Silyl Ketene Acetals/B(C₆F₅)₃Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers

Lu Hu, Wuchao Zhao, Jianghua He,* and Yuetao Zhang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China; hulu14@mails.jlu.edu.cn (L.H.); zhaowc16@mails.jlu.edu.cn (W.Z.)

* Correspondence: hjh2015@jlu.edu.cn (J.H.); ytzhang2009@jlu.edu.cn (Y.Z.); Tel.: +86-157-6432-7755(Y.Z.)

Received:30 January 2018; Accepted: 14 March 2018; Published: date

Table of Contens

1. Selected polymerization data	S3
2. NMR spectrum of ^{Me2CI} SKA	S4
3. NMR spectrum of Me2EtOSiCl	S5
4. NMR spectrum of Me2(EtO)SKA	S6
5. NMR spectrum of B(C ₆ F ₅) ₃ ·MMA	S7
6. NMR spectrum of B(C ₆ F ₅) ₃ ·MMBL	S8
7. NMR spectrum of the reaction of SKA with $B(C_6F_5)_3$ in 1:1 ratio	S9
8. NMR spectrum of the reaction of SKA with B(C6F5)3·MMA in 1:1 ratio	S11
9. ¹³ C NMR spectrum of (co)polymers	S14
10. Plots of M_n and \tilde{D} values of PMMBL samples vs [MMBL] $0/[B(C_6F_5)_3]_0$ ratio	S14
11. The GPC traces of PMMBL- <i>r</i> -PMBL	S15

1. Selected polymerization data

Run	Initiator	[M]:[I]:[B] ^b	Time	Conv. ^c	Mn ^d	Đ	I^{\star_e}
No.	(I)		(h)	(%)	(Kg·mol⁻¹)		(%)
1	Me ₂ PhSiH	200:1:1	24	4.46	n.d.	n.d.	n.d.
2	Me ₂ PhSiH	50:1:1	24	18.1	104	1.24	1
3^e	Me ₂ PhSiH	200:1:1	24	12.9	296	1.55	1
4	Me ₂ EtSiH	200:1:1	24	5.67	n.d.	n.d.	n.d.
5	Me ₂ EtSiH	50:1:1	24	51.9	3	1.06	88
6 ^e	Me ₂ EtSiH	200:1:1	24	12.1	428	1.33	0.6
7	Et ₃ SiH	200:1:1	24	6.24	n.d.	n.d.	n.d.
8	Et ₃ SiH	50:1:1	24	18.37	94	1.31	1
9 ^e	Et ₃ SiH	200:1:1	24	9.24	305	1.55	0.6
10	Ph₃SiH	200:1:1	24	4.34	n.d.	n.d.	n.d.
11	Ph₃SiH	50:1:1	24	10.7	192	1.55	0.3
12^e	Ph₃SiH	200:1:1	24	6.05	691	1.14	0.2
13	^{<i>i</i>} Bu ₃ SiH	200:1:1	24	7.13	n.d.	n.d.	n.d.
14	ⁱ Bu ₃ SiH	50:1:1	24	13.9	234	1.53	0.3
15^{e}	ⁱ Bu ₃ SiH	200:1:1	24	8.88	668	1.09	0.3
16	Me ₂ ClSiH	200:1:1	24	4.24	n.d.	n.d.	n.d.
17	Me ₂ ClSiH	50:1:1	24	11.3	101	1.26	0.6
18^{e}	Me ₂ ClSiH	200:1:1	24	9.7	367	1.43	0.5
19	MeSKA	200:1:1	24	5	n.d.	n.d.	n.d.
20	MeSKA	50:1:1	24	47.2	3.1	1.05	77
21 ^e	MeSKA	200:1:1	24	13.2	312	1.49	1
22	EtSKA	200:1:1	24	5.59	n.d.	n.d.	n.d.
23	^{Et} SKA	50:1:1	24	18.2	106	1.25	1
24^{e}	EtSKA	200:1:1	24	11.2	358	1.4	0.6
25	^{iBu} SKA	200:1:1	24	6.36	n.d.	n.d.	n.d.
26	^{iBu} SKA	50:1:1	24	29.2	2.8	1.01	53
27^e	^{iBu} SKA	200:1:1	24	69.4	705	1.08	0.2
28	PhSKA	200:1:1	24	4.59	n.d.	n.d.	n.d.
29	PhSKA	50:1:1	24	11.9	74.3	1.53	0.8
30^{e}	PhSKA	200:1:1	24	12.2	377	1.35	0.7
31	Me2ClSKA	200:1:1	24	6.10	n.d.	n.d.	n.d.
32	Me2ClSKA	50:1:1	24	13.7	88.5	1.33	0.8
33 ^e	Me2ClSKA	200:1:1	24	8.77	427	1.35	0.4
34	Me2(EtO)SKA	200:1:1	24	23.5	145	1.25	3
35	Me2(EtO)SKA	50:1:1	24	54.6	3.1	1.08	89
36 ^e	Me2(EtO)SKA	200:1:1	24	30.8	246	1.51	3
37	Me2PhSKA	200:1:1	24	4.26	n.d.	n.d.	n.d.
38	Me2PhSKA	50:1:1	24	14.8	78.8	1.48	1
39 ^e	Me2PhSKA	200:1:1	24	9.79	315	1.48	0.6

Table S1. B(C₆F₅)₃-catalyzed MMA polymerization ^a

^{*a*} Carried out in 9 mL CH₂Cl₂ at room temperature, where [MMA]₀ = 0.943 M, n.d. = not determined. ^{*b*} [M] = [Monomer], [I] = [Initiator], and [B] = [B(C₆F₅)₃]. ^{*c*}Monomer conversions measured by ¹H NMR. ^{*d*}M_n and D determined by GPC relative to PMMA standards in DMF. ^{*e*} Initiator efficiency (*I**)% = $M_n(\text{calcd})/M_n(\text{exptl}) \times 100$, where $M_n(\text{calcd}) = [MW(MMA)] \times ([MMA]_0/[I]_0)$ (conversion) + MW of chainend groups. ^{*e*}[MMA]_0 = 3.77 M.

2. NMR spectrum of Me2CISKA

Figure S1. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of ^{Me2CI}SKA.

Figure S2. ¹³C NMR spectrum (benzene-*d*₆, 126 MHz) of ^{Me2CI}SKA.

3. NMR spectrum of Me₂EtOSiCl

Figure S3. ¹H NMR spectrum of (benzene-*d*₆, 500 MHz) **Me₂EtOSiCl**.This spectrum also contain CH₂Cl₂ (peak marked with an *)

Figure S4. ¹³C NMR spectrum (benzene-*d*₆, 126 MHz) of **Me₂EtOSiCl**. This spectrum also contain CH₂Cl₂ (peak marked with an *)

4. NMR spectrum of Me2(EtO)SKA

Figure S5. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of Me2(EtO)SKA.

Figure S6. ¹³C NMR spectrum (benzene-d₆, 126 MHz) of Me2EtOSKA

5. NMR spectrum of B(C₆F₅)₃·MMA

Figure S7. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of B(C₆F₅)₃·MMA.

Figure S8. ¹⁹F NMR spectrum (benzene-*d*₆, 471 MHz) of B(C₆F₅)₃·MMA.

6. NMR spectrum of B(C₆F₅)₃·MMBL

Figure S9. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of B(C₆F₅)₃·MMBL.

Figure S10. 19F NMR spectrum (benzene-d₆, 471 MHz) of B(C₆F₅)₃·MMBL

7. NMR spectrum of the reaction of SKA with $B(C_6F_5)_3$ in 1:1 ratio

Figure S11.¹H NMR spectrum (benzene-*d*₆,500 MHz) of ^{Me}SKA (Top) and the reaction with $^{Me}SKA/B(C_6F_5)_3 = 1:1$ ratio at RT (Bottom).

Figure S12. ¹⁹F NMR spectrum (benzene-*d*₆, 471 MHz) of B(C₆F₅)₃ (Top) and the reaction with $^{Me}SKA/B(C_6F_5)_3 = 1:1$ ratio at RT (Bottom).

Figure S13.¹H NMR spectrum (benzene- $d_{6,500}$ MHz) of ^{*i*Bu}SKA (Top) and the reaction with ^{*i*Bu}SKA/B(C₆F₅)₃ = 1:1ratio at RT (Bottom).

Figure S14. ¹⁹F NMR spectrum (benzene- d_6 , 471 MHz) of B(C₆F₅)₃ (Top) and the reaction with ^{*i*Bu}SKA/B(C₆F₅)₃ = 1:1ratio at RT (Bottom).

8. NMR spectrum of the reaction of SKA with B(C₆F₅)₃·MMA in 1:1 ratio

Figure S15. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of the reaction with $^{Me}SKA/B(C_6F_5)_3$ ·MMA= 1:1ratio at RT. (major isomer **A** and minor isomer **B** in 3:2 ratio, the spectrum also contains a small amount of ^{Me}SKA (peaks marked with circle)

Figure S16. ¹⁹F NMR spectrum (benzene- d_6 , 471 MHz) of the reaction with ^{Me}SKA/B(C₆F₅)₃·MMA= 1:1 ratio at RT.

Figure S17. ¹³C NMR spectrum (benzene-*d*₆, 126 MHz) of the reaction with $^{Me}SKA/B(C_6F_5)_3$ ·MMA= 1:1ratio at RT.

Figure S18. ¹H NMR spectrum (benzene-*d*₆, 500 MHz) of the reaction with ^{*i*Bu}SKA/ $B(C_6F_5)_3$ ·MMA= 1:1 ratio at RT.

Figure S19.¹⁹F NMR spectrum (benzene-*d*₆, 471 MHz) of the reaction with ^{*i*Bu}SKA/ $B(C_6F_5)_3$ ·MMA= 1:1 ratio at RT.

Figure S20.¹³C NMR spectrum (benzene- d_6 , 126 MHz) of the reaction with ^{*i*Bu}SKA/B(C₆F₅)₃·MMA=1:1ratio at RT.

Figure S21. ¹³C NMR spectrum (DMSO-*d*₆, 126 MHz) of (a) PMMBL, (b)PMBL, (c)random PMMBL-*r*-PMBL, (d) diblock PMMBL-*b*-PMBL and enlarged carbonyl signals (inset).

10. Plots of Mn and D values of PMMBL samples vs [MMBL]0/[B(C6F5)3]0 ratio

Figure S22. Plots of *M*ⁿ and *Đ* values of PMMBL samples vs [MMBL]₀/[B(C₆F₅)₃]₀ ratio at RT. Condition: [MMBL]₀/[^{*i*Bu}SKA]₀/[B(C₆F₅)₃]₀ = 400:1:0.5, 400:1:1, 400:1:2, 400:1:4, R.T. [MMBL]₀ = 0.936M.

11. The GPC traces of PMMBL-*r*-PMBL

Figure S23. The GPC traces of homopolymer PMMBL (blue), and PMMBL-*r*-PMBL (red) produced by ^{*i*Bu}SKA/B(C₆F₅)₃ in CH₂Cl₂ at RT.