Supporting information

$\mathbf{Z n}(\mathbf{O A c})_{2}$-Catalyzing Ring-Opening Polymerization of N -Carboxy-Anhydrides for Synthesis of Well-Defined Polypeptides

Yanzhao Nie, ${ }^{1}$ Xinmei Zhi, ${ }^{1}$ Haifeng $\mathrm{Du}^{2, *}$ and Jing Yang ${ }^{1, *}$

${ }^{1}$ State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Email: yangj@mail.buct.edu.cn
${ }^{2}$ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Figure S1. Calibrated curve of BLG-NCA conversion vs the peak intensity ratio at $1785 \mathrm{~cm}^{-1}$ and $1731 \mathrm{~cm}^{-1}$.

Figure S2. GPC curves of PBLG prepared in the sequential addition. (A) 25/25; (B) 50/50. $\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[$ aniline $]=1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of PBLG catalyzed by Lewis pair of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and aniline

Table S1. Polymerization results of BLG-NCA catalyzed by various aniline analogues without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{a}$

Run	Ana	Ana:M	Time (h) ${ }^{b}$	$M_{\mathrm{n}, \text { cal }} \times 10^{-4 c}$	$M_{\mathrm{n}, \text { mea }} \times 10^{-4 d}$	$\mathrm{Đ}^{d}$
1	Ana-1	$1: 50$	1.5	1.10	2.72	1.28
2	Ana -2	$1: 50$	4.0	1.10	6.00	1.42
3	Ana -3	$1: 50$	1.0	1.10	1.32	1.32
4	Ana -4	$1: 50$	2.5	1.10	3.31	1.54
5	Ana -5	$1: 50$	2.0	1.10	1.50	1.38
6	Ana -6	$1: 50$	7.0	1.10	1.93	1.63
7	Ana -7	$1: 25$	3.5	0.57	2.97	1.38
8	Ana -8	$1: 50$	2.5	1.10	1.43	1.42
9	Ana -9	$1: 25$	1.0	0.57	2.39	1.33
10	Ana -10	$1: 50$	1.0	1.10	4.29	1.48

${ }^{a}$ Performed by at $25{ }^{\circ} \mathrm{C} .{ }^{b}$ The polymerization time for 99% monomer conversion. ${ }^{c}$
Calculated by ([Ana]-1)+[BLG-NCA]/[Ana] $\times\left(M_{\text {NCA }}-44\right) \times$ monomer conversion. ${ }^{d}$ Determined by GPC, \boxplus represents molecular weight distribution.

Figure S4. GPC profiles of PBLG initiate by Ana-1 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-1]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S5. GPC profiles of PBLG initiate by Ana-2 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-2]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S6. GPC profiles of PBLG initiate by Ana-3 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-2]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S7. GPC profiles of PBLG initiate by Ana-4 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-4]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S8. GPC profiles of PBLG initiate by Ana-5 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-5]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S9. GPC profiles of PBLG initiate by Ana-6 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-6]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S10. GPC curves of PBLG with Ana-7 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. $\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-7] /[\mathrm{BLG}-\mathrm{NCA}]=1 / 1 / 25,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ}{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S11. GPC curves of PBLG with Ana-8 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. $\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-8] /[\mathrm{BLG}-\mathrm{NCA}]=1 / 1 / 25,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S12. GPC curves of PBLG with Ana-9 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. $\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[$ Ana- 9$] /[\mathrm{BLG}-\mathrm{NCA}]=1 / 1 / 25,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S13. Fluorescent spectrum of PBLG initiated by a combination of $\mathrm{Zn}(\mathrm{OAc})_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ with 1-aminopyrene.

Scheme S1. Synthesis route of Ana-9.

The synthesis of Ana-9.

4-Nitrophenol ($2.78 \mathrm{~g}, 0.02 \mathrm{~mol}$), triethylamine ($4.04 \mathrm{~g}, 0.04 \mathrm{~mol}$) and THF 200 mL were placed in one three-neck round bottomed flask. Bromoisobutyryl bromide ($4.28 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added slowly with stirring. After 6 hours, the reaction was filtered and THF was removed in vacuum to obtained 2-bromo-2-methylpropionic acid 4-nitrophenyl ester. The 2-bromo-2methylpropionic acid 4-nitrophenyl ester $(1.44 \mathrm{~g}, 0.005 \mathrm{~mol})$ and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{~mol})$ were dissolved in ethyl acetate (100 mL). The mixture was heated under reflux for 1 h at $80^{\circ} \mathrm{C}$, cooled, and made basic ($\mathrm{pH} 8-9$) using 5% sodium bicarbonate aqueous solution. Distilled water $(200 \mathrm{~mL})$ was added and the ethyl acetate layer separated. The organic layer was washed with saturated brine solution $(3 \times 100 \mathrm{~mL})$ followed by distilled water $(2 \times 100 \mathrm{~mL})$. The organic layer was dried with magnesium sulfate, and the solvent was removed in vacuo. This gave a slightly brown crystalline product 9 .

Figure S14. ${ }^{1} \mathrm{H}$ NMR (A) and ${ }^{13} \mathrm{C}$ NMR (B) spectra of 2-bromo-2-methylpropionic acid 4nitrophenyl ester.

Figure S15. GPC profiles of PBLG initiate by Ana-10 with or without $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. [BLG$\mathrm{NCA}] /\left[\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{Ana}-10]=50 / 1 / 1,[\mathrm{BLG}-\mathrm{NCA}]=0.75 \mathrm{M}$, at $25{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of Aman-capped PLG.

