Next Article in Journal
Enhanced Enzymatic Hydrolysis and Structural Features of Corn Stover by NaOH and Ozone Combined Pretreatment
Next Article in Special Issue
Comparative Analysis of Chemical Composition, Anti-Inflammatory Activity and Antitumor Activity in Essential Oils from Siegesbeckia orientalis, S. glabrescens and S. pubescens with an ITS Sequence Analysis
Previous Article in Journal
The Selectivity of Polymers Imprinted with Amines
Previous Article in Special Issue
Multi-Response Extraction Optimization Based on Anti-Oxidative Activity and Quality Evaluation by Main Indicator Ingredients Coupled with Chemometric Analysis on Thymus quinquecostatus Celak
Article

Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

1
College of Light Industry and Food Engineering, Sichuan University, Chengdu 610065, China
2
College of Food and Bio-engineering, Xihua University, Chengdu 610039, China
3
Department of Nutrition and Food Science, Maryland University, College Park, MD 20742, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Luca Forti
Received: 22 April 2018 / Revised: 11 May 2018 / Accepted: 21 May 2018 / Published: 29 May 2018
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste. View Full-Text
Keywords: non-volatile organic acid; amino acid; HPLC; amino acid automatic analyzer; Pixian broad-bean paste non-volatile organic acid; amino acid; HPLC; amino acid automatic analyzer; Pixian broad-bean paste
Show Figures

Figure 1

MDPI and ACS Style

Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules23061299

AMA Style

Lin H, Yu X, Fang J, Lu Y, Liu P, Xing Y, Wang Q, Che Z, He Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules. 2018; 23(6):1299. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules23061299

Chicago/Turabian Style

Lin, Hongbin, Xiaoyu Yu, Jiaxing Fang, Yunhao Lu, Ping Liu, Yage Xing, Qin Wang, Zhenming Che, and Qiang He. 2018. "Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids" Molecules 23, no. 6: 1299. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules23061299

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop