Supporting information

Zn(OAc)₂-Catalyzing Ring-Opening Polymerization of *N*-Carboxy-Anhydrides for Synthesis of Well-Defined Polypeptides

Yanzhao Nie,¹ Xinmei Zhi,¹ Haifeng Du^{2,*} and Jing Yang^{1,*}

¹State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Email: yangj@mail.buct.edu.cn ²Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing

100190, China.

Figure S1. Calibrated curve of BLG-NCA conversion vs the peak intensity ratio at 1785 cm⁻¹ and 1731 cm⁻¹.

Figure S2. GPC curves of PBLG prepared in the sequential addition. (A) 25/25; (B) 50/50. $[Zn(OAc)_2 \cdot 2H_2O]/[aniline] = 1/1$, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S3. ¹H NMR spectrum of PBLG catalyzed by Lewis pair of Zn(OAc)₂•2H₂O and aniline

Run	Ana	Ana:M	Time $(h)^b$	$M_{\rm n,cal} \times 10^{-4} c$	$M_{\rm n,mea} \times 10^{-4d}$	\mathbf{D}^{d}
1	Ana-1	1:50	1.5	1.10	2.72	1.28
2	Ana -2	1:50	4.0	1.10	6.00	1.42
3	Ana -3	1:50	1.0	1.10	1.32	1.32
4	Ana -4	1:50	2.5	1.10	3.31	1.54
5	Ana -5	1:50	2.0	1.10	1.50	1.38
6	Ana -6	1:50	7.0	1.10	1.93	1.63
7	Ana -7	1:25	3.5	0.57	2.97	1.38
8	Ana -8	1:50	2.5	1.10	1.43	1.42
9	Ana -9	1:25	1.0	0.57	2.39	1.33
10	Ana -10	1:50	1.0	1.10	4.29	1.48

Table S1. Polymerization results of BLG-NCA catalyzed by various aniline analogues without Zn(OAc)₂•2H₂O in CH₂Cl₂.^{*a*}

^{*a*} Performed by at 25 °C. ^{*b*} The polymerization time for 99% monomer conversion. ^{*c*} Calculated by ([Ana]-1)+[BLG-NCA]/[Ana]×(M_{NCA} -44)×monomer conversion. ^{*d*} Determined by GPC, D represents molecular weight distribution.

Figure S4. GPC profiles of PBLG initiate by Ana-1 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana -1] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S5. GPC profiles of PBLG initiate by Ana-2 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-2] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S6. GPC profiles of PBLG initiate by Ana-**3** with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-2] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S7. GPC profiles of PBLG initiate by Ana-4 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-4] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S8. GPC profiles of PBLG initiate by Ana-5 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-5] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S9. GPC profiles of PBLG initiate by Ana-6 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-6] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S10. GPC curves of PBLG with Ana-7 with or without $Zn(OAc)_2 \cdot 2H_2O$. $[Zn(OAc)_2 \cdot 2H_2O]/[Ana-7]/[BLG-NCA] = 1/1/25$, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S11. GPC curves of PBLG with Ana-8 with or without $Zn(OAc)_2 \cdot 2H_2O$. $[Zn(OAc)_2 \cdot 2H_2O]/[Ana-8]/[BLG-NCA] = 1/1/25$, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S12. GPC curves of PBLG with Ana-9 with or without $Zn(OAc)_2 \cdot 2H_2O$. [Zn(OAc)₂·2H₂O]/[Ana-9]/[BLG-NCA] = 1/1/25, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S13. Fluorescent spectrum of PBLG initiated by a combination of Zn(OAc)₂•2H₂O with 1-aminopyrene.

Scheme S1. Synthesis route of Ana-9.

The synthesis of Ana-9.

4-Nitrophenol (2.78 g, 0.02 mol), triethylamine (4.04 g, 0.04 mol) and THF 200 mL were placed in one three-neck round bottomed flask. Bromoisobutyryl bromide (4.28 g, 0.02 mol) was added slowly with stirring. After 6 hours, the reaction was filtered and THF was removed in vacuum to obtained 2-bromo-2-methylpropionic acid 4-nitrophenyl ester. The 2-bromo-2-methylpropionic acid 4-nitrophenyl ester (1.44 g, 0.005 mol) and SnCl₂•2H₂O (0.025mol) were dissolved in ethyl acetate (100 mL). The mixture was heated under reflux for 1 h at 80 °C, cooled, and made basic (pH 8-9) using 5% sodium bicarbonate aqueous solution. Distilled water (200 mL) was added and the ethyl acetate layer separated. The organic layer was washed with saturated brine solution (3 ×100 mL) followed by distilled water (2 × 100 mL). The organic layer was dried with magnesium sulfate, and the solvent was removed in vacuo. This gave a slightly brown crystalline product **9**.

Figure S14. ¹H NMR (A) and ¹³C NMR (B) spectra of 2-bromo-2-methylpropionic acid 4-nitrophenyl ester.

Figure S15. GPC profiles of PBLG initiate by Ana-10 with or without $Zn(OAc)_2 \cdot 2H_2O$. [BLG-NCA]/[$Zn(OAc)_2 \cdot 2H_2O$]/[Ana-10] = 50/1/1, [BLG-NCA] = 0.75 M, at 25 °C in CH₂Cl₂.

Figure S16. ¹H NMR spectrum of Aman-capped PLG.