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Abstract: This study aims to develop new antifungal dermal films based on their mechanical
properties (elongation, adhesion, behaviour towards vapour moisture) and the in vitro availability of
miconazole nitrate, used as a pharmaceutical active ingredient in various concentrations. The three
polymeric films prepared were translucent or shiny, with the surface of 63.585 cm2, 0.20–0.30 mm
thickness, and content of miconazole nitrate of 3.931 or 15.726 mg·cm2. The mechanical resistance
and elongation tests demonstrated that the two films based on hydroxyethyl cellulose (HEC) polymer
were more elastic than the one prepared with hydroxypropyl methylcellulose (HPMC). The vapour
water absorption and vapour water loss capacity of the films revealed that the HPMC film did not
dry very well in the process of preparation by the evaporation of the solvent technique, unlike the
HEC films that jellified more evenly in water and had higher drying capacity at 40 ◦C. The in vitro
availability of miconazole nitrate from dermal films was evaluated using the Franz diffusion cell
method, through a synthetic membrane (Ø 25 mm × 0.45 µm) and acceptor media with pH 7.4
(phosphate buffer and sodium lauryl sulphate 0.045%), resulting a release rate of up to 70%.

Keywords: miconazole nitrate; hydroxypropyl methylcellulose; hydroxyethyl cellulose; Franz cell;
dermal films

1. Introduction

The development of pharmaceutical forms begins with the preformulation process, which
establishes the physical and chemical, pharmaceutical and technological, pharmacological and
toxicological features of substances [1]. As an active pharmaceutical ingredient, miconazole nitrate
(MN) is a broad spectrum antifungal agent which has already been studied in the form of mucoadhesive
tablets, polymeric matrices (chitosan, gelatine, gum arabic, alginate, carbopol or acrylic resins),
microgels, nano-lipid gels or nano-vesicles formulated to treat oral or vaginal candidiasis [2–7].
In addition to its antifungal activity, MN also has an antimicrobial action—the imidazole class, which
makes it frequently applied on skin mucosa to heal fungal infections [8]. It inhibits the synthesis of
ergosterol, a key component of fungal cell membranes [9]. For external use, MN is characterized by very
good action as it easily penetrates the skin, and because of its efficient concentration the therapeutic
effects last more than four days from the time of application [10,11]. Therefore, the development of
MN-dermal films can bring various benefits to patients resistant to classical antifungal pharmaceutical
forms because this active substance lasts longer in the skin layers, acting as a slow release product.
Repeated use multiplies the dose in the corneous layer, leading to the disappearance of the mycosis
infection. Initially, it can be started with a smaller dose and afterwards tripled depending of the
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type of the mycosis infection [12,13]. Dermal films represent in medical practice an alternative for
the administration of certain drugs (other than the common oral, or intravenous and intramuscular
administration methods) [14–21]. They are generally formulated with pressure sensitive adhesives
that ensure the products adherence to the skin [22].

The polymers used as film formers are particularly important because between them and the
bioadhesivity of the resulting film there is a directly proportional relation. Cellulose derivatives,
such as hydroxypropyl methylcellulose (HPCM) and hydroxyethyl cellulose (HEC), are semisynthetic
polymers with pronounced jellification capacity in water and consequently with the potential ability
to form adhesive films, both on skin and mucosa. By their non-ionic character they provide stability,
especially for ionizable molecules, thus being suitable to include salts (e.g., MN) in polymer-based
matrices. Unlike other polymers, cellulose derivatives are generally dissolved by heating to form
dispersions whose viscosity are not influenced by pH and in which they form gels by cooling or by
solvent removal (due to the increase in polymer concentration) [23]. HEC is frequently used in the
formulation of gels with mucous administration because it was demonstrated to be similar to the
fertile cervical mucus [24,25]. On the other hand, HPMC is used as excipient in more than 80% of the
pharmaceutical products with oral administration [26] and, unlike HEC, has the property of retaining
water, structuring the gel in a particular manner without dehydrating the biological substrate when it
gets in contact with [27,28], thus providing comfort feel in occlusive state of application. The flexibility
and the elasticity of the polymeric films are ensured by plasticizers (e.g., polyethylene glycol, propylene
glycol and polysorbates) which often can also act as permeation activators, when they breach into the
corneous layer of the epidermis [29–37].

This study aims to develop new antifungal dermal films based on their mechanical properties
(elongation, adhesion, behaviour towards vapour moisture) and the in vitro availability of miconazole
nitrate used as pharmaceutical active ingredient in two variants of concentrations, prepared in the
form of two types of polymeric film matrices: HPMC and HEC.

2. Results and Discussion

2.1. Products Obtained in Form of Polymeric Matrix Films

Compositions used for the preparation of the studied dermal films by casting and solvent
evaporation technique are shown in Table 1, and the physical characteristics of the resulting dermal
films, as well as the calculated content of miconazole nitrate, are shown in Table 2.

Table 1. Composition of the liquid phases casted to obtain the miconazole nitrate films.

Ingredient Code
Formula/Quantity (% m/m)

Function
FI FII FIII

Miconazole nitrate MN 1.25 5.00 5.00 Active pharmaceutical ingredient

Hydroxyethyl
cellulose 250 M HEC - 3.00 2.00 Film forming agent, non-ionic, water highly

viscous soluble polymer

Polyethylene
glycol 400 PEG400 - 1.00 1.00 Permeation enhancer, solubilizer, plasticizer

Hydroxypropyl
methylcellulose

15,000
HPMC 1.00 - - Film forming agent, non-ionic, water highly

viscous soluble polymer, water retention agent

Propylene glycol PG 10.00 - - Humectant agent, solubilizer, plasticizer

Polysorbate 20 PSB20 1.00 - - Surfactant, non-ionic, oil in water emulsifier,
permeation enhancer, solubilizer

Ethanol - 30.00 10.00 10.00 Co-solvent

Ultrapure water - 56.75 81.00 82.00 Solvent

Total 100 100 100
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Table 2. Physical characteristics of the obtained miconazole nitrate films.

Parameter
Dermal Film Formula

FI FII FIII

Appearance Translucent film Opaque film Opaque film
Surface Slightly rough Shiny smooth Shiny smooth

Thickness (mm ± SD 1) 0.20 ± 0.009 0.30 ± 0.004 0.23 ± 0.007
MN theoretical content
mg in 63.585 cm2 film: 250 1000 1000

mg in 2.54 cm2 film: 10 40 40
mg·cm−2: 3.931 15.726 15.726

1 SD = standard deviation (n = 3).

2.2. Mechanical Properties of MN Dermal Films

2.2.1. Tensile Strength and Elongation Capacity

The mechanical strength of dermal films (FI-FIII) was evaluated by testing their elongation
capacity (E) under the action of descending traction forces, of increased intensity (Figure 1). The tension
that led to the rupture of the film (TSbreak) had the smallest value for the HPMC—based film
(FI—0.0083 N·mm−2) and the highest for the film prepared with 2% HEC (FIII—0.2906 N·mm−2).
At a concentration of 3% HEC, the film resistance to breaking decreased by approximately 4×
(FII—0.0673 N·mm−2). Such a behaviour indicates that the plasticizer (polyethylene glycol 400
(PEG400)) in concentration of 1% is insufficient to elasticize the structure of the polymeric matrix; this
is also suggested by the maximum values of elasticity (Emax—elongation recorded due to the tension
applied before the film breaking), where the size relation was maintained (FII 63% and FIII 180%).
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The value of Emax determined in the case of the HPCM film (Figure 1) does not in fact indicate the
elongation capacity, but rather the plasticity level correlated to the low cohesion in the film mass, its
elongation being determined almost exclusively by the value of the applied tension (Pearson r—0.9973),
the film breaking at a tension up to 8–35× times (respectively) smaller compared to the films with HEC
(FII, FIII). In these latter cases, HEC elasticizes the film almost to the same extent as it did when having
a 2% concentration (Pearson r FIII—0.9005) or 3% (Pearson r FII—0.8995). Considering the mechanical
strength and elongation, the most appropriate HEC concentration used at films preparation was that
of 2%.

The results of FI were not as good as those of FII and FIII, fact that can be attributed to HPMC
matrix which retained too much water, with a negative influence on elongation and mechanical
strength. Although FI also contains other excipients for improving elongation and strength features,
the HEC polymer matrix was demonstrated to be more elastic.

2.2.2. Adhesive Capacity and Behaviour towards Vapour Moisture

The adhesive capacity of the films was determined and expressed by the value of the vertical
ascendant force (St), which caused a smooth and rigid surface to detach from the film surface.
The values recorded at environmental temperature and humidity (Figure 2) indicated that FIII
(St = 1.93 N·mm−2) had twice the adhesive capacity of FII, which suggests that 1% PEG400 was
more suitable for HEC 2% concentration than 3% concentration.
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The water vapours absorption (Aw) caused by the very humid atmosphere (80% RH) was favoured
by the use in the formulation of 2% HEC (Aw FIII—2.67%), compared to 3% HEC (Aw FII—0.83%).
In the case of the film prepared with 1% HPMC (FIII) both the water vapours absorption capacity
test (Aw of—1.56%), and the amount of water lost as vapours by desiccation (Lw of 19.46%) suggests
this polymer, given its property to withhold water without dehydrating the contact surface—which
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could be skin or mucosa, provided the film a certain humidity since it still had a high content of
volatile constituents.

The volatile content was much reduced—by approximately 3%—for the films prepared with
HEC (FII, FIII) which suggests the preparation method and the formulation were more suitable
for HEC as film former. The water vapours permeability (Pw) of films ranged between 0.0012 and
0.0021 g·cm−2·h−1, FII (with 2% HEC) manifesting an occlusive effect of double intensity with respect
to the other two (0.0012 vs. 0.0021).

2.3. In Vitro Availability of Miconazole Nitrate Dermal Films

2.3.1. Analysis of In Vitro Release Profiles

The ability of MN to be released from the polymeric matrix of the films was evaluated using the
Franz cell diffusion method (Figure 3a). The HPMC film (FI) profile shows that after 3–4 h a plateau
appeared that lasted up to 24 h; this behaviour could be attributed to the structural disintegration of
the film under the moisture action. The amount of MN almost constantly released (approximately 30%
of the film dose) seems more likely determined by the dissolution process—MN having a moderate
solubility in water (26.3 µg·mL−1 in buffer at pH 7.4) but also positively influenced by the sodium lauryl
sulphate included in the aqueous media used as acceptor compartment, rather than the diffusion of the
substance among the macromolecules of the polymer that relaxes and swells [38] in the absorbed water.
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On the other hand, the two films prepared with HEC 3% (FII) and 2% (FIII), respectively, released
MN with similar profiles: at 12 h 45.58–50.31% and at 24 h 63.56–73.31% of the 40 mg—the calculated
dose of the film samples. FII film released MN at a lower rate than FIII, the releasing capacity expressed
by the area under the curve (AUC) having quite close values after 24 h: FII—1.816 mg·h·mL−1, while
FIII—2.094 mg·h·mL−1.

The comparative analysis of release profiles (mg·cm2 vs. h) linearized by simple regression of the
segments corresponding to the first 12 h (Figure 3b) shows that the deviation from zero is significant
for both lines (p < 0.0001) while the deviation from linearity is not significant (FII—p = 0.6429, FIII—p =
0.5000), and there are no significant differences between the two curves, neither for the slopes (p = 0.37)
nor for the intercepts as measure of elevations (p = 0.74). Thus, there was the possibility of calculating
the average value of the slopes (pooled slope = 0.61), and also of the intercepts (pooled intercept =
0.5305). The R square coefficient indicates a good determination (of 96–98%), with the release/diffusion
rate of 0.59–0.64 mg·cm−2·h−1 MN through the synthetic membrane.
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Although a wide range of oral pharmaceutical drugs use as polymer HPCM with high molecular
mass, in case of the studied miconazole nitrate films this excipient makes the release of the antifungal
more difficult, probably due to MN’s low solubility in water. The use of HEC as film forming polymer
behaves better than HPMC in terms of the release/diffusion processes. Thus, a concentration of 2%
HEC determines a film matrix which releases up to 70% miconazole nitrate, unlike the matrix film
prepared with 3% HEC which releases only up to 60%. Practically, when the concentration level
increased by 1% HEC, the amount of MN released decreased; this makes us conclude that HEC should
not exceed 2% in the fluid casted phase for optimal release of MN from the HEC-based matrix films.

The jellification capacity of HEC—a non-toxic thickening agent—responded better to the
requirements of a MN dermal or mucosal film, unlike HPMC which, although having the advantage
of not dehydrating the skin or the mucosa, decreases the MN release processes significantly, probably
due to its great capacity of absorbing and retaining the water.

Regarding the published data, Saudagar R.B. (2017) obtained about a 82–99% MN release (24 h)
when studying film formulations prepared with Eudragit RS-PO/hydroxypropyl cellulose (HPC),
using egg membrane for the in vitro study [39]. Ofokansi K.C. (2015) obtained values of in vitro
permeation flux of about 5µg·cm−2·h−1 MN permeated through rat skin with, using in formulations
mixtures of film forming polymers Eudragit RS-100/hydroxypropyl methylcellulose (HPMC) [40].
However, the different experimental conditions used in these studies do not allow comparisons in
terms of delivery efficiency.

2.3.2. Analysis of In Vitro Release Profiles

In order to determine the kinetics and mechanism of MN release, the release profiles of the two
HEC films (FII—prepared with 2% and FIII—with 3% polymer) were fitted using the first order kinetic
equation in four variants: the simple equation; the equation considering the latency time (Tlag); the
equation considering the maximum fraction that can be released using the gradient created by the
initial dose of MN in the film (Fmax); and the equation that considers both Tlag and Fmax parameters,
respectively (Table 3).

Table 3. The kinetic parameters of release profiles fitted with first-order kinetic equations.

Model Kinetic Function/Equation 1 [41] Parameter 2 FII FIII

1
First-order

F = 100 × [1 − Exp(−k1 × t)]
k1 0.0071 0.0072

Rsqr_adj 0.9361 0.9750

2
First-order with Tlag F = 100 ×{

1 − Exp
[
−k1 ×

(
t − Tlag

)]} k1 0.0516 0.0543
Tlag −0.3832 −0.0765

Rsqr_adj 0.9848 0.9774

3
First-order with Fmax

F = Fmax × [1 − Exp(−k1 × t)]

k1 0.0903 0.0374
Fmax 10.8379 21.6643

Rsqr_adj 0.9872 0.9794

4

First-order with Tlag and Fmax
F = Fmax ×{

1 − Exp
[
−k1 ×

(
t − Tlag

)]} k1 0.0799 0.0200
Tlag −0.1667 −0.3614
Fmax 11.5726 35.9946

Rsqr_adj 0.9864 0.9795
1 F—the fraction (%) of drug released in time t (h); Fmax—the maximum fraction (%) of the drug released at infinite
time; 2 k1—the first-order release constant (h−1); Tlag—the lag time prior to drug release; Rsqr_adj—the adjusted
coefficient of determination.

The analysis of the calculated data indicates for both studied films (FII and FIII) that the
highest value of Rsqr_adj (the adjusted coefficient of determination) was obtained by fitting the release
profiles—% (m/m) vs. time (h) with the model no. 4—first order kinetic with Tlag and Fmax, this
proving to be the closest model to the studied time-dependant curves (of the four models used) [41].
The kinetic parameters k1, Tlag and Fmax quantify the release differences and allow the comparisons
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of the kinetic release processes of MN from the two HEC films matrix, which differ only by the
concentration of polymers used in the film preparation: 2% for FIII and 3% for FII. The results show
that the additional use of 1% HEC in the film composition generates the modification of k1 (the constant
of the release process kinetic) by 0.06−1 (as the difference between k1-FII and k1-FIII), accompanied
by a tripling (from 11.57 to 35.99%) of the amount of MN that could be released from a film of
2.54 cm2 × (0.30 − 0.23) mm.

3. Materials and Methods

3.1. Preparation of MN-Dermal Films

3.1.1. Materials

Miconazole nitrate (MN) was purchased from Sigma Aldrich Inc. (Darmstadt, Germany).
Two types of cellulose ether polymers were used as matrix formers in ultrapure water (Direct-Q
water purification system Merck Millipore, Darmstadt, Germany): NatrosolTM 250M (hydroxyethyl
cellulose-HEC, viscosity of 4500–6500 mPa·s) from Ashland (Düsseldorf, Germany), Hypromellose
90SH (hydroxypropyl methylcellulose-HPMC, viscosity of 15,000 mPa·s) from Shin-Etsu Chemical
Co., Ltd. (Tokyo, Japan). Auxiliary substances: propylene glycol (PG) from Scharlau Chemie
(Barcelona, Spain), polyethylene glycol 400 (PEG400) and polysorbate 20 (PSB20) from Sigma Aldrich
Inc. (Hamburg, Germany), ethanol from Stireco LTH (Buzau, Romania).

3.1.2. Films Preparation Technique

MN was dissolved in alcohol by stirring (500 rpm) for 5 min. PEG400, distilled water and in
the end the film forming polymer (HPMC or HEC) are successively added under constant stirring,
continuing the stirring for another 25 min after dispersion preparation, avoiding evaporation. The air
was then eliminated from the structured gel by maintaining the fluid phase for 25 min in the ultrasound
bath. The resulting composition was then poured onto circular plates (diameter of 9.8 cm) and left to
dry at 40 ◦C (24 h) [42]. The films obtained were used in the study after 48 h of preservation at 20 ◦C,
protected from light and moisture.

3.2. Evaluation of Physicochemical and Mechanical Parameters

3.2.1. Measurement of Physical Parameters

The appearance of the dermal films was visually analysed. The mass of each film was established
by weighing. The thickness (Tick) was determined using a micrometre, by measuring it at five different
points [43].

3.2.2. Mechanical Resistance Test

The film sample of 3.5 cm long (Li) and 1.5 cm wide (W) was fixed at one of the ends to a
fixed support, while at the other end were placed heavier weights—m (g) until the film broke (Mf),
measuring each time the length of the film—Lf (cm).

The film elongation-E was calculated as percentage of the initial length, using the Equation (1):

E% = (Lf − Li)× 100/Li (1)

The tensile strength-Ts (N·mm−2) was calculated using the Equation (2):

Ts = Mf(kg)× 9.81
(

N·kg−1
)

/S
(

mm2
)

, (2)

where S = W (mm)·Tick (mm) [43].
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3.2.3. Stickiness (Adhesion) Test (St)

The weight—m (g) which, with the use of a certain lever, generated a vertical ascendant force
which lead to the separation of a smooth plate from the surface—S (cm2) of the film sample, onto
which it was previously pressed and attached, was determined for each film sample.

The calculation considered the Equation (3):

St

(
N·cm−2

)
= M(kg)× 9.81

(
N·kg−1

)
/S
(

cm2
)

(3)

3.2.4. Water Vapour Absorption Test (Aw)

The film sample weighing mi (g) was maintained in a sealed compartment, in the presence of
KCL2 saturated solution (80% relative humidity-RH), up to a constant weight—mf (g).

The calculation used the Equation (4):

Aw(%) = (mf − mi)× 100/mi (4)

3.2.5. Water Vapour Loss by Desiccation Test (Lw)

The film sample weighing mi (g) was maintained in a sealed compartment, in the presence of
CaCl2 anhydrous (0% RH), up to a constant weight—mf (g). The calculation used the Equation (5):

Lw(%) = (mf − mi)× 100/mi (5)

3.2.6. Water Vapour Permeability Test (Pw)

The film sample with the determined surface of s (cm2) was attached so as to close a glass
containing CaCl2 anhydrous (0% RH), resulting an ensemble with the mass—mi (g), which afterwards
was kept in a sealed compartment in the presence of KCl2 saturated solution (80% RH), up to the
constant mass—mf (g). The calculations considered the Equation (6):

Pw

(
g·cm−2·h−1

)
= (mf − mi)× 100/s

(
cm2

)
/t(h) (6)

3.3. Evaluation of Dermal films In Vitro Availability

3.3.1. Determination of In Vitro Release Profiles

Franz cells of 14 mL capacity and 1.8 cm diameter were used. The diffusion membrane
(Teknokroma Ø 25 mm × 0.45 µm) was prepared before each determination by maintaining it in
a phosphate buffering solution pH 7.4.

The samples analysed consisted of disk shaped films with diameter of 1.8 cm (surface of 2.54 cm2).
The media consisted in a buffer solution pH 7.4 to which was added 0.045% sodium lauryl sulphate.

During the determination: the diffusion cells were maintained at 32 ± 0.5 ◦C, by heating in
recirculated water, with oscillating (electromagnetic) stirring. The samples taken (5 mL) were replaced
each time with fresh media, and the MN content was assessed by ultraviolet (UV)-spectrophotometric
method, at the wave length of λ = 273 nm (Spectrometer HP 8451A UV-VIS, Hewlett Packard,
Palo Alto, CA, USA).

The calculations considered Equation (7):

MN = m(n − 1) + 14Cpn − 9Cp(n − 1), (7)

where MN (mg)—mass of miconazole nitrate released at moment n (collection n), Cpn-the concentration
of miconazole nitrate expressed in mg/mL for sample collected at moment n, 14-the volume of Franz
cell expressed in mL, 9-the volume expressed in mL of the acceptor media that remained in Franz cell
after the collection of the 5 mL sample [44,45].
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3.3.2. The Release Profile

The release profile was determined by plotting the cumulative amount of MN released (% m/m of
calculated dose of film sample, or mg·mL−1 of the acceptor media, or mg·cm−2 of the sample surface)
vs. time (h).

3.3.3. Kinetic of Release Modelling

Kinetic of release modelling [46], was performed with the DDSolver Add-Ins software, using
the kinetic equations: first-order, first-order with Tlag, first-order with Fmax, first-order with Tlag and
Fmax. R2 adjusted coefficient was used as goodness of fit parameter in order to discriminate the most
appropriate model: the higher the value, the better the model fitting.

3.4. Statistical Analysis

GraphPad Prism 6 software was used, running the Pearson correlation (r) test and linear regression
test, followed by the runs test; with the statistical significant difference set at p < 0.05, for a CI of
95% [46].

4. Conclusions

Three compositions containing 1% HPMC 15,000, 2% or 3% HEC 250 M were formulated and
processed by casting solvent evaporation technique, in order to develop new antifungal dermal films
in the form of a polymeric adhesive matrix containing MN 10 mg/cm2 or 40 mg/cm2.

The behaviour towards moisture vapour indicates that the MN-HPMC film has no proper
properties in terms of mechanical resistance, elongation or ability to release, in a prolonged way,
the MN over a period of 24 h. This formulation could eventually be improved through extending the
drying period or/and by increasing the amount of plasticizer (PEG400).

The MN-HEC films are elastic, resistant to stretching and have the ability to release more than
60% of their MN content in vitro at pH 7.4, especially if less than 3% HEC is used in the preparation
process. Considering the difficultly of the MN dissolution (release) process due to its low solubility in
aqueous media, the release of 60–70% from these new dermal films can be considered a very good
percentage. The most appropriate composition for MN dermal film preparation is represented by
FIII—obtained with 2% HEC. Its breakage strength and high elasticity creates favorable prerequisites
for the management of operations which could generate mechanical stresses, for example, during
the technological process of film preparation, or for maintaining the integrity of a product during
its administration onto the skin or mucosa. Also, elasticity is a property that can be quantified by
mathematical (rheological) functions, so it could be used by studying its correlation with MN release
ability, and predicting certain qualities by the design of the experiment.
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