supplementary Information

Article


Controlled and Efficient Polymerization of Conjugated Polar Alkenes by Lewis Pairs Based on Sterically Hindered Aryloxide-Substituted Alkylaluminumitle

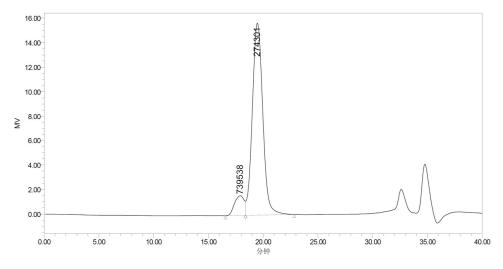
Xiaojun Wang¹, Yixin Zhang¹ and Miao Hong^{1,*}

Table S1. Mn and D results of PMMAs produced by Al(BHT)2Me/(Ph)EtNHC.^a.

Time (min)	Conv.(%)	Mn (kg/mol)	Đ
4	17.6	22.4	1.11
6	33.3	43.1	1.04
8	46.4	52.9	1.10
10	62.4	69.6	1.05
16	100	102.7	1.06

^a Conditions: MMA/Al(BHT)₂Me/^{(Ph)Et}NHC = 500/2/1.

Figure S1. Plots of M_n and D vs monomer conversion (%) for the MMA polymerization by ${}^{(Ph)Et}NHC/Al(BHT)_2Me$.


¹ State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; wangxiaojun@sioc.ac.cn (X.W.); zhangyixin1@sioc.ac.cn (Y.Z.)

^{*} Correspondence: miaohong@sioc.ac.cn; Tel.: +86-2154925610

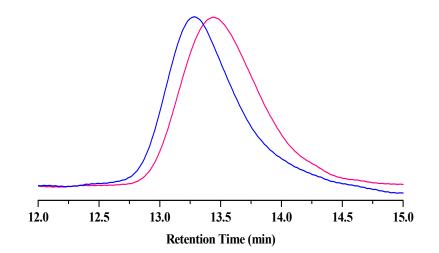
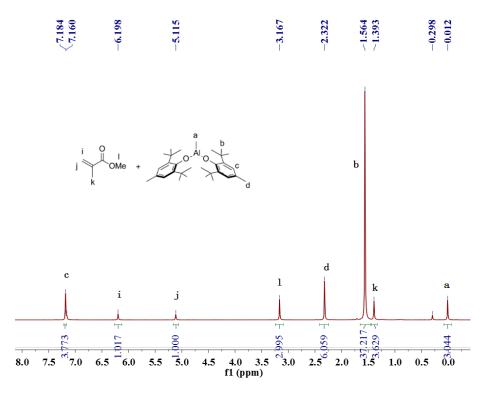
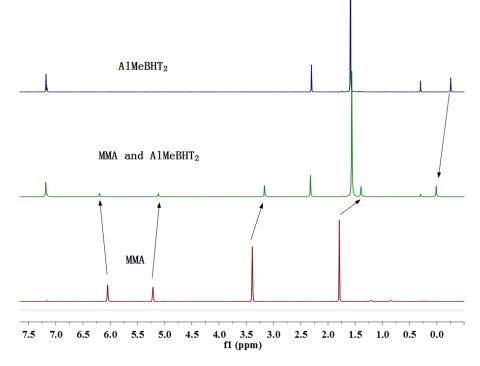
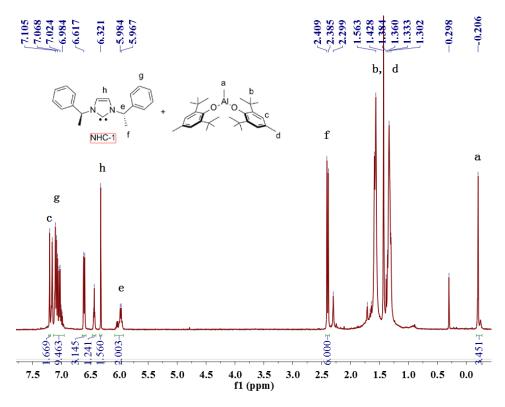
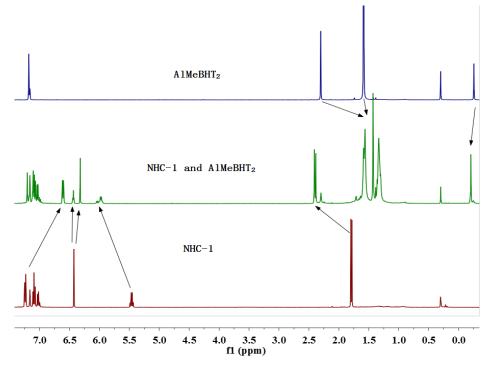

Time (min)	Conv.(%)	Mn (kg/mol)	Đ
4	13.2	20.2	1.09
6	19.2	27.6	1.13
10	30.8	45.1	1.09
16	52.4	69.5	1.08
20	65.5	87.6	1.09
25	82.8	114.8	1.06
30	98.0	130.6	1.07

Table S2. Mn and D results of PMMAs produced by Al(BHT)₂Me/^{iPr}NHC.^a.

Figure S2. GPC trace of PMMA produced by Al(BHT)₂Me/^{*t*Bu}NHC (Table 1, Run 14): *M*_n = 258.0 kg/mol, *D* = 1.08 (91%); *M*_n = 786.0 kg/mol, *D* = 1.07 (9%).

Figure S3. GPC trace of PMMA (red) and PMMA-*b*-P^{*n*}BuMA (blue) produced by Al(BHT)₂Me/(^{Ph})^{Et}NHC [*M*^{*n*} and *D* were measured by GPC analyses carried out at 40 °C and a flow rate of 1.0 mL/min, with DMF as the eluent, on a Waters 2695 GPC instrument equipped with a OPTILAB® T-rEX Interferometric Refractometer detector and PLgel 5 μ m guard and two PLgel 5 μ m mixed-C columns (Agilent, linear range of molecular weight = 200–2,000,000) connected in series. The instrument was calibrated with 10 PMMA standards, and chromatograms were processed with OPTILAB software].


Figure S4. ¹H-NMR spectrum of MMA→Al(BHT)₂Me adduct in benzene-*d*₆.

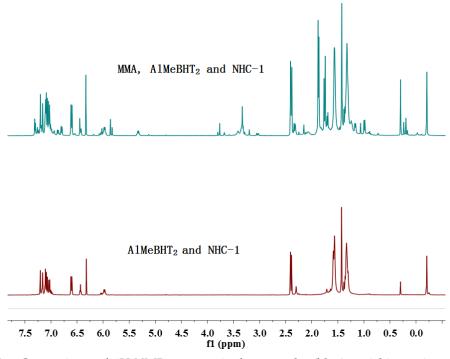

Figure S5. Comparison of ¹H NMR spectra in benzene-*d*₆: (blue) Al(BHT)₂Me, (green) MMA \rightarrow Al(BHT)₂Me adduct, (red) MMA.

Figure S6. ¹H-NMR spectrum of $^{(Ph)Et}NHC \rightarrow Al(BHT)_2Me$ adduct in benzene-*d*₆.

Figure S7. Comparison of ¹H NMR spectra in benzene-*d*₆: (blue) Al(BHT)₂Me, (green) (^{Ph)Et}NHC \rightarrow Al(BHT)₂Me adduct, (red) (^{Ph)Et}NHC.

Figure S8. Comparison of ¹H-NMR spectra in benzene-d₆: (blue) stoichiometric reaction of Al(BHT)₂Me, MMA, and ^{(Ph)Et}NHC, (red) ^{(Ph)Et}NHC \rightarrow Al(BHT)₂Me adduct.