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Abstract: Exosomes are small vesicles which are produced by the cells and released into the
surrounding space. They can transfer biomolecules into recipient cells. The main goal of the work
was to study the exosome involvement in the cell transfer of hormonal resistance. The experiments
were performed on in vitro cultured estrogen-dependent MCF-7 breast cancer cells and MCF-7
sublines resistant to SERM tamoxifen and/or biguanide metformin, which exerts its anti-proliferative
effect, at least in a part, via the suppression of estrogen machinery. The exosomes were purified by
differential ultracentrifugation, cell response to tamoxifen was determined by MTT test, and the level
and activity of signaling proteins were determined by Western blot and reporter analysis. We found
that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead
to the partial resistance of the MCF-7 cells to antiestrogen drugs. The primary resistant cells and the
cells with the exosome-induced resistance were characterized with these common features: decrease
in ERα activity and parallel activation of Akt and AP-1, NF-κB, and SNAIL1 transcriptional factors.
In general, we evaluate the established results as the evidence of the possible exosome involvement
in the transferring of the hormone/metformin resistance in breast cancer cells.
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1. Introduction

The efficiency of endocrine therapy of tumors, including breast cancer, is limited by the
development of hormone-independent tumors which are resistant to antiestrogens initially or acquire
resistance under prolonged therapy with antiestrogens (tamoxifen, raloxifene) [1–3]. The mechanism
of hormonal resistance was investigated thoroughly. The main ways of the progression of hormonal
resistance were found to include the loss or dysregulation of estrogen receptors, stimulation of
growth-dependent pathways and activation of epithelial-mesenhymal transition, etc. [1,4–9].

The role of the intercellular interactions in the progression of hormonal resistance is less researched.
Only a few studies demonstrate the effect of the horizontal transfer of the resistance between the cells,
mainly of the development of multidrug resistance. Namely, the effect of the cell-to-cell transfer of

Molecules 2018, 23, 829; doi:10.3390/molecules2304829 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-2974-9555
https://orcid.org/0000-0002-6355-7282
https://orcid.org/0000-0003-1264-4770
http://dx.doi.org/10.3390/molecules2304829
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/1420-3049/23/4/829?type=check_update&version=2


Molecules 2018, 23, 829 2 of 18

functional p-glycoprotein occurs during co-cultivation of the parent and doxorubicin-resistant MCF-7
cells [10]. Furthermore, the cell ability to transfer the drug or tamoxifen resistance was shown to be
mediated via exosomes secreted by the resistant cells [11,12] as well as via several exosomal microRNA
or mRNA [11,13–15]. However, the role and significance of cell-cell interactions and/or exosomes in
the mediating and formation of hormonal resistance of tumor cells is still not clear.

Exosomes are small sized vesicles that are generated in the cells and released into the extracellular
space. They usually contain the various molecules including nucleic acids, proteins, lipids, etc.
The growing interest in exosomes is based on their ability to shuttle from one cell to another and
deliver biomolecules incorporating into the recipient cells [16–19]. It was found that the influence of
exosomes on the cells may be implemented due to genomic or epigenomic changes. The first one can be
caused by the integration of exosomal DNA into the host DNA. The second one—via the modulation
of the content and/or activity of the signaling proteins, microRNA, etc. Undoubtedly, one of the most
perspective achievements in the exosome study is the demonstration of their ability to provide the
horizontal transfer of the genetic information between cells; this has been supported by the different
studies with the various cell models [14,15,20].

The main goal of the present work was to study the mechanism of the interactions between
hormone-sensitive and resistant cells, and exosome involvement in the progression of hormonal
resistance. Earlier we had demonstrated for the first time that the effect of horizontal transferring of
hormonal resistance of breast cancer cells was provoked by the co-cultivation of the hormone-sensitive
cells and the resistant cells, and revealed the key proteins involved in the progression of the
resistance [21]. Furthermore, we have found that tamoxifen resistance of breast cancer cells may
be accompanied with the cross-resistance to cytostatic action of metformin, an anti-diabetic drug.
Metformin exhibited the marked anti-tumor activity as well as the ability to inhibit the estrogen
signaling [22].

Here, using two resistant MCF-7 sublines: the estrogen-independent subline MCF-7/T
developed by the long-term treatment with antiestrogen tamoxifen, and metformin-resistant subline
MCF-7/M—developed by the treatment with metformin, we have demonstrated the effect of cell
cross-resistance to both drugs, showed the involvement of exosomes in the horizontal transferring of
hormonal/metformin resistance in breast cancer cells, and revealed the resistant-associated signaling
pathways affected by exosome treatment.

2. Results

2.1. Development and Characteristics of MCF-7 Resistant Derivatives

Previously we have shown that long-term metformin treatment of the parent MCF-7 cells
resulted in the irreversible inhibition of estrogen signaling and cross-resistance to cytostatic action
of metformin and antiestrogen tamoxifen [22]. To further explore the relations between acquired
resistance to metformin and tamoxifen, we compared the sensitivity of two independent MCF-7
sublines: MCF-7/T subline developed by long-term tamoxifen treatment and MCF-7/M subline
generated under metformin treatment, to these drugs. As shown, both sublines demonstrated the
cross-resistance to tamoxifen and metformin cytostatic action (Figure 1).

Progression of hormonal resistance may be associated with the selection of the cells with the
growth-related mutations, particularly, with the mutations in the genes of tyrosine kinase cascade and
PI3K signaling [23]. Is the development of the resistant MCF-7 sublines, MCF-7/T and MCF-7/M,
associated with the selection of the mutant cells? To study this possibility, the next generation
sequencing (NGS) of the key genes: PIK3CA, EGFR, EGFR-AS1, ESR1 and ALK, was performed.
Analysis of the parent MCF-7 cells revealed the coding mutation in PIK3CA only, in agreement with
COSMIC [24]. The study of the resistant cells, MCF-7/T and MCF-7/M, revealed the presence of the
parent PIK3CA mutation with non-changed frequency in both sublines; the coding mutations in other
genes were not found (Table 1). Taken together, the results demonstrated that in vitro development of
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the tamoxifen/metformin resistant sublines was not connected with the selection of the cells with the
preexisting or generated de novo mutations in the driver genes.
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Figure 1. The characteristics of the resistant cell sublines. Cell sensitivity to tamoxifen and metformin.
The cells were treated with 5 µM SERM tamoxifen or 10 mM biguanide metformin for 3 days and the
amount of the viable cells was assessed by the MTT-test. Data represent mean value ± S.D. of three
independent experiments. 100% was set as the viability of cells treated with vehicle control.

Table 1. Coding mutations in MCF-7, MCF-7/M and MCF-7/T cells.

Gene
Cell Line

MCF-7 MCF-7/M MCF-7/T

PIK3CA c.1633G > A
Allele fraction: 66% (of 17,311 reads)

c.1633G > A
Allele fraction: 67% (of 12,976 reads)

c.1633G > A
Allele fraction: 65% (of 11,224 reads)

ALK NO NO NO
EGFR NO NO NO

EGFR-AS1 NO NO NO
ESR1 NO NO NO

2.2. Purification and Characterization of the Exosomes

Exosomes were prepared from the MCF-7, MCF-7/T and MCF-7/M’ conditioned medium by the
differential ultracentrifugation, and exosome imaging was carried by transmission electron microscope
as described in Methods. The appropriate controls were included in all exosome functional studies
as recommended by ISEV in Ref. [25] and by Takov K. et al. in Ref. [26]. The major part of the
exosomes was either round, or had a cup-shape morphology. Figure 2A–F shows the images of
exosomes obtained by TEM. The exosome size was in the typical range from 50 to 200 nm (Figure 2G).
The exosomes obtained from MCF-7, MCF-7/T and MCF-7/M cells demonstrated similar ability to
bind gold particles (Figure 2H).

The ability of extracellular vesicles to transport and incorporate to recipient cells was measured
using fluorescent-labeled dye (CellTracker™ Red CMPTX Dye) as described in the Methods section.
Exosomes were tagged and incubated with cells for 60 min. As a negative control, the sonicated
samples of exosomes and fluorescent dye spun alone without exosomes were used. Figure 3 showed
that the native (not sonicated) vesicles were able to accumulate the fluorescent drug and transfer it to
recipient cells.
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Figure 2. The transmission electron microscopy of the exosomes. Exosomes were prepared from
the conditioned medium by the differential ultracentrifugation, labeled by the gold nanoparticles,
and imaged as described in Methods. (A–C) Wide-field images of the exosomes from MCF-7, MCF-7/T
and MCF-7/M cells correspondingly. (D–F) The magnified fragments, scale bar 100 nm. (G) Exosome
size distributions obtained by processing of the TEM images. (H) The labelling specificity of the
exosomes in the three samples obtained from MCF-7, MCF-7/T and MCF-7/M cells. The error bars
correspond to S.D.

Figure 3. Cont.
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Figure 3. Transferring of fluorescent-labeled compounds by exosomes. Exosomes were stained by
fluorescent drug (CellTracker™ Red CMPTX Dye) in according to the manufacturer’s procedure,
then washed twice by the ultracentrifugation 100,000× g and incubated with MCF-7 cells. As a control
labeled exosomes after sonication were used. The non-specific labeling of cell was checked by the
fluorescent dye which was spun alone. The efficiency of dyeing exosome incorporation was checked
with fluorescent microscope Nikon Eclipse Ti-E (Plan 10×/0.25; ORCA-ER camera by Hamamatsu
Photonics; NIS-Elements AR 2.3 software by Nikon). Exposition for fluorescence was 4 s. Scale bar
50 µm. The images of light (I) and fluorescent (II) microscopy are presented.

The analysis of exosome preparations by western blotting revealed the key exosomal markers:
CD9, CD63, CD81 in all samples. In order to demonstrate the purity of the preparation we used
non-exosomes marker Bcl-2 in studied cell lines MCF-7, MCF-7/T and MCF-7/M (Figure 4) as
recommended in [25].

Figure 4. Immunoblotting of exosomal markers CD9, CD63, CD81 in the exosome samples from MCF-7,
MCF-7/T and MCF-7/M cells versus cell lines MCF-7, MCF-7/T and MCF-7/M. As a non-exosomal
marker was chosen Bcl-2 protein. The blot represents the results of one of the three similar experiments.
The western blot analysis of exosome samples versus cell included non-reducing condition and a
sample buffer did not contain β-mercaptoethanol.

The samples were normalized by protein content. Quantification of exosomes was also performed
by nanoparticle tracking analysis (NTA). Exosomes were prepared from 3 independent passages of
each subline. Exosome concentrations varied from 0.8 to 3.2 × 1011 vesicles/mL, mean particle size
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ranged from 129 to 179 nm in reasonable agreement with the results obtained by TEM. We attribute
these variations of size and concentration to varying efficiency of exosomes pellet resuspension in
PBS after the high-speed centrifugation. Nevertheless the particle concentration was proportional to
protein concentration: C(particles/mL) = k × C(protein) with R2 = 0.95. CI95 for k was calculated to be
(3.3 ± 0.2) × 109 vesicles per µg of exosomal protein. This coefficient was further used for calculation
of exosomes dosage.

2.3. Exosomes Influence on the Cell Response to Tamoxifen and Metformin

The exosomes were prepared by differential centrifugation of the conditioned media after 3 days
of cell growth as described in the Methods. Exosomes in PBS were added to 1.5 mL of cell suspension
in a final concentration 1.7 µg/mL of exosomal protein or CI95 = (5.5 ± 0.3) × 109 vesicles/mL once
every three days at the time of splitting. Because the MCF-7/T and MCF-7/M cells demonstrate the
cross resistance to tamoxifen and metformin (see Figure 1), the exosomes influence on the cell response
to both drugs was analyzed. As shown, neither short-term (within 3 days) nor long-term (14 days)
treatment of MCF-7/T and MCF-7/M cells with exosomes from the parent MCF-7 cells (exoC) changed
the resistant properties of MCF-7/T and MCF-7/M cells: both sublines preserved the high resistance
to tamoxifen and metformin (Figure 5A,B).

Figure 5. Exosomes influence on the cell response to metformin and tamoxifen. (A,B) The resistant
MCF-7/T and MCF-7/M cells were cultured without exosomes or in the presence of the control
exosomes from MCF-7 cells for 3 or 14 days, then the cells were treated with 5 µM tamoxifen or 10 mM
metformin for 3 days and the amount of the viable cells was counted by the MTT-test. (C,D) The MCF-7
cells were cultured in the presence of the exosomes from MCF-7, MCF-7/T or MCF-7/M cells for
3 or 14 days, then the cell response to metformin and tamoxifen was determined as described above.
Data represent mean value ± S.D. of three independent experiments. Cell viability (%) was expressed
as a percentage relative to cells treated with vehicle control. * p < 0.05 versus MCF-7 + exoC.
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Whereas the treatment of the parent MCF-7 cells with exosomes from the resistant MCF-7/T or
MCF-7/M cells (exoT and exoM, respectively) within 3 days did not affect the MCF-7 cells response to
tamoxifen or metformin, the long-term exoT or exoM treatment (14 days) caused a marked decrease in
the cell sensitivity to these drugs. Importantly, both exoM- and exoT-treated MCF-7 cells have acquired
the cross-resistance to metformin and tamoxifen, when the exosomes from the parent MCF-7 cells
(exoC) showed no effect on the cell response to the drugs (Figure 5C,D).

How long do the new-generated resistant properties persist in the exosome-treated cells?
To answer this question, the MCF-7 cells, after 14 days of exosome treatment (named as MCF-7/exoC,
MCF-7/exoT and MCF-7/exoM) were transferred to a standard exosome-free medium and cell
sensitivity to drugs was regularly measured within 40 days of growth. The data showed no restoration
of the cell sensitivity to the drugs in MCF-7/exoT and MCF-7/exoM cells demonstrating the irreversible
character of such resistance (Figure 6). All subsequent experiments were performed using MCF-7/exoC,
MCF-7/exoT and MCF-7/exoM cells after 40 days of exosome withdrawal.

Figure 6. Exosome withdrawal and cell response to metformin and tamoxifen. MCF-7 cells after
14 days’ treatment by exosomes from MCF-7, MCF-7/T or MCF-7/M cells (named as MCF-7/exoC,
MCF-7/exoT and MCF-7/exoM cells, respectively) were transferred to standard exosome-free medium
and cell sensitivity to metformin (A) and tamoxifen (B) was regularly measured within 40 days
of growth.

2.4. Protein Signature of the Exosome-Generated Resistant Cells

To study the signaling pathways involved in the exosome-mediated resistance we have
analyzed several growth-related transcription factors/proteins associated with hormonal resistance.
As known, the progression of hormonal resistance is accompanied with the suppression of
estrogen signaling and parallel activation of growth and epithelial-mesenchymal transition (EMT)
pathways [9,27]. Comparative analysis of estrogen signaling revealed marked decrease in E2-mediated
ERα transcriptional activity in the resistant cells: both in the donor MCF-7/T, MCF-7/M cells
(Figure 7A), and in the exosome-treated MCF-7/exoT, MCF-7/exoM cells (Figure 7B), whereas the
protein level of ERα was not changed significantly (Figure 7C). Furthermore, we compared the activity
of AP-1 and NF-κB. Transcriptional factors AP-1 and NF-κB mediate the growth and anti-apoptotic
effects, respectively, and, at the same time, exhibit the ability to interact with ERα [28,29]. Using the
respective plasmid constructs containing the luciferase reporter gene under AP-1 or NF-κB-sensitive
promoters, we found that the cells with exosome-mediated resistance (MCF-7/exoT, MCF-7/exoM)
are characterized with marked activation of AP-1 and NF-κB—similar to that in the primary resistant
cells (MCF-7/T, MCF-7/M) (Figure 8).
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Figure 7. Expression and transcriptional activity of ERα. All experiments were performed on the
donor MCF-7, MCF-7/T, MCF-7/M cells (A) and MCF-7/exoC, MCF-7/exoT, MCF-7/exoM cells
treated with the respective exosomes for 14 days with following exosome withdrawal for 40 days
(B). Transcriptional activity of ERα was determined by reporter assay. The cells were transfected
with the ERE-LUC plasmid containing the luciferase reporter gene under the estrogen responsive
element (ERE), and β-galactosidase plasmid. 24 h after transfection the luciferase and β-galactosidase
activities were determined as described in the Methods section. The relative luciferase activity was
calculated in arbitrary units as the ratio of the luciferase to the galactosidase activity. Data represent
mean value ± S.D. of three independent experiments. * p < 0.05 versus control (-E2) (C) Western blot
analysis of ERα in total cell extracts. Protein loading was controlled by membrane hybridization with
α-tubulin Abs. The blot represents the results of one of the three similar experiments. Densitometry was
performed using ImageJ (NIH) software with the protocol provided by The University of Queensland.
Densitometry data represent mean value ± S.D. of three independent experiments.

Figure 8. Transcriptional activity of AP-1 and NF-κB. The cell lines were similar to that in Figure 5.
Transcriptional activity of AP-1 (A) and NF-κB (B) was determined by reporter assay. The cells were
transfected with the AP-1 or NF-κB plasmid containing the luciferase reporter gene under the AP-1 or
NF-κB-responsive elements, and β-galactosidase plasmid. 24 h after transfection the luciferase and
β-galactosidase activities were determined as described above. Data represent mean value ± S.D. of
three independent experiments. * p < 0.05 versus MCF-7, # p < 0.05 versus MCF-7/exoC.
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The parallel reporter analysis of E-cadherin promoter revealed its inhibition in all resistant cells
(Figure 9A). Earlier we have shown that progression of tamoxifen/metformin resistance of MCF-7
cells was associated with the stimulation of EMT, and demonstrated the involvement of EMT-related
SNAIL1 protein, one of the key down-regulators of E-cadherin, in the maintaining of the growth
of the resistant cells [9]. Here the analysis of the SNAIL1 expression revealed the marked SNAIL1
activation in both the primary and exosome-induced resistant lines supporting the involvement of
SNAIL1/E-cadherin signaling in the progression of resistance (Figure 9B).

Figure 9. Expression and transcriptional activity of Snail1. The cell lines were similar to that in
Figure 5. (A) Transcriptional activity of Snail1 was determined by reporter assay. The reporter
assay was based on the Snail1 ability to inhibit the expression of the transfected luciferase reporter
gene contained Snail-responsive elements from E-cadherin promoter (E-cad/Luc). The transfection
efficiency was controlled by co-transfection of the cells with plasmid containing the β-galactosidase
gene, luciferase activity was determined as described in the Methods section. Data represent mean
value ± S.D. of three independent experiments. * p < 0.05 versus MCF-7, # p < 0.05 versus MCF-7/exoC.
(B) Western blot analysis of Snail1 in total cell extracts. Protein loading was controlled by membrane
hybridization with α-tubulin Abs. Densitometry was performed using ImageJ (NIH) software.
Densitometry data represent mean value ± S.D. of three independent experiments. * p < 0.05 versus
MCF-7, # p < 0.05 versus MCF-7 + exoC.

As known, among the up-stream proteins involved in the regulation of growth/EMT-related
pathways the central place belongs to the PI3K/Akt pathway [30]. The analysis of Akt showed a
noticeable increase in both the total and phosphorylated (active) forms of this protein in all resistant
lines (Figure 10A). To further explore the role of PI3K/Akt signaling in the progression of the resistance,
MCF-7 cells were treated with the “resistant” (exoT and exoM) exosomes in the presence or absence
of PI3K inhibitor wortmannin within 14 days. As shown, wortmannin completely prevented the
progression of the exosome-induced resistance (Figure 10B,C).

In summary, the results obtained showed the similar rearrangement of the signaling pathways in
the cells with primary resistance and in the cells with exosome-induced resistance, and demonstrated
the important role of PI3K/Akt signaling in the exosome-transferring resistance.
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Figure 10. PI3K/Akt signaling and cell resistance. (A) Western blot analysis of pAkt and Akt in total
cell extracts. The cell lines were similar to that in Figure 5. Protein loading was controlled by membrane
hybridization with α-tubulin Abs. The blot represents the results of one of the three similar experiments.
Densitometry was performed using ImageJ (NIH) software. * p < 0.05 versus MCF-7, # p < 0.05 versus
MCF-7 + exoC. (B,C) Wortmannin influence on the exosome-mediated resistance. MCF-7 cells were
treated with the control MCF-7 or “resistant” MCF-7/T and MCF-7/M exosomes within 14 days in the
absence or presence 5 × 10−6 M wortmannin with subsequent determination of cell growth response
to tamoxifen (B) or metformin (C).

3. Discussion and Conclusions

The main goal of this study was the analysis of the role of the intercellular interactions in the
progression of hormonal resistance. The work was based on the hypothesis that the co-cultivation of the
hormone-resistant and sensitive cells may lead to horizontal transfer of the hormonal resistance to the
sensitive cells—as a result of the secretion of the specific factors, acting in the paracrine manner or via
the direct cell-cell contacts. Previously, using estrogen-dependent MCF-7 cells and tamoxifen-resistant
MCF-7/T subline we have shown that their co-cultivation led to irreversible resistance of the
parent MCF-7 cells to tamoxifen [21], and the analogous effect was demonstrated for the metformin
resistance. Our studies support several observations highlighting the effect of horizontal transferring
of drug resistance between tumor cells. Namely, this effect was demonstrated for ABC-transporters,
resistance-associated microRNA transferring [10,15,31,32], etc. Importantly, the cell ability to transfer
the drug resistance was shown to be mediated via exosomes [11,12], demonstrating the key role
of the latter in the resistance transfer. Concerning the tamoxifen resistance studies, the various
types of microRNA were identified as proposal mediators of tamoxifen resistance [33] whereas only
single observations demonstrate the involvement of exosomal microRNA, IncRNA or mRNA in the
progression of hormonal resistance [13,14].

The present experiments were performed on in vitro cultured estrogen-dependent MCF-7 breast
cancer cells and two resistant MCF-7 sublines: the estrogen-independent subline MCF-7/T developed
by the long-term treatment of the cells with antiestrogen tamoxifen, and metformin-resistant subline
MCF-7/M—developed by the long-term cell treatment with metformin (a biguanide antidiabetic
drug, which exerts its anti-proliferative effect, at least in a part, via the suppression of estrogen
machinery) [22]. As mentioned above, both developed sublines were able to transfer the resistant
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properties to the parent cells during long-term co-cultivation [21]. To further investigate the mechanism
of the horizontal transferring of the resistance, the exosome involvement in the resistance development
was studied.

As revealed, both sublines, MCF-7/T and MCF-7/M were characterized with the cross-resistance
to tamoxifen and metformin. Importantly, the high-throughput sequencing of the driver growth-related
genes (PIK3CA, EGFR, EGFR-AS1, ESR1 and ALK) showed no difference between the parent and
resistant cells, supporting the possible involvement of the epigenetic mechanisms in the formation
of the resistant phenotype. We found that the treatment of the parent MCF-7 cells with exosomes
from the resistant MCF-7/T and MCF-7/M cells within 14 days lead to the partial resistance of
the MCF-7 cells to both tamoxifen and metformin. At the same time, the exosomes from the
parent MCF-7 cells did not affect the cell sensitivity to the drugs. What is interesting was that
the exosome-induced resistance was not restored after exosome withdrawal—at least within 40 days
of cell cultivation. One of the proposed explanations of this phenomenon may be connected with the
acquired epigenetic modifications induced by exosomes—firstly, by exosomal microRNA. Actually,
the evidences of the exosomal microRNA involvement in the regulation of various cell functions are
increasing, and recent studies have demonstrated the important role of microRNA in the epigenetic
regulation. Thus, miR-29b was found to be associated with suppression of DNMT3A/DNMT3 and
a decrease in total DNA methylation [34,35], miR-143 was shown to be inversely correlated with
DNMT3 expression [36]. Furthermore, total exosome preparations were found to affect the DNA
methylation in the recipient cells [37]. On the other side, the correlation between progression of
tamoxifen resistance and methylation status of growth-associated genes in breast cancer is well
established and demonstrated on the various models including MCF-7 cells [38–42]. We propose that
single exosomal microRNA may be involved in the epigenetic DNA modifications resulting in the
partial cell resistance. However, further studies are required to explore the detailed mechanism of
exosome action.

Generally, the progression of the hormonal resistance may be associated with the loss or decrease
in the activity of estrogen receptors ERα accompanied with the constitutive activation of growth-related
and anti-apoptotic pathways [6–8]. In our study, the analysis of the expression and activity of key
signaling proteins revealed the marked changes in the proteins of the resistant cells. As revealed,
both the primary resistant cells (MCF-7/T and MCF-7/M) and the cells with the exosome-induced
resistance were characterized with common features: decrease in ERα activity and parallel activation
of growth-dependent (AP-1), anti-apoptotic (NF-κB) and EMT-associated (SNAIL1) transcriptional
factors. Totally, the results substantiate the existence of the common pathway targeted by the exosomes
and activated in all resistant cells.

The PI3K/Akt pathway belongs to the central cellular pathways respondent for the
growth/apoptosis regulation, including the maintenance of estrogen-independent growth [43].
We found marked increase in the expression and activity of Akt in all of the resistant cells compared
with the parent MCF-7 cells. Furthermore, the cell treatment with PI3K inhibitor wortmannin prevented
the exosome-induced resistance giving the additional evidence for a central role of this pathway in the
mediating of exosomal resistance.

Another important point in the presented study was the mechanism of the overlapped resistance
of breast cancer cells to tamoxifen and metformin. We showed that the exosome-mediated horizontal
transferring of the resistance, from cell to cell, may occur: both for the classical variant of hormonal
resistance caused by the long-term tamoxifen treatment, and for another variant of resistance caused
by metformin treatment. As mentioned above, the cytostatic action of biguanide metformin on the
breast cancer cells is accompanied with the irreversible inhibition of an estrogen receptor. We propose
that common features of the tamoxifen-resistant (MCF-7/T) and metformin-resistant (MCF-7/M)
cells—ERα suppression; activation of growth/EMT-related transcriptional factors; activation of
PI3K/Akt signaling—may be caused by the metformin ability to suppress ERα resulting in the
activation of the common (like in the tamoxifen case) pathways mediated by the exosomes.
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Further studies are required to analyze the cargo of the “resistant” exosomes—including the
proteome and microRNA profile, and identify the key factors respondent for exosome-mediated
transferring of the resistant phenotype.

4. Materials and Methods

4.1. Cell Cultures and Development of Drug Resistant Derivatives

The human breast cancer cell line MCF-7 (ATCC HTB-22™) was purchased from ATCC (Manassas,
VA, USA). The cells were authenticated by morphology and STR profiling provided by Gordiz,
(Moscow, Russia). Tamoxifen for cell cultures was purchased from Cayman Chemical (Ann Arbor, MI,
USA), wortmannin and metformin were purchased from Merck KGaA (Darmstadt, Germany).

The tamoxifen-resistant MCF-7/T and metformin-resistant MCF-7/M sublines were established
from the parent MCF-7 cells under prolonged tamoxifen or metformin treatment, respectively. Briefly,
MCF-7 cells were cultured in DMEM medium containing 10−6 M tamoxifen or 2 × 10−3 M metformin
for 6 months, then the cells were transferred to tamoxifen/metformin-free medium and subsequent
growth of these cells was maintained in the absence of the drugs. The MCF-7 cell line and resistant
MCF-7/T and MCF-7/M sublines were cultured in standard low glucose DMEM medium (Biolot,
Saint Petersburg, Russia) supplemented with 7% fetal bovine serum (FBS) (HyClone, Logan, UT, USA)
at 37 ◦C and 5% CO2. To determine the cell response to tamoxifen or metformin the cells were treated
with 5 µM tamoxifen or 5 mM metformin for 3 days in standard DMEM medium with 7% FBS, and the
amount of the viable cells was counted.

The cell growth was evaluated by the modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) (Applichem, Darmstadt, Germany) test [44] as described in [45].
Dimethylsulfoxide (DMSO) for MTT test was obtained from Applichem). Ultrapure water for
experiments was prepared by Milli-Q water purification system (Millipore, Burlington, MA, USA).

4.2. Next Generation Sequencing

4.2.1. DNA Preparation

Samples for NGS were prepared using a DNA extraction kit produced by Qiagen (Hombrechtikon,
Switzerland). MCF-7, MCF-7/M and MCF-7/T cells were grown for 72 h, washed twice in PBS
and collected. DNA was isolated by a MagNa Pure (Roche Molecular Systems, Pleasanton, CA,
USA) gadget following the manufacturer’s protocol. Quality control of isolated DNA was done by
QIAxpert spectrophotometer (Qiagen) and RT-PCR. DNA concentration of each sample was higher
than 100 ng/µL. The required amounts of diluent were added into the samples to obtain DNA
concentration 2 ng/µL.

4.2.2. Library Preparation for NGS. Clonal Amplification

The next stage was targeted enrichment when GeneReader Actionable Insights Tumor Panel was
used and Enrichment by PCR was performed. Then preparation of libraries was carried out including
ligation of adapters and amplification of libraries. After that clonal amplification (template preparation
for sequencing) was done: amplification in emulsion and right after that monoclonal libraries on
particles. After DNA library construction, DNA was clonally amplified using the GeneRead QIAcube
(Qiagen) instrument, immobilized via direct bead-slide interaction, and exposed to a DNA sequencing
primer to produce a high-density array on a GeneReader Flow Cell (Qiagen).

4.2.3. Sequencing

DNA libraries were normalized by concentration followed by pooling. Sequencing stage divided
into several steps: attaching particles to a cell and labeling nucleotides, the “splittable” terminators
were used. The steps called attachment, image, cleaning. The array was scanned by a high resolution



Molecules 2018, 23, 829 13 of 18

electronic camera and the fluorescent output of each of the 4 dye colors at each array position is
measured and recorded. The color indicates which base (A, C, G or T) was incorporated onto the DNA
fragment from the previous step. Finally, the array was exposed to cleavage chemistry to break off the
fluorescent dye and end cap that will then allow additional bases to be added.

4.2.4. NGS Mapping

QCI Analyze and QCI Interpret software was used for data analysis. The software automatically
performed a filtering of the fragments obtained on quality, adapter trimming and mapping of the
fragments obtained according to reference genome hg19. Gene variants with statistical significance
(p = 1.0 × 10−4) were selected by manual software.

For reliable evaluation of gene mutations 1.5% of tumor cells in the sample are enough for the
analysis. The quality of the reads obtained after sequencing was higher than Q25 for more than 70%
of studied DNA samples. The numbers of the reads for DNA samples analyzed after filtering were
1,490,465 for MCF-7, 1,195,387 for MCF-7/M and 1,376,487 for MCF-7/T. These data indicate the
correctness of the normalization.

4.3. Transient Transfection and Measurement of Reporter Gene Activity

To determine the transcriptional activity of Snail1, ERα, AP-1 and NF-κB the cells were transfected
with the plasmids containing luciferase reporter gene controlled by Snail-binding element of E-cadherin
promoter, canonical estrogen-responsive elements (ERE), AP-1 and NF-κB-responsive elements,
respectively. The plasmids used in this work were kindly provided by Dr. Antonio García de Herreros,
Dr. Victor Adler, Dr. George Reid, and Dr. Alexander Gasparian [46–48]. The transfection was carried
out for 4 h at 37 ◦C using Metafectene PRO (Biontex, München, Germany). To this end, Metafectene
PRO (0.8 µL) was complexed with 0.4 µg of DNA to transfect one well (24 well plates, Corning, NY,
USA). To control the efficiency and potential toxicity of the transfection, the cells were transfected with
the β-galactosidase plasmid. All subsequent experiments were performed during 24 h after transfection.
The luciferase activity was measured according to a standard protocol (Promega, Madison, WI, USA)
using an Infinite M200 Pro instrument (Tecan, Männedorf, Switzerland), and calculated in arbitrary
units as the ratio of the luciferase/galactosidase activity as described in [49].

4.4. Western Blot Analysis of Cell Lysates

The cells were washed twice, and incubated for 10 min on ice in the total lysis buffer containing
50 mM Tris-HCl, pH 7.4, 1% SDS, 1% Igepal CA-630, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM
EDTA, 1 mM PMSF; 1 µg/mL each aprotinin, leupeptin, pepstatin; 1 mM Na-orthovanadate and 1 mM
NaF. Samples were sonicated 4 times for 5 s each at 30% output, centrifuged for 5 min at 15,000× g,
and supernatants were then used as total cell extracts. Total protein content was determined by the
Bradford method.

Cell lysates (40 µg protein) were separated in 10% SDS-PAGE under reducing conditions,
transferred to a nitrocellulose membrane (SantaCruz, Dallas, TX, USA) and processed according
to the standard protocol. To prevent nonspecific absorption, the membranes were treated with 5%
nonfat milk (AppliChem) solution in TBS buffer (20 mM Tris, 500 mM NaCl, pH 7.5) with 0.1%
Tween-20 and then incubated with primary antibodies overnight at +4 ◦C.

Primary antibodies to SNAIL1, (phospho)Akt, (Cell Signaling Technology, Kenilworth, NJ, USA)
and ERα (Merck KGaA, Darmstadt, Germany)were used; the antibodies against α-tubulin (Cell
Signaling Technology, Danvers, MA, USA) were used to standardize loading. Appropriate IgG’s
(Jackson ImmunoResearch, West Grove, PA, USA) conjugated to horseradish peroxidase were used
as secondary antibodies. Signals were detected by ECL reagent prepared as described in Mruk’s
protocol [50] and ImageQuant LAS4000 system for chemiluminescence (GE HealthCare, Little Chalfont,
UK). ImageJ software [51] was used for densitometry.
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4.5. Exosomes Purification and Analysis

4.5.1. Exosomes Isolation by Ultracentrifugation

9 × 106 MCF-7 or MCF-7/T cells were seeded and grown during 72 h on a triple-layers flasks
T500 (Thermo Fisher Scientific, Waltham, MA, USA) in 100 mL DMEM medium with 7% FBS. To avoid
contamination of samples by bovine serum exosomes the FBS was spun for 12 h at 100,000× g in advance.
The control centrifugation of the prepared DMEM/7% FBS medium showed pellet protein concentration
less than 5% comparing with exosome samples. Then exosomes from supernatant were isolated by
differential ultracentrifugation using standard protocol [52]. Briefly, in order to eliminate dead cells and
debris the supernatant was spun by successive centrifugation at increasing speed: 30 min 300× g, 30 min
2000× g and 30 min 8000× g. The final ultracentrifugation was 90 min 100,000× g (Koki CP 80NX, Hitachi,
Chiyoda-ku, Tokyo, Japan). The pellets were washed in 200 µL of PBS. All procedures were sterile.

Western Blot Analysis of Exosomes

The western blot analysis of exosomes or cell samples (10 µg protein) was proceeded as described
above. For exosome detection, primary antibodies to CD9 (Millipore), CD63, CD81a (BioLegend,
San Diego, CA, USA) were used. Total protein content was determined by the Bradford method
and used to standardize loading. Importantly, the analysis of exosome samples versus cell included
non-reducing condition and a sample buffer did not contain β-mercaptoethanol.

4.5.2. Transportation of Fluorescent-Labeled Compounds and Peptides

In order to check the exosomes ability to incorporate to recipient cells the vesicles were labeled by
fluorescent dye CellTracker™ Red CMPTX Dye (Thermo Fisher Scientific). After ultra-centrifugation
exosomes were dissolved in PBS solution and stained by fluorescent dyes, according to the
manufacturing protocols. Then thoroughly stained exosomes were washed in PBS twice by the
ultracentrifugation 100,000× g. As a negative control the labeled exosomes were sonicated. In order
to detect the non-specific labeling of cells we used the fluorescent dye which was spun alone.
The precipitates were dissolved in PBS and incubated with MCF-7 cells. The efficiency of dyeing
exosomes incorporation was checked with an Eclipse Ti-E fluorescence microscope (Nikon, Minato-ku,
Tokyo, Japan) (Plan 10×/0.25; ORCA-ER camera by Hamamatsu Photonics, Minato-ku, Tokyo, Japan;
NIS-Elements AR 2.3 software by Nikon). Exposure for fluorescence was 4 s.

4.5.3. Extracellular Vesicles Size and Concentration Measurements

Measurements of size and concentration for purified exosomes were made with nanoparticle
tracking analysis (NTA) in accordance with ASTM E2834—12 [53]. Measurements of size and
concentration for purified exosomes were made with nanoparticle tracking analysis (NTA) in
accordance with ASTM E2834—12 [53] using a Nanosight LM10 HS-BF instrument (Nanosight Ltd.,
Salisbury, UK). Laser unit with 405 nm, 65 mW laser and high sensitivity EMCCD camera (Andor
Luca, Belfast, UK) were used. Briefly, the sample was diluted with particle-free PBS to reach the
concentration of around 1.5 × 108 particles/mL (800–5000 times). 12 to 18 videos 60 s long were
recorded for each sample to reach the total 4200–7100 individual tracks. Videos were processed with
NTA software 2.3 build 33. Results from all measurement of the same sample were joined to calculate
the mean hydrodynamic diameter and total particle concentration, corrected for dilution factor.

4.5.4. Transmission Electron Microscopy (TEM)

TEM with immunogold labelling was used to visualize the exosomes samples. The carbon-coated
TEM grids (Ted Pella, Redding, CA, USA) were treated with a glow discharge device Emitech X100K
(Quorum Technologies Ltd., Laughton, Great Britain) to hydrophilize the carbon surface and increase
the adsorption. The exosomes were deposited onto the grids for 5 min and rinsed with PBS. The surface
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was blocked with 50 mg/mL BSA to minimize the non-specific binding. The samples were incubated
in 10 µg/mL solution of anti-CD9 (Millipore) antibodies for 30 min. Then the samples were rinsed
with PBS and labelled by the 10 nm gold particles coated with protein A (Electron Microscopy Sciences,
Hatfield, PA, USA). After 20 min labelling and the final rinse with PBS the samples were contrasted
with 1% uranyl acetate and dried. Imaging was carried out using a JEM-1011 transmission electron
microscope at 80 kV. At least 30 images were obtained for the exosomes of each type. Fiji software [54]
was used to measure the exosome sizes. Immunogold labelling implies introduction of the gold
nanoparticles (labels) into the samples. The TEM images of the labelled exosomes were analyzed
to address the labelling specificity. The surface densities of the exosome-bound labels Nspec and
the background non-specifically bound labels NBckg were used to estimate the labelling specificity.
The ratio of the mean values <Nspec>/<NBckg> was at least 10 for all the studied samples, indicating the
high specificity of the labelling procedure.

4.5.5. Cells Treatment with Exosome Preparations

Cells were seeded on a 24-well plate (Corning). Exosomes were added before the cells attached
to the plate. Concentration of exosomes was determined by NTA, protein concentration was
evaluated by Bradford reagent (Merck KGaA, Darmstadt, Germany). Exosomes in PBS were
added to 1.5 mL of cell suspension in a final concentration 1.7 µg/mL of exosomal protein or
CI95 = (5.5 ± 0.3) × 109 vesicles/mL once every three days at the time of splitting.

4.6. Statistical Analysis

Each experiment was repeated three times with three technical replicates. Statistical analysis
was performed using Microsoft Excel (Microsoft, Redmond, WA, USA). Results were expressed as
mean ± S.D. (standard deviation value) if not stated explicitly. p value of < 0.05 was considered to be
statistically significant.
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