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Abstract: The skin permeability (Kp) defines the rate of a chemical penetrating across the stratum
corneum. This value is widely used to quantitatively describe the transport of molecules in the
outermost layer of epidermal skin and indicate the significance of skin absorption. This study
defined a Kp quantitative structure-activity relationship (QSAR) based on 106 chemical substances
of Kp measured using human skin and interpreted the molecular interactions underlying transport
behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study
identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting
local geometrical environments, topological distances between pairs of oxygen and chlorine atoms,
lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the
octanol-water partition coefficient to be a direct influence on transdermal movement of molecules.
Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe
the antineoplastic resemblance of a compound as a significant factor in affecting transdermal
permeation of solutes. This finding suggests that the influence of molecular size on the chemical’s
skin-permeating capability should be interpreted with other relevant physicochemical properties
rather than being represented by molecular weight alone.

Keywords: quantitative structure-activity relationship; skin permeability; molecular weight;
octanol-water partition coefficient; antineoplastic property; application domain

1. Introduction

1.1. Identification of Transdermal Penetration for Manmade and Natural Chemicals

The exposure of the skin to manmade and naturally derived chemicals is an issue of rising
concern, particularly in the workplace, where dermal absorption represents a prominent route by
which significant uptake of hazardous chemicals may occur [1,2]. To reduce the risk of occupational
skin exposure, authoritative agencies and organizations worldwide have adopted skin notations (SNs)
as a part of their occupational exposure limits in the management of skin exposure hazards [1–3].
The SNs are a qualitative, dichotomous indicator that alerts workers of the presence of chemicals
capable of permeating through human skin at a significant level and consequently provoking systemic
toxicity. However, the SNs have not been used effectively in the management of occupational skin
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exposure, as robust data reporting systemic/target organ toxicity as a direct result of skin absorption
are required to support the hazard identification of toxic compounds [2,4]. The lack of sufficient data
from biological tests in vivo and in vitro to demonstrate potential dermal penetration and absorption
of toxic compounds has been a major factor impeding the development of quantitative standards in
the management of occupational skin exposure.

The significance of skin absorption for a target compound is conventionally evaluated by
determining the skin permeability (Kp), or the skin permeation coefficient, of the compound in
the stratum corneum. Quantitatively, the Kp describes the rate of chemical permeation through
the outermost layer of the epidermal skin [4]. This value may be determined in vivo, but it is
more frequently determined in vitro following the protocols developed by, e.g., the Organisation
for Economic Cooperation and Development (OECD) [5,6]. In the in vitro method, human or animal
cadaver skin is used, and the permeation of typically non-radio-labeled compound through the skin is
monitored using the static or flow-through diffusion-cell technique. The Kp presents a measure by which
the potential of biological uptake via the skin for a compound can be quantified, and it has been relied on
as a significant source of data to support dermal hazard evaluation [2]. For example, the US Environmental
Protection Agency (USEPA) at the request of the US Occupational Safety and Health Administration
(OSHA), issued standardized protocols on in vitro dermal absorption rate testing for the evaluation of
industrial chemicals of interest to the OSHA [7]. The US National Institute for Occupational Safety
and Health (NIOSH), in its new strategy for the assignment of SN, also recommended the use of Kp
as a criterion in the decision-making process [8]. However, the biological testing and derivation of
Kp was subject to constraints inherent in the experimental techniques, e.g., the duration of the test,
the origin and thickness of the skin used in the test, the formulation of the chemical employed as test
material, the dosing scheme, and the potential use of a vehicle in the topical application of chemicals
for enhancement of transdermal penetration. As a consequence, conventional Kp tests frequently
generated data of a quality insufficient to support adequate interpretation of dermal exposure risk.

1.2. Predictive Modeling of Skin Permeation

In recent years, the quantitative structure-activity relationship (QSAR) has received great attention
as a strategy in the assessment of skin exposure risk, and a variety of QSARs have been attempted
to provide a viable means of Kp prediction [9]. Regulatory agencies worldwide have stepped
up the use of predictive algorithms in the identification of skin exposure hazards when the data
reported from biological testing alone have been insufficient to support an adequate assessment.
For example, the American Conference of Governmental Industrial Hygienists, in its Threshold Limit
Value Documentation [3], recommended: when a chemical was evaluated for a skin designation,
the “extrapolations of systemic effects from other routes of exposure suggest dermal absorption
may be important in the expressed toxicity” should be considered, in addition to the reports of
acute/repeated-dose toxicity (e.g., dermal lethal dose 50%), and any indications of potential dermal
absorption (e.g., logarithmic octanol-water partition coefficient, log KOW). In practice, the extrapolation
of systemic toxicity from other routes of exposure has been realized as a comparison of the chemical’s
dose absorbed via the skin to the level absorbed by route of inhalation during the same period of
exposure [4]. The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), in its
strategy for the assignment of SNs [10], adopted a similar scheme in the determination of dermal
absorption potential, in which the level of the predicted skin absorption for the scrutinized compound
was compared to the level known or estimated to elicit specific systemic effect(s). The ECETOC further
recommended the use of inference from physicochemical properties or structure-activity relationships
to facilitate assessment of dermal absorption potential. In response to the request from the OSHA
for data on the dermal absorption rate of toxic industrial chemical, the US Toxic Substances Control
Act Interagency Testing Committee proposed a method to estimate the skin absorption time based
on the inhalational-to-dermal extrapolation of acceptable biological uptake for chemical capable of
penetrating across the skin and provoking systemic toxicity [11]. This algorithm was later transformed
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to serve as a criterion in the renovated NIOSH strategy for assignment of NIOSH SNs [8]. A theme
in common among these mechanisms of route-to-route extrapolation for a skin exposure hazard
was the use of Kp in deriving at a threshold for the identification of significant skin absorption.
The Kp-predicting QSARs, when adequately validated with data from finite-dose dermal absorption
testing, provided a viable approach for meeting the data need in the dermal risk assessment [12],
and thus their regulatory application is expected to continue and perhaps be expanded to facilitate the
process of decision-making.

1.3. Quantitative Structure-Activity Relationship for Skin Permeation Estimation

The Kp QSARs reported in the literature in majority are mechanistically or empirically based
(correlation-based). Lian et al. [13], in their review, indicated that these two types of QSARs differed
primarily in their selection of molecular descriptors when describing the behavior of compounds
traversing across the viable epidermis. Table 1 presents a list of Kp QSARs to demonstrate the
evolution of Kp QSAR and the selection of molecular descriptors. In the list, the QSAR developed by
Mitragotri [14] has been included to represent the mechanistically based QSAR.

Table 1. Evolution of quantitative structure-activity relationship developed for predicting skin permeability a.

Model (Year) QSAR and molecular descriptors b

Potts and Guy (1992) [15] log Kp (cm/s) = 0.71log KOW − 0.0061 MW − 6.3
Lien and Gao (1995) [16] log Kp (cm/s) = 0.84log KOW − 0.07(log KOW)2 − 0.27Hb − 1.84 log MW + 0.8337

Barratt (1995) [17] log Kp (cm/s) = 0.82log KOW − 0.0093 MV − 0.039 MPt − 5.9163
Potts and Guy (1995) [18] log Kp (cm/s) = 0.0256 MV − 1.72 ∑ αH

2 − 3.93 ∑ βH
2 − 4.85

Abraham et al. (1995) [19] log Kp (cm/s) = − 0.59πH
2 − 0.63 ∑ αH

2 − 3.48 ∑ βH
2 + 1.79Vx − 5.05

Abraham et al. (1999) [20] log Kp (cm/s) = 0.44R2 − 0.49πH
2 − 1.48 ∑ αH

2 − 3.44 ∑ βH
2 + 1.94Vx − 5.13

Patel et al. (2002) [21] log Kp = 0.681 log KOW − 0.00653 MW − 0.284 ABSQon − 0.268 SsssCH − 2.47
Mitragotri (2002) [14] P = 5.6 × 10−6 K0.7

o/w exp(−0.46r2)

a The Potts and Guy (1992), Lien and Gao (1995), Barratt (1995), Potts and Guy (1995), Abraham et al. (1995),
and Abraham et al. (1999) were adopted as summarized in Lian et al. [13]. b QSAR = quantitative structure-activity
relationship; Kp (P) = skin permeability; KOW = octanol-water partition coefficient; MW = molecular weight;
Hb = number of hydrogen bonds; MV = molecular volume; MPt = melting point; ∑ αH

2 = solute hydrogen bond
acidity; ∑ βH

2 = solute hydrogen bond basicity; πH
2 = solute dipolarity/polarisability; Vx = McGowan characteristic

molecular volume; R2 = excess molar refraction; ABSQon = the sum of absolute charges on oxygen and nitrogen
atoms; SsssCH = the sum of E-state indices for all methyl groups; Ko/w = octanol-water partition coefficient; r = solute
molecular radius in Angstroms (Å).

In the early days of Kp QSAR development, the molecular descriptors considered to be influential to
the transdermal transport of chemical and thus included in the model were typically those of a measurable
physicochemical property, e.g., molecular weight (MW), melting point (MP), and log KOW. The MW
and log KOW were often the key—and in some cases the only—descriptors in the correlation-based
QSARs developed in this era [22,23], e.g., the Potts and Guy QSAR initially developed in 1992 [15].
The prediction of Kp in the QSAR using measurable physicochemical properties, however, hindered the
appreciation of molecular characteristics that might not be readily measured but interacted to exert
influence on the transepidermal transport of molecules. For example, in their validation of five
different Kp QSARs consisting of only MW and log KOW as descriptors, Wilschut et al. [22] suggested
that, considering the dense distribution of electrons, for the compounds of an aromatic structure the
influence of molecular size to Kp might be better represented by molecular volume (MV) than by MW.
As a result of an emphasis on the physicochemical properties, the early Kp QSARs were, in general,
of a predictive power insufficient to quantitatively describe the transport behavior of molecules in
the stratum corneum. In recent years, the descriptors presented in the Kp QSARs shifted from those
characteristic of physicochemical properties to those of relevance to the arrangement of atomic and
electrical occupation in the molecular space (e.g., MV) and the electronic distribution in that space
(e.g., hydrogen bonding). Aiming to better delineate the processes underlying the movement of
molecules in the epidermal skin, the shift in the selection of molecular descriptors also provided an
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opportunity to investigate any potential interactions among molecular characteristics that could not
be explained by measurable physicochemical properties. For example, the QSAR that Potts and Guy
established in 1992 [15] was revised and published in 1995 to predict Kp based on the MV and the
acidity/basicity of the solute hydrogen bond [18].

As the QSAR methodology continues to improve, computer programs are available nowadays
to better envision how different molecular characteristics interact to influence the targeted effect
(activity). For example, the software Dragon® for molecular descriptor calculation and analysis [24] in
its version 5.5 provides calculation for over three thousand descriptors. Many of these descriptors,
such as the geometrical descriptors and topological descriptors, were less thoroughly attempted in the
previous Kp QSAR. The advancement in the modeling technique offers an opportunity to re-define the
Kp QSAR and to explore the molecular characteristics involved in driving the transdermal transport of
small molecules.

1.4. Study Goals

The study reported in this article defined a Kp QSAR consisting of four molecular descriptors,
as developed using Kp of 106 compounds measured for human skin. This Kp QSAR characterized,
at a molecular level, the mechanisms involved in transdermal permeation of small-molecule solutes.
This QSAR also identified a sub-domain of molecular properties that described the resemblance of
a compound to antineoplastics as a significant factor affecting the transdermal transport of solutes.
A comparison was made of the Kp-predicting power between the model developed in this study and
those presented in Table 1. The results of the comparison suggested that the current model was of a
capacity sufficient to serve as an alternative source of Kp data in support of dermal hazard identification.

2. Results and Discussion

2.1. Development of Quantitative Structure-Activity Relationship

In this study, the stepwise regression algorithm selected regressor variables from a total of
1530 candidate molecular descriptors for inclusion in the multiple linear regression (MLR)-based
Kp QSAR. As the pool of candidates to select the descriptors from was significant, the p values
assigned in the hypotheses for the addition of regressors to the model and for the removal from
the model were crucial to the number of descriptors to include in the final QSAR. To control the
number of molecular descriptors in the QSAR for reasons of model accessibility and mathematical
maneuverability, the strategy applied in the descriptor selection in this study was to combine a higher
probability of removing descriptors and a lower probability of adding descriptors. In this study,
the p value for a regressor leaving the model was set at 0.1, and its counterpart for a regressor to enter
was 5 × 10–6. Once the effective molecular descriptors had been determined, the parameters in the
MLR model were calculated based on a training set of 85 compounds. Afterwards, a validation
dataset of 21 compounds was used to validate the predictive capability of the developed MLR
model. These processes of model training and validation generated a final MLR model of four
molecular descriptors:

log Kp =−3.0943(±0.0923)− 0.0067(±0.0006)D/Dr10 − 0.0496(±0.0103)T(O..Cl)

+0.6840(±0.0407) ALOGP − 1.5709 (±0.1175) Neoplastic − 80
(1)

The log Kp QSAR identified four molecular descriptors as statistically significant molecular
characteristics capable of affecting the transport behaviors of solutes in the stratum corneum (Table 2).
In Equation (1), the figures in the parentheses before each descriptor were the standard errors estimated
for the corresponding parameters. The analysis of variance was performed to evaluate the fitting
ability of the model to the training dataset (Table 3); a very low p value (F statistic = 121.3; p < 0.001)
was observed, indicating a significant fit of the model to the training compounds.
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Table 2. Molecular descriptors in quantitative structure-activity relationship developed for prediction
of skin permeability.

Molecular Descriptor (Dragon® Name) Type Definition

D/Dr10 Topological descriptor Distance/detour ring index of order 10
T(O..Cl) Topological descriptor Sum of topological distances between O..Cl

ALOGP Molecular property Ghose-Crippen octanol-water partition
coefficient (log P)

Neoplastic-80 Molecular property Ghose-Viswanadhan-Wendoloski
antineoplastic-like index at 80%

Table 3. Analysis of variance testing fitting ability of quantitative structure-activity relationship to
training dataset a.

df SS MS F p Value

Regression 4 117.399 29.350 121.287 0.000
Residue 80 19.359 0.242

Sum 84 136.758
a df = degrees of freedom; SS = sum of squares; MS = mean square; F = F statistic.

2.2. Performance of Quantitative Structure-Activity Relationship

To evaluate the performance of the developed Kp QSAR, the log values of experimental Kp for the
compounds included in the datasets were compared to those predicted by the model. Figure 1 shows
the relative distribution of the log Kp predicted by the model against their counterparts observed in the
original experiments for the compounds in the training and validation sets; and Table 4 summarizes
the fitting ability and predictive capability of the developed model in statistical terms. As the analysis
demonstrated, there were no significant outliers found in either case.

Figure 1. Distribution of logarithmic skin permeability predicted by quantitative structure-activity
relationship developed in this study (predicted log Kp) against values experimentally observed
(observed log Kp) for (a) 85 compounds in the model training dataset, and for (b) 21 compounds
in the model validation dataset. Diagonal solid lines in the graphs represent where the predicted log Kp
would equal the observed log Kp for a target compound.

Table 4. Fitting ability and predictive capability of quantitative structure-activity relationship for
estimating skin permeability a.

Dataset MSE R2/Q2 AME AAE

Training 0.228 0.858 1.582 0.344
Validation 0.206 0.839 1.081 0.345

a MSE = mean square error; R2/Q2 = coefficients of determination; AME = absolute maximum error; AAE = average
absolute error.
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A rule of thumb commonly adopted in the development of QSAR for practical application
is: the difference between R2 and Q2 must not be too large and preferably not exceeding 0.2–0.3.
In addition, a value of Q2 greater than 0.5 is regarded as an indication of good performance, and a
value greater than 0.9 as an indication of excellent performance [25]. As shown in Table 4, the fitting
ability, as demonstrated in R2 for the developed Kp QSAR, was 0.858; and the predictive capability,
as in Q2, was 0.839. The difference between R2 and Q2 of the proposed model was 0.019. These results
suggested that the developed QSAR was of an adequate predictive power for the estimation of
log Kp. Moreover, the level of error observed in the predicted value of Kp was of a reasonable level,
considering the variation inherent in the experimental determination of Kp.

Figure 2 shows the distribution for the standardized residuals of the prediction versus the
predicted log Kp values. The result of the homoscedasticity test suggested a consistent performance
of the current QSAR in predicting the Kp for compounds of varying molecular characteristics. In the
figure, the residuals for N-nitrosodiethanolamine and atropine were −3.05 and −3.33, respectively.
While these numbers were slightly more than three standardized deviations, these two compounds
were not considered to be heterogeneous, given the significant variance that might be present in
the processes by which these values were generated. As we introduced, when the rate of chemical
permeation in the epidermal skin was experimentally determined, the procedures employed could
differ significantly. As a result it was not uncommon to observe a variation of a magnitude of two
orders in the Kp values determined for the same compound when different procedures were applied
in the experiment. van de Sandt et al. [26] examined the intra- and inter-laboratory variation in
the results of in vitro percutaneous absorption tests conducted among 10 European laboratories
using human donor skin for three compounds of varying physicochemical properties: benzoic
acid, caffeine, and testosterone. The examination reported a coefficient of variation of 6.3–52.5%,
12.0–91.4%, and 6.3–111.0% for benzoic acid, caffeine, and testosterone, respectively. The log Kp of
N-nitrosodiethanolamine used in developing the current QSAR was of a low value, –5.22 (the Kp
was approximately 6.02 × 10–6 cm/h) [27]. This value was comparable to the Kp observed for
N-nitrosodiethanolamine in the experiment where water was used as a vehicle [28]; however, it was
over 180 folds less than the level (1.1–4.1 × 10–3 cm/h) determined when neat (undiluted) isopropyl
myristate, a widely used lipoidal compound, was used as the vehicle for topical administration [28–30].

Figure 2. Scatter plot of standardized residuals versus logarithmic values of skin permeation coefficient
(Kp) predicted using Kp quantitative structure-activity relationship (predicted log Kp) developed in this
study for compounds included in in training and validation datasets.

2.3. Comparison of Current Model with Quantitative Structure-Activity Relationships Reported in Literature

In our study, we limited our introduction to and comparison with the QSARs of Kp prediction only
to those that were developed using datasets comparable to the data included in this study. As these
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models were representative of the Kp QSARs developed in a different era, and many are still in wide
application, this approach provided an opportunity for us via a comparison among the models to
observe how the interpretation of molecular characteristics governing skin permeation of compounds
changed in response to the improvement in QSAR molecular representation. Many of the models
being compared in this study remain benchmarks in Kp QSAR development [31–33], despite that they
were developed in the early days of Kp QSAR development, e.g., the Potts and Guy model developed
in 1992. Table 5 summarizes, for the Kp QSAR developed in this study, as well as for ten previously
established Kp QSARs reviewed by Lian et al. [13] and Fitzpatrick et al. [34], the data used in the
development of Kp QSAR, the number of descriptors included in the QSAR, and the fitting ability and
predictive capability of the model. The models reported in Lien and Gao (1995) [16], Barratt (1995) [17],
Potts and Guy (1995) [18], Abraham et al. (1995) [19], and Abraham et al. (1999) [20] were built
from a dataset smaller than the one adopted in the current study, and thus reported high R2 in their
original development processes. The influence of uneven sample size to the determination of R2

became evident when these models were re-validated by Lian et al. using a consistent dataset of
124 compounds. This validating dataset likely overlapped to various extents with the original datasets
by which these models were developed. Nonetheless, in the validation these models were found to be
of poor predictive capability, with a Q2 value ranging from 0.36 to 0.56, dropping significantly from the
range of 0.90–0.96, as summarized in Fitzpatrick et al. The model by Potts and Guy in 1992 [15] was
developed using a database comparable to the one adopted in this study, but the model was reported
initially with an R2 of only 0.67. In the re-validation by Lian et al., a similar level of predictive power
was observed.

Table 5. Performance of skin permeability model from this study and of those reviewed in literature
a,b.

Kp QSAR Model
Model Development Model Validation

Remarks
nd ns R2 Source(s) of

Experimental Kp c Q2 MAE

Potts and Guy (1992) [15] 2 93 0.67 Flynn 0.68 0.091 d,e

Lien and Gao (1995) [16] 4 22 0.96 Flynn 0.56 0.402 d,e

Barratt (1995) [17] 3 60 0.90 Flynn 0.46 0.632 d,e

Potts and Guy (1995) [18] 3 37 0.94 Flynn 0.36 0.274 d,e

Abraham et al. (1995) [19] 4 46 0.96 Flynn 0.54 0.140 d,e

Abraham et al. (1999) [20] 5 53 0.96 Flynn 0.54 0.120 d,e

Patel et al. (2002),
Equation (4) [21] 4 158 0.76 Flynn, Wilschut et al. n.a. n.a.

Patel et al. (2002),
Equation (5) [21] 4 152 0.83 Flynn, Wilschut et al. n.a. n.a f

Patel et al. (2002),
Equation (6) [21] 4 143 0.90 Flynn, Wilschut et al. n.a. n.a g

The current study 4 85 0.86 Flynn, Wilschut et al. 0.84 0.206
a Kp = skin permeability; QSAR = quantitative structure-activity relationship; nd = number of descriptors; ns = number
of compounds; R2/Q2 = coefficients of determination; MAE = mean absolute error. b Previously established Kp
QSARs were reviewed and evaluated in Lian et al. [13] and Fitzpatrick et al. [34]. c Experimental Kp reported
in Flynn [27] and Wilschut et al. [22] were those determined using human epidermal skin. d Information of
model development was extracted from Fitzpatrick et al. e A dataset consisting of 205 Kp values originating
from 124 chemical compounds was applied consistently to these six models in the re-determination of R2 in
Lian et al. f Six steroid compounds including hydrocortisone hemipimelate (CAS No. 107085-84-7), hydrocortisone
hemisuccinate (CAS No. 2203-97-6), hydrocortisone hexanoate (CAS No. 3593-96-2), hydrocortisone octanoate
(CAS No. 6678-14-4), hydrocortisone propinate (CAS No. 6677-98-1), and hydrocortisone (CAS No. 50-23-7) were
determined to be outliers to Equation (4) in Patel et al. and removed from the original 158 compounds when
developing Equation (5). g Nine compounds including atropine (CAS No. 51-55-8), benzaldehyde (CAS No. 100-52-7),
diclofenac (CAS No. 15307-86-5), digitoxin (CAS No. 71-63-6), estriol (CAS No. 50-27-1), etorphine (CAS No. 14521-96-1),
indomethacin (CAS No. 53-86-1), naproxen (CAS No. 22204-53-1), and nicotine (CAS No. 54-11-5) were determined to
be outliers to Equation (5) in Patel et al. and further deleted from the remaining 152 compounds when developing
Equation (6).
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A larger dataset of experimental Kp (158 compounds) was considered in Patel et al. [21].
One-hundred compounds in this dataset overlapped with those in the dataset applied for Kp QSAR
development in this study. In Patel et al., the predictive capability of QSAR was not investigated, i.e.,
all of the 158 compounds in the dataset were used in model training. Among the Kp QSARs developed
in Patel et al., the first model consisted of four descriptors and was of a R2 of 0.76 (Table 5, Equation (4)).
Six steroid compounds, including hydrocortisone hemipimelate, hydrocortisone hemisuccinate,
hydrocortisone hexanoate, hydrocortisone octanoate, hydrocortisone propinate, and hydrocortisone,
were determined to be outliers to this four-descriptor model and removed from the original dataset.
The second model was subsequently built using the 152 compounds remaining in the dataset and
shown with an R2 of 0.83 (Table 5, Equation (5)). A further examination revealed an additional nine
outliers among the 152 compounds used in building the second model. These outliers were removed
from the dataset, and a third model was developed. The R2 of the third and final model increased to
0.90 for the remaining 143 compounds, and no additional outliers were identified (Table 5, Equation (6)).
While the R2 in the final model of Patel et al. appeared to be higher than the level observed for the
model developed in our study, it would be difficult to determine the applicability of the final model
from Patel et al. in terms of its predictive power toward unknown compounds—it was unclear as
to how the removal of outliers in the development of QSARs in Patel et al. might have impacted on
the interpretation of structural characteristics or molecular mechanisms involved in transepidermal
transport of the solutes. As previously described, a proper validation of QSAR was required before the
model could be considered for regulatory application [35,36], and as such, the models presented in
Patel et al. might be limited from such application given the lack of sufficient validation. To meet the
requirement for regulation application, in the current study the Kp values included in the dataset for
the development of Kp QSAR were randomly divided into a training dataset and a validation dataset
at a ratio of 4 to 1. The Q2 identified for the current QSAR was 0.84, by far the highest value among the
models compared in Table 5. In addition, there were no outliers identified from the 106 compounds
in the dataset for developing the current Kp QSAR. These findings attest to the fitting and predictive
capability of the proposed model.

2.4. Molecular Interactions Underlying Transepidermal Permeation of Small Molecules

The log Kp QSAR developed in this study identified four descriptors as significant molecular
characteristics that affected the epidermal transport of small molecules. These descriptors exerted
their influences via: (1) molecular cyclicity for single rings in the molecule reflecting local geometrical
environments in complex cyclic systems (the descriptor D/Dr10); (2) sum of topological distances
between all pairs of oxygen and chlorine atoms (T(O..Cl)); (3) partitioning of molecules between the
lipophilic vs. hydrophilic phases of transport medium (ALOGP); and (4) antineoplastic-like property
at 80% similarity (Neoplastic-80) (Table 2). As discussed, in the early days, the Kp QSARs were
frequently established assuming a linear correlation between the log Kp and the regressor variables
presumably indicative of lipophilicity and molecular size of a compound. The Kp in the models
reported in Potts and Guy (1992) [15], Lien and Gao (1995) [16], and Patel et al. (2002) [21] (Table 1) was
statistically related to the KOW and MW; while in the model developed by Barratt (1995) [17] the Kp
was correlated to the KOW and MV. These QSARs shared a feature—the physicochemical descriptors
KOW and MW/MV were combined and included in the model to suggest a mechanistic relevance
of lipophilicity and molecular size to the transdermal transport of the solutes. In the current study,
the molecular descriptor Ghose-Crippen octanol-water partition coefficient (ALOGP) was incorporated
in the model, supporting the inference of lipophilicity being a key factor in the permeation of small
molecules across the skin membrane. Figure 3 shows the distribution of the log value of experimentally
determined Kp for the investigated compounds against their ALOGP and MW. The experimental Kp
was moderately correlated to both the ALOGP and MW, conforming to the expected involvement of
lipophilicity and molecular size in the dermal transport of small molecules. However, in the Kp QSAR
established in this study the MW was selected only indirectly in the final array of molecular descriptors.
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Figure 3. Distribution of experimentally observed logarithmic skin permeability (observed log Kp)
against (a) Ghose-Crippen octanol-water partition coefficient (ALOGP) and (b) molecular weight
(MW) for 106 compounds included in model training and validation datasets. The r value is
Pearson product-moment correlation coefficient and describes linear dependence of observed log
Kp to targeted descriptor.

The exclusion of MW as a principal descriptor in the current Kp QSAR did not rule out the
molecular size as a factor that contributed to the percutaneous permeation of small molecules. In the
current QSAR, the molecular descriptor Ghose-Viswanadhan-Wendoloski antineoplastic-like index at
80% (Neoplastic-80) was selected to describe the transport of molecules through the stratum corneum.
To the best of our knowledge, this is the first time that a composite index has been included as a
descriptor in a Kp QSAR. The drug property-related indices have been applied widely in the evaluation
of compounds of toxicological or pharmacological potency. For example, pharmaceuticals have
frequently been evaluated for their therapeutic index, a ratio of the dose required to produce a
toxic effect to the dose needed to elicit the desired therapeutic response [37] when a dose-response
relationship was described. The comparison of the therapeutic effect versus the toxicological effect in a
descriptive relationship of quantitative continuity is made on the recognition that many drugs share
the same mechanisms of intercellular and intracellular transport as that of toxicants, or, in a broader
sense, those of xenobiotics. In this study, the selection of a drug-related index in the Kp QSAR was
perhaps an indication that many of the small-molecular-size compounds included in the dataset in this
study exhibited behaviors of transport similar to those of antineoplastic compounds when moving
across the stratum corneum. Further examination of the criteria adopted in determining the 80%
similarity of a compound to antineoplastics [24] revealed a sub-domain of antineoplastic properties,
including specific ranges of log KOW, molar refractivity (AMR), MW, and number of atoms in the
molecule (nAT). Chemicals of log KOW, AMR, MW, and nAT values sitting in this sub-domain would
be considered as sharing a similarity of 80% to an antineoplastic and subsequently assigned a value of
1 in the dichotomous index, whereas those of the aforementioned properties outside the sub-domain
would be assigned a value of 0. Table 6 shows the ranges of log KOW, AMR, MW, and nAT defining
the Neoplastic-80 as specified in Dragon® and those corresponding to the 106 compounds included
in the dataset in this study. For the compounds applied in the current study, the range of log KOW,
AMR, MW, and nAT covered those that were specified in the antineoplastic sub-domain, resulting in
the inclusion of Neoplastic-80 as a significant descriptor in the final model. Evidently, the MW was
considered for its impact on the transepidermal transport of the solutes in the current QSAR, however,
only when it was integrated as a part of a comprehensive scheme of influence and weighted with the
other properties.
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Table 6. Ranges of molecular descriptors for sub-domain of antineoplastic properties and those for
model-developing compounds a.

Dataset log KOW AMR MW nAT

Sub-domain defined in Dragon® for Neoplastic-80 [24] −1.5 to 4.7 43 to 128 180 to 475 21 to 63
Range observed in compounds included in model development −3.1 to 5.5 3 to 192 18 to 765 3 to 118

a Log KOW = logarithmic octanol-water partition coefficient; AMR = molar refractivity; MW = molecular weight;
nAT = number of atoms in the molecule; Neoplastic-80 = Ghose-Viswanadhan-Wendoloski antineoplastic-like index
at 80%.

A primary goal in this study was, through the process of Kp QSAR development and a comparison
with representative Kp QSARs in literature developed using a comparable database, to identify the
evolution in molecular representation that best described the transdermal permeation behavior of
molecules. This approach allowed us the opportunity to gain insights on the molecular characteristics
affecting the transport of molecules in the epidermal skin. The identification of the descriptor
Neoplastic-80 and its sub-domain consisting of antineoplastic properties as being relevant to the skin
permeability of compounds in this study attests to this purpose. A more recent database reported in
Baba et al. [31] collected experimentally derived permeability coefficients of 211 compounds consisting
exclusively of permeability coefficients generated using an in vitro diffusion system of excised human
skin. The aqueous donor solution in the diffusion system contained no organic solvents or permeation
enhancers. This database was considered more consistent, as various criteria (e.g., requirements
on in vitro study, use of human skin, use of aqueous vehicle, etc.) were applied in the process of
Kp review, and recognized as more applicable to somewhat structurally complex compounds [32].
However, this database was not adopted in this study, as a primary goal in the current study was to
compare between the Kp model developed in this study with representative QSAR models developed
using similar and comparable databases. The Kp values generated for chemicals present in the solvent
vehicle [38] or in a state of ionization [33] were not considered in this study neither, as the percutaneous
absorption behavior of the molecules in these states could be a mixed result of influences from
molecular properties as well as from a compromised integrity in the dermal barrier functions.

The Kp QSAR developed in this study is also one of potential for practical application. In the
current Kp QSAR, the descriptors ALOGP and Neoplastic-80 are molecular property descriptors while
D/Dr10 and T(O..Cl) are topological ones. For Neoplastic-80, a positive identification is made when
the values of log KOW, AMR, MW, and nAT in the molecule of the compound fall in the ranges specified
in the sub-domain (Table 6). The values of the properties in the sub-domain are available from online
databases or reports in literature, and if necessary there are also algorithms amenable to the users
for their calculation. For the topological descriptors, their values may also be derived following
straightforward calculations, if an estimation using computer software or programs is unavailable.
For example, the value of T(O..Cl) for the compound 2,4-dichlorophenol (CAS 120-83-2) is calculated
as the sum of the topological distance from the chlorine in the ortho position of phenol to the hydroxyl
group (3) and the distance from the chlorine in the para position to the hydroxyl group (5), yielding a
final value of 8. The Kp QSAR developed in this study should serve as one of application potential
with new perspectives on the molecular behaviors of compounds moving across the skin membrane.

In recent years, machine learning algorithms, such as artificial neural networks (ANN) and
support vector machines, have been applied in developing predictive models. However, these methods
may not be readily applied to building QSAR models from limited data. For example, the ANN
has been frequently applied in developing nonlinear models for predicting skin permeability of
chemicals [38–40]. When developing a three-layer ANN, assuming an input layer of simply five inputs
(descriptors), a hidden layer of 10 nodes, and an output layer of one output (target property), the total
number of parameters (weights and bias) in the ANN model will be 71 (5 × 10 + 10 + 10 × 1 + 1).
As it is commonly required in the development of a predictive model that the ratio of the number of
parameters in the model to the number of samples in the supporting dataset to be less than one-fifth,
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the number of parameters as estimated in this case inevitably results in overfitting the samples in
our Kp dataset. Baba et al. [31] also commented that the ANNs were likely to overfit the given data
and be trapped in local minima. In addition, their network structures could not be fully determined.
In comparison, an MLR model of five descriptors would require the generation of only six parameters,
which would make the MLR model much more amenable to the users. Considering the size of the
dataset available in this study, the MLR was adopted as the mechanism in the QSAR development.

3. Materials and Methods

3.1. Skin Permeability Data

The Kp values of 106 structurally diverse compounds of anthropogenic or natural origins,
as initially reported in Flynn [27] and Wilschut et al. [22], were selected and applied in the development
of Kp QSAR in this study. These Kp values were determined using human cadaver skin and derived
for compounds present in an aqueous vehicle. The Kp values in these databases were predominantly
derived from in vitro studies. The values for benzene, styrene, and toluene in the Flynn database were
reported to be derived from in vivo measurements [41]. The precise procedures or experimental details
in determining these Kp were not reported in the original databases. Consequently, inter-laboratory
uncertainty and methodological variation in the Kp were expected. Despite the ambiguity inherent in
these Kp arising from experimental variation, the use of Kp only for human skin reduced the complexity
involved in animal-to-human interpretation of the experimental Kp. In addition, the Kp values in
these two databases have been the primary source of data used in support of the development for
human Kp QSARs, e.g., the models developed by Potts and Guy (1992) [15], Potts and Guy (1995) [18],
Patel et al. (2002) [21], Lien and Gao (1995) [16], Barratt (1995) [17], Abraham et al. (1995) [19],
and Abraham et al. (1999) [20]. Their adoption in the current study made available the opportunity
to observe the change in the selection of molecular descriptors for the model developed in this study
from the strategies of descriptor selection applied in the aforementioned Kp QSARs. The Chemical
Abstract Service (CAS) number, chemical name, log Kp, MW, log KOW, and stage of application in the
model development for the 106 compounds included in this study are summarized and provided in
Table S1.

3.2. Partitioning of Skin Permeability Data for Model Training and Validation

The logarithmic values of experimental Kp and the values of MW for the 106 candidate compounds
selected in this study ranged from –6.11 to –0.19 and from 18.0 to 764.9, respectively. These compounds
were randomly partitioned into a training set of 85 compounds and a validation set of 21. The number
of compounds in the validation set was about one-fifth of its counterpart in the training set, a ratio
recommended for the validation of an empirical model [25,42]. The log Kp and MW for the training
compounds ranged from –6.11 to –0.19 and from 18.0 to 764.9, respectively, while those for the
validation compounds ranged from –5.52 to –0.96 and from 46.1 to 489.6. To evaluate if the compounds
included in the validation set were representative of those in the training set, the values of log Kp
and MW of the compounds were distributed in histogram for those included in the training set
(Figure 4) and in the validation set (Figure 5). The comparison in log Kp and MW between the training
and validating compounds served to indicate the relevance between these two groups of data in
describing the behavior of compounds permeating across the skin membrane. The MW was included
in this comparison as this property has been long recognized as a readily measurable physicochemical
property well correlated to the transdermal penetration behavior of solutes and examined in the Kp
QSAR development [22,31]. In addition, the MW commonly served to suggest biological activity of
molecules in the development of QSARs targeting toxicological endpoints. For example, Lei et al. [43]
examined and compared the chemical distribution of molecules in the training and validation datasets
as defined by the MW and the Wildman and Crippen’s octanol-water partition coefficient in their
prediction of the acute toxicity by route of oral exposure. As the comparison between Figures 4a
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and 5a revealed, the distribution of log Kp in both the training and validation set in this study was
comparable, suggesting that the validation data was a representative subset of the training dataset.
In the literature [22,23], the log Kp of chemical was identified to be negatively correlated to the MW.
A similar trend was identified in this study. The experimental Kp values of the compounds in model
training and validation datasets were also examined for normality in their distribution. As shown in
Figure 6, these data conformed to the assumption of normality for being applied to developing the Kp
QSAR via the MLR technique.

Figure 4. Abundance and distribution of compounds in training dataset for model development
as arranged and displayed by (a) logarithmic value of experimentally determined skin permeation
coefficient (observed log Kp) and (b) molecular weight (MW) of compound. A total of 85 compounds
were included in training dataset.

Figure 5. Abundance and distribution of compounds in validation dataset for model development
as arranged and displayed by (a) logarithmic value of experimentally determined skin permeation
coefficient (observed log Kp) and (b) molecular weight (MW) of compound. A total of 21 compounds
were included in validation dataset.

Figure 6. Normal probability plot for logarithmic values of experimentally determined skin permeation
coefficient (observed log Kp) of compounds included in training and validation datasets.
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3.3. Molecular Structure Construction and Optimization

As the first step of model development, molecular structure files were constructed for each
individual compound included in the training and validation datasets. For the 106 compounds
included in this study, the molecular structures were extracted mainly from the US National Library
of Medicine TOXNET ChemIDplus Database (TOXNET) [44]. In rare cases where the files were
not available from the TOXNET, they were extracted from the National Institute of Standards
and Technology’s Chemistry WebBook [45] and SciFinder® [46]. These molecular structure files
were graphically transformed and optimized in the HyperChem® Molecular Modeling System [47].
The molecular mechanics calculations involved in the optimization were performed first using MM+
force field to optimize the molecular geometries with lower optimization accuracy, and then the
semi-empirical calculations were carried out using the routines AM1 to complete the full geometry
optimization with higher accuracy.

3.4. Molecular Descriptor Calculation

In the next step, the Dragon® software [24] in version 5.5 was used to calculate the molecular
descriptors for all the compounds according to their optimized molecular structure. A newer
release of Dragon® was available and had been applied in the development of QSAR. For example,
Chavan et al. [48] employed Dragon® 6.0 in their investigation of the possibility of establishing a
global QSAR model for acute toxicity based on a database of 436 chemicals. In this study, however,
version 5.5 of the software was employed, as it allowed us to follow the definition and algorithm
underlying the calculation of specific molecular descriptors in order to characterize the molecular
properties with these descriptors, which was essential to interpreting the transdermal movement
behavior of molecules in the epidermal skin. The definition and relevant algorithmic details for all
molecular descriptors in Dragon® 5.5 may be found, as indicated in its user manual, in the Handbook of
Molecular Descriptors [49] and the Molecular Descriptors for Chemoinformatics [50]. The Dragon® software
in version 5.5 could calculate up to 3,224 descriptors for every molecule. However, some molecular
descriptors gave the same numerical values for all explored compounds, and in the MLR model they
were indistinguishable in terms of a correlation with the dependent variable for the explored dataset.
As a result these descriptors were excluded from the MLR model construction. With their removal a
total of 1530 molecular descriptors remained as the candidates of the regressor variables for the MLR
model of log Kp.

3.5. Molecular Descriptor Selection and Multiple Linear Regression

When an MLR model was developed from a large number of regressor variables, the correlations
between regressor variables were assessed to prevent the inclusion of redundant regressor variables in
the model and a consequent reduction in the explanatory power of individual regressor variable. By the
same principle, in the current study the optimal Kp QSAR would be the one that ultimately predicted
log Kp using the least number of molecular descriptors and with the highest accuracy. The process of
selecting a subset of regressor variables, in this study the molecular descriptors, for creating a model
with fewer regressors was often referred to as the feature selection in the literature [42]. A typical
criterion applied in this selection process is the minimization of a specific measure of predictive
error for an investigated model. A variety of algorithms have been proposed to search for a specific
subset of regressors that optimally model the measured response under the constraints of required
or excluded features, size of subset, etc. The stepwise regression algorithm was adopted in this
study to provide a systematic method for adding and removing regressor variables based on their
statistical significance in a regression model [42]. This method began with one initially given model
and compared the explanatory power of incrementally larger and smaller regressor variables when
they were fit into this model. At each step, the p value of the F statistic was computed to test the
model with and without a potential regressor. If a regressor to be tested was not yet included in the
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model, the null hypothesis would be that this regressor had a zero coefficient when it was added to
the model. If there was sufficient evidence to reject the null hypothesis, the regressor variable was
added. Conversely, if a regressor was currently present in the model, then the null hypothesis was
that the regressor had a zero coefficient. If there was insufficient evidence to reject the null hypothesis,
the regressor variable was removed from the model. However, depending on the regressor variables
included in the initial model and the order in which the variables were moved in and out, this step
regression might build up different models from the same set of potential regressor variables. In this
sense, the model generated by the stepwise regression was a locally optimal model instead of a globally
optimal one [42]. To overcome this drawback, in the current study, the random search technique was
combined into the stepwise regression algorithm in finding the regressor variables. This modified
algorithm automatically chose the regressor variables of higher correlation coefficient as the possible
candidates for input into the initial model in the conventional stepwise regression algorithm [51,52].
The calculated values of molecular descriptors incorporated in the established model and the log Kp
predicted by the model for the 106 compounds included in this study are summarized in Table S2.

4. Conclusions

The rate of chemicals permeating through the stratum corneum, the Kp, is widely used to
quantitatively describe the potential of dermal absorption for manmade and naturally derived
compounds. The regulatory application of the Kp in standard development, however, is frequently
hindered by the lack of Kp values that are experimentally determined in accordance with standardized
and consistent protocols. This study developed a four-descriptor Kp QSAR based on 106 compounds
of Kp determined using human skin. Similar to the models reported in the literature, the Kp QSAR
developed in the current study considered log KOW a direct influence on the transdermal permeation
of small molecules. This Kp model identified, for the first time in the QSAR literature, a sub-domain of
molecular properties initially defined to describe the antineoplastic resemblance of a compound as a
significant factor in the permeation of a solute through the skin membrane. This finding suggested
that the influence of molecular size on the skin permeation of chemicals should be interpreted with
other physicochemical properties, rather than being represented by molecular weight alone. The Kp
QSAR reported in this study may serve as a source of Kp in support of dermal hazard characterization
when experimentally determined Kp values are not readily available.

Supplementary Materials: The following are available online. Table S1: List of compounds applied in
development of quantitative structure-activity relationship for skin permeability prediction; Table S2: List of
values estimated for molecular descriptors and skin permeability using quantitative structure-activity relationship
developed in this study for compounds applied in model training and validation.
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