Oxidative Asymmetric Formal Aza-Diels-Alder Reactions of
Tetrahydro- $\boldsymbol{\beta}$-carboline with Enones in the Synthesis of
Indoloquinolizidine-2-ones
Xiang Wu,* Shi-Bao Zhao, Lang-Lang Zheng, You-Gui Li*
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China *Correspondence: E-mail: wuxiang@hfut.edu.cn; liyg@hfut.edu.cn

1. General Data S2
2. Typical Procedure for the Ruthenium-Catalyzed Enantioselective Oxidative Formal Aza-Diels-Alder Reactions S2
3. Optimization of the reaction conditions and Scope of α, β-unsaturated ketones S3
4. Characterization Data for the Products S3
5. Reference S15
6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Products S16
7. HPLC Analysis for the Products S40

1. General Data

NMR spectra were recorded on Aglient- 600 MHz or Brucker- 400 MHz spectrometer using CDCl_{3} as solvent and TMS as internal standard unless otherwise stated. Mass spectra were recorded on a Thermo LTQ Orbitrap XL (ESI+). HPLC analysis was performed on Agilent 1200 (UV detection monitored at 210 nm). Chiralpak OD-H, AD-H, IC-H columns were purchased from Daicel Chemical Industries, LTD. Specific optical rotations ([$\alpha]$) were measured using a Perkin-Elmer 341 polarimeter at $25^{\circ} \mathrm{C}$ with a sodium lamp (D line, 589 nm). Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. Ketone substrate were prepared following the literature report ${ }^{[1]}$. Thiourea \mathbf{T} was prepared following the literature $\operatorname{report}^{[2]}$. 9-Tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole was prepared following the literature report ${ }^{[3-4]}$

2. Typical Procedure for the Ruthenium-Catalyzed Enantioselective Oxidative

Formal Aza-Diels-Alder Reactions

Typical Procedure for the Ruthenium-Catalyzed Enantioselective Oxidative Formal Aza-Diels-Alder Reactions: Thiourea $\quad \mathbf{T} \quad(14.0 \mathrm{mg}, \quad 0.03 \mathrm{mmol}, 0.15$ equiv), tris(triphenylphosphine)ruthenium (II) dichloride ($3.8 \mathrm{mg}, \quad 0.004 \mathrm{mmol}, 0.06$ equiv.), 9-tosyl-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole (4a) ($65.2 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, 1.0$ equiv.), (E)-4-(4-methoxyphenyl)but-3-en-2-one (5a) ($52.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were loaded into a tube equipped with a stir bar. A stock solution of glacial acetic acid in anhydrous toluene (0.5 M) was added in one portion at room temperature via syringe ($60 \mu \mathrm{~L}, 0.03 \mathrm{mmol} \mathrm{AcOH}, 0.15$ equiv.). Anhydrous toluene (1 mL) was then added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes,
then the solution of tert-butyl hydroperoxide in decane (5.5 M) was added dropwise at $0^{\circ} \mathrm{C}$ via syringe ($32 \mu \mathrm{~L}, 0.2 \mathrm{mmol} \mathrm{TBHP}, 1$ equiv.) over 45 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 72 hours. The crude mixture was concentrated and was purified through column chromatography on silica gel (petroleum ether/EtOAc $=30 / 1$ to $5 / 1$) to afford title compounds 6aa and 7aa.

3. Optimization of the reaction conditions and Scope of α, β-unsaturated ketones

entry	$\mathbf{5}$	catalyst (mol \%)	acid (mol \%)	yield (\%)	dr(6aa:7aa)	ee (\%) (6aa/7aa)
1	$\mathbf{5 a}$	cat. T (15)	$\mathrm{CH}_{3} \mathrm{COOH}(5)$	22%	$>10: 1$	81
2	$\mathbf{5 a}$	cat. T (15)	$\mathrm{CH}_{3} \mathrm{COOH}(0)$	24%	$2.2: 1$	$51 / 51$
3	$\mathbf{5 a}$	cat. T (5)	$\mathrm{CH}_{3} \mathrm{COOH}(5)$	NP	-	-
4	$\mathbf{5 a}$	cat. T' (15)	$\mathrm{CH}_{3} \mathrm{COOH}(15)$	NP	-	-
5	$\mathbf{5 p}$	cat. T (15)	$\mathrm{CH}_{3} \mathrm{COOH}(15)$	NP	-	-
6	$\mathbf{5 q}$	cat. T (15)	$\mathrm{CH}_{3} \mathrm{COOH}(15)$	NP	-	-

4. Characterization Data for the Products

(4R,12bS)-4-(4-methoxyphenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(1 2H)-one (6aa: major diastereomer) and (4S,12bS)-4-(4-methoxyphenyl)-12-tosyl-1,3,4,6,7,1 2b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (7aa: minor diastereomer): 6aa and 7aa were obtained as a white solid in 73% yield after flash chromatography.

Major diastereomer (6aa): the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ (major $)=13.58 \mathrm{~min}, \mathrm{t}($ minor $)$ $=28.03 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+3.1\left(\mathrm{c} 0.194, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-$ $2.59(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.15, 159.27, 144.75, $137.84,136.21,133.97,130.50,129.51,129.25,128.75,126.63,124.94,124.24,121.58,118.62$, $116.04,114.18,65.00,58.72,55.35,46.21,45.46,41.37,22.35,21.57$. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 501.1843$, observed: 501.1845.

Minor diastereomer (7aa): the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=12.08 \mathrm{~min}, \mathrm{t}($ minor $)$ $=10.65 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+24.55\left(\mathrm{c} 0.128, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $4.60-4.48(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.17-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dt}, J=15.5,10.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.77(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.00$, 158.86, 137.02, 136.03, 134.50, 133.08, 130.31, 129.58, 129.21, 126.25, 124.76, 124.03, 118.52, 115.56, 113.74, 63.91, 55.36, 50.80, 44.73, 43.89, 39.89, 22.41, 21.57. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: 501.1843, observed: 501.1846.
(4R,12bS)-4-phenyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6a b: major diastereomer) and (4S,12bS)-4-phenyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (7ab: minor diastereomer): 6ab and 7ab were obtained as a whit e solid in 31% yield after flash chromatography.

Major diastereomer (6ab): the enantiomeric excess was determined to be 96\% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=12.15 \mathrm{~min}, \mathrm{t}($ minor $)=22.72 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +43.0 (c $\left.0.068, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=25.4,12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.47(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.22, 144.77, 141.53,
$137.95,136.38,133.88,130.61,129.49,128.91,127.92,127.52,126.63,124.96,124.31,121.98$, $118.64,116.14,65.70,58.85,46.56,45.83,42.14,22.53,21.58$. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$ calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 471.1737, observed: 471.1740.

Minor diastereomer (7ab): the enantiomeric excess was determined to be 91\% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ (major $)=10.20 \mathrm{~min}, \mathrm{t}($ minor $)=8.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +337.0 (c 0.068, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=34.4,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-2.86(\mathrm{~m}$, $3 \mathrm{H}), 2.78(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.82, 144.57, 140.98, 137.04, 135.95, 134.43, 129.60, 128.52, 128.06, 127.46, 126.23, 124.78, $124.05,119.12,118.53,118.42,115.61,64.42,50.93,44.90,43.94,39.83,22.41,21.57$. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 471.1737$, observed: 471.1738 .
(4R,12bS)-4-o-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6a c: major diastereomer) and (4S,12bS)-4-o-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a] quinolizin-2(12H)-one (7ac: minor diastereomer): 6ac and 7ac were obtained as a whit e solid in $\mathbf{3 6 \%}$ yield after flash chromatography.

Major diastereomer (6ac): the enantiomeric excess was determined to be 82% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=18.42 \mathrm{~min}, \mathrm{t}($ minor $)$ $=11.36 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+42.0\left(\mathrm{c} 1.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=33.4,20.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.70-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.58$, $144.79,138.55,137.79,137.29,136.35,134.06,131.07,130.62,129.51,127.69,126.63,126.34$ (d, $J=25.1 \mathrm{~Hz}), 124.95,124.31,121.24,118.63,116.11,62.06,58.44,45.54,43.68,39.93,22.33$, 21.57, 19.18. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 485.1894, observed: 485.1894.

Minor diastereomer (7ac): the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=8.11 \mathrm{~min}, \mathrm{t}$ (minor) $=5.51 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+208.0\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.15 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~m}, J=15.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{td}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=15.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (s, 3H), $2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.62, 144.38, 137.97, 136.92, 134.47, 130.87, 130.24, 129.94, 129.52, 127.66, 127.14, 126.03, 124.76, 123.97, 118.39, 117.85, 115.62, 62.12, 59.55, 43.89, 42.87, 38.17, 22.14, 21.53, 19.51. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 485.1894$, observed: 485.1896.
(4R,12bS)-4-m-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6ad: major diastereomer) and (4S,12bS)-4-m-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a] quinolizin-2(12H)-one (7ad: minor diastereomer): 6ad and 7ad were obtained as a white solid in 41% yield after flash chromatography.

Major diastereomer (6ad): the enantiomeric excess was determined to be 88% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ (major $)=9.60 \mathrm{~min}, \mathrm{t}($ minor $)=18.13 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+9.4$ (c $0.254, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26 (d, $J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.59(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 207.29,144.73,141.50,138.57,137.99,136.42,133.90,130.64$, 129.46, 128.70 (d, $J=10.9 \mathrm{~Hz}$), 128.22, 126.65, 124.93, 124.58, 124.29, 122.06, 118.60, 116.17, 65.82, 58.94, 46.63, 46.03, 42.31, 22.56, 21.56. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 485.1894$, observed: 485.1893.

Minor diastereomer (7ad): the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=7.66 \mathrm{~min}, \mathrm{t}$
$($ minor $)=8.95 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+201\left(\mathrm{c} 0.158, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 3.02-2.86(\mathrm{~m}$, $3 \mathrm{H}), 2.78(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=25.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.82,143.43,139.88,137.02,135.95,134.97,133.44,129.24,128.49$, 127.76, 127.28, 127.10, 125.15, 123.92, 123.67, 122.94, $117.44(\mathrm{~d}, ~ J=5.4 \mathrm{~Hz}), 114.49,63.28$, 49.76, 43.86, 42.85, 38.84, 21.32, 20.61, 20.47. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{NN}_{2} \mathrm{O}_{3} \mathrm{~S}: 485.1894$, observed: 485.1896.
(4R,12bS)-4-p-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6ae: major diastereomer) and (4S,12bS)-4-p-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a] quinolizin-2(12H)-one (7ae: minor diastereomer): 6aeand 7ae were obtained as a white so lid in 61% yield after flash chromatography.
 Major diastereomer (6ae): the enantiomeric excess was determined to be 94\% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=10.46 \mathrm{~min}, \mathrm{t}($ minor $)=19.57 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +79.0 (c $\left.0.124, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, J=21.3,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.09$ (d, $J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.36,144.75,138.50,137.95,137.61,136.46,133.92$, 130.64, 129.52 (d, $J=7.6 \mathrm{~Hz}$), 127.43, 126.62, 124.92, 124.30, 121.98, 118.63, 116.14, 65.48, 58.90, 46.54, 45.91, 41.98, 22.55, 21.57, 21.18. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 485.1894$, observed: 485.1897.

Minor diastereomer (7ae): the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=28.19 \mathrm{~min}, \mathrm{t}($ minor $)$ $=24.56 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+68.3\left(\mathrm{c} 0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.13 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{dt}, J=22.8,11.0$ $\mathrm{Hz}, 3 \mathrm{H}), 2.76(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 207.88,144.48,137.86,137.06,135.98,134.51,130.28,129.50,129.17,127.97,126.31$, 124.76, 123.99, 118.52, 118.43, 115.64, 64.17, 50.83, 43.91, 39.98, 22.37, 21.59, 21.17. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 485.1894, observed: 485.1898.
(4R,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)one (6 af: major diastereomer) and (4S,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexa hydroindolo[2,3-a]quinolizin-2(12H)-one (7af: minor diastereomer): 6af and 7af were obta ined as a white solid in 34% yield after flash chromatography.

Major diastereomer (6af): the enantiomeric excess was determined to be $\mathbf{9 3 \%}$ by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=14.60 \mathrm{~min}, \mathrm{t}($ minor $)=19.85 \mathrm{~min} ;[\alpha]{ }_{\mathrm{D}}{ }^{25}=$ +68.0 (c $\left.0.114, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}$, $1 \mathrm{H}), 2.77(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.75,144.82,140.16,137.90,136.20,133.88,133.59,130.51,129.52$, $129.09,128.84,126.61,125.02,124.34,121.79,118.66,116.10,64.89,58.60,46.49,45.50,42.09$, 22.49, 21.58. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$: 505.1347, observed: 505.1348 .

Minor diastereomer (7af): the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}), \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}($ major $)=9.75 \mathrm{~min}, \mathrm{t}($ minor $)=8.93 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +41.0 (c $\left.0.196, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~m}, J=34.2,24.9,7.0 \mathrm{~Hz}, 7 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 3 \mathrm{H})$, $2.78(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.33$, 143.68, 138.57, 135.99, 134.49, 133.64, 132.17, 129.00, 128.57, 128.40, 127.51, 125.03, 123.82, $122.95,117.45,117.18,114.44,62.85,49.94,43.70,42.67,38.48,21.30,20.52$. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$: 505.1347, observed: 505.1349.
(4R,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)one(6ag: major diastereomer) and (4S,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexa hydroindolo[2,3-a]quinolizin-2(12H)-one (7ag: minor diastereomer): 6ag and 7ag were ob tained as a white solid in 65% yield after flash chromatography.

Major diastereomer (6ag): the enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak AD-H column (30 \% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=15.14 \mathrm{~min}, \mathrm{t}($ minor $)$ $=22.48 \mathrm{~min} ;[\alpha]{ }_{\mathrm{D}}{ }^{25}=+169.0\left(\mathrm{c} 0.206, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.00 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.17-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=14.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=26.1,14.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.66,143.74,139.61$, $136.85,132.83,131.00,129.43,128.89,128.45,128.12,125.55,123.96,123.26,120.69,117.58$, 115.06, 63.90, 57.54, 45.43, 44.40, 41.08, 21.44, 20.53. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}: 549.0842$, observed: 549.0844.
 $8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H})$, $7.24(\mathrm{dd}, J=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.38$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{td}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=24.8,13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.87$ (m, 3H), $2.78(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=14.3,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.40,144.78,140.17,137.04,135.51,134.71,131.56,130.06,129.85,129.69$, $126.09,124.90,124.03,121.42,118.54,118.24,115.50,63.97,51.02,44.76,43.73,39.48,22.37$, 21.60. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}: 549.0842$, observed: 549.0846.
(4R,12bS)-12-tosyl-4-(4-(trifluoromethyl)phenyl)-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinoliz in-2(12H)-one (6ah: major diastereomer) and (4S,12bS)-12-tosyl-4-(4-(trifluoromethyl)phe nyl)-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (7ah: minor diastereomer):6
ah and 7ah were obtained as a white solid in 35% yield after flash chromatography.
 Major diastereomer (6ah): the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=10.71 \mathrm{~min}, \mathrm{t}($ minor $)$ $=18.96 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=-317\left(\mathrm{c} 0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=$ $14.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=28.0,15.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.40,145.83,144.81,137.95,136.08,133.90,130.18(\mathrm{q}, J=32.3 \mathrm{~Hz}$), 129.50, 127.77, 126.62, 125.92 (q, $J=3.5 \mathrm{~Hz}$), 125.07, 124.35, 124.04 (q, $J=272.7 \mathrm{~Hz}$), 121.8, $118.63,116.15,65.13,58.54,46.63,45.47,42.55,22.51,21.57$. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 539.1611, observed: 539.1612.

Minor diastereomer (7ah): the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=10.45 \mathrm{~min}, \mathrm{t}$ (minor) $=8.73 \mathrm{~min} ;[\alpha]{ }_{\mathrm{D}}{ }^{25}=+69.0\left(\mathrm{c} 0.064, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.16 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.64(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-$ $2.90(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 207.12,145.19,144.84,137.05,135.35,134.66,130.06,129.63(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.59$, 128.44, 126.02, $125.38(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.96,124.19(\mathrm{q}, J=272.1 \mathrm{~Hz}), 124.09,118.57,118.36$, 115.51, 64.21, 51.31, 44.88, 43.79, 39.52, 22.35, 21.49. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 539.1611$, observed: 539.1615.
(4R,12bS)-4-(3-nitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-o ne (6ai: major diastereomer) and (4S,12bS)-4-(3-nitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahy droindolo[2,3-a]quinolizin-2(12H)-one (7ai: minor diastereomer): 6ai and 7ai were obtaine d as a white solid in 37% yield after flash chromatography.

Major diastereomer (6ai): the enantiomeric excess was determined to be 94\% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=21.61 \mathrm{~min}, \mathrm{t}$ (minor) $=29.93 \mathrm{~min} ;[\alpha]{ }_{\mathrm{D}}{ }^{25}=+28.0\left(\mathrm{c} 0.178, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (t, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{ddd}, J=14.2,12.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.02,148.73,144.90,143.91,137.81,135.90,133.93,133.47,130.37$, 130.04, 129.58, 126.57, 125.10, 124.35, 123.03, 122.48, 121.41, 118.67, 116.04, 64.56, 58.24, 46.33, 44.78, 42.06, 22.45, 21.58. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: 516.1588$, observed: 516.1589.

Minor diastereomer (7ai): the enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=14.74 \mathrm{~min}, \mathrm{t}$ $($ minor $)=10.74 \mathrm{~min} ;\left[\alpha \mathrm{D}^{25}=+317.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\right.$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, J=9.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{td}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}$, $3 \mathrm{H}), 2.82(\mathrm{dd}, J=15.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=14.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.43,148.82,145.05,143.35,137.09,135.24,134.44,133.20,130.03,129.71$, $129.60125 .93,125.02,124.12,123.33,122.41,118.60,118.43,115.54,64.10,51.68,44.86,43.71$, 39.42, 22.31, 21.47. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O} 5 \mathrm{~S}$: 516.1588 , observed: 516.1588.
(4R,12bS)-4-(perfluorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6aj)

6aj was obtained as a white solid in 57% yield after flash chromatography and the enantiomeric excess was determined to be 86% by HPLC analysis on

Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=9.16 \mathrm{~min}$, $\mathrm{t}($ minor $)=5.98 \mathrm{~min} ;[\alpha] \mathrm{D}^{25}=+61.0\left(\mathrm{c} 0.114, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, J=14.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, J=13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01$ (dd, $J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ $(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.56, 145.25 (m), 144.96, 140.66 (m), 137.66 (m), 137.64, 135.16, 134.55, 130.02, 129.58, $126.15,125.08,124.24,119.60,118.63,115.77,114.34(\mathrm{t}, J=16.8 \mathrm{~Hz}), 55.21,51.22,46.06,44.79$, 41.32, 22.20, 21.48. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 561.1266$, observed: 561.1268.
(4R,12bS)-4-(2,3-dichlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one ($6 a k$)

6ak was obtained as a white solid in 45% yield after flash chromatography and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=8.50 \mathrm{~min}, \mathrm{t}($ minor $)=6.36 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+56.2\left(\mathrm{c} 0.156, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, J=42.5,36.8 \mathrm{~Hz}, 5 \mathrm{H}), 6.92(\mathrm{~s}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.22-3.08(\mathrm{~m}$, $2 \mathrm{H}), 2.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 208.18,144.81,142.00,137.03,135.38,134.34,134.01,133.42,130.32$, $129.60,127.08,126.70,125.75,124.91,124.18,118.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 115.59,62.57,50.56,44.22$, 43.18, 40.07, 22.07, 21.51. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 539.0958, observed: 539.0959.
(4R,12bS)-4-(2,4-dinitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6al)

6al was obtained as a white solid in 45% yield after flash chromatography and the enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , $\mathrm{t}($ major $)=18.33 \mathrm{~min}, \mathrm{t}($ minor $)=31.48 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+40.7$ (c 0.218,
$\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~m}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ ($\mathrm{m}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00(\mathrm{~m}, J=20.3,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{td}, J=11.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.7,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.00$, 144.94, 142.14, 134.15, 130.27, 129.94, 129.67, 126.37, 125.69, 125.16, 124.21, 119.77, 118.75, 118.69, 115.58, 61.02, 52.26, 44.41, 43.56, 38.58, 21.56, 21.21. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}: 561.1439$, observed: 561.1437.
(4R,12bS)-4-(thiophen-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-o ne (6am: major diastereomer) and (4S,12bS)-4-(thiophen-2-yl)-12-tosyl-1,3,4,6,7,12b-hexah ydroindolo[2,3-a]quinolizin-2(12H)-one (7am: minor diastereomer): 6am and 7am were o btained as a white solid in 48\% yield after flash chromatography.

Major diastereomer (6am): the enantiomeric excess was determined to be 89% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=16.27 \mathrm{~min}, \mathrm{t}($ minor $)=40.16 \mathrm{~min} ;[\alpha]{ }_{\mathrm{D}}{ }^{25}=+83$ (c $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.31,145.40,144.82,137.33,136.10,134.49,130.25,129.68,126.57$, 125.92, 124.91, 124.81, 124.09, 120.22, 118.67, 115.64, 60.85, 57.79, 44.78, 43.99, 39.29, 22.24, 21.58. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: 477.1301, observed: 477.1304.

Minor diastereomer (7am): the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=10.89 \mathrm{~min}, \mathrm{t}($ minor $)=13.39 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ $+14.9\left(\mathrm{c} 0.146, \mathrm{CHCl}_{3}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.80(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~m}, J=10.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~m}, J=17.2,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.4,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.49,145.78,144.64,137.04,135.77,134.42,130.23,129.59,127.13$, $126.48,126.26,125.73,124.82,124.04,118.63,118.54,115.59,61.68,51.82,44.55,44.00,40.55$, 22.36, 21.57. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}: 477.1301$, observed: 477.1302 .
(4R,12bS)-4-(furan-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6an: major diastereomer) and (4S,12bS)-4-(furan-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroin dolo[2,3-a]quinolizin-2(12H)-one (7an: minor diastereomer): 6an and 7an were obtained a s a white solid in 42% yield after flash chromatography
 Major diastereomer (6an): the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=13.86 \mathrm{~min}, \mathrm{t}($ minor $)=35.90 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ $+10.3\left(\mathrm{c} 0.112, \mathrm{CHCl}_{3}\right)$.

Minor diastereomer (7an): the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak IC-H column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=21.55 \mathrm{~min}, \mathrm{t}($ minor $)=16.81 \mathrm{~min} ;[\alpha]^{25}=$ $+11.8\left(\mathrm{c} 0.126, \mathrm{CHCl}_{3}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.29$ ($\mathrm{m}, ~ J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=27.0,11.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.57,153.42,144.74,142.37,137.43,135.82,134.29$, $130.43,129.55,126.18,124.88,124.19,119.43,118.53,115.88,110.52,109.65,59.31,51.88,45.14$, 44.94, 40.21, 22.30, 21.54. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 461.1530$, observed: 461.1533 .
(4R,12bS)-4-(2-methylprop-1-enyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (6ao)

6ao was obtained as a white solid in 24% yield after flash chromatography and the enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak AD-H column (10% 2-propanol $/ \mathrm{n}$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $23.89 \mathrm{~min}, \mathrm{t}($ minor $)=21.46 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+29.0\left(\mathrm{c} 0.272, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, J=19.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H})$, $3.40(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.40$ $(\mathrm{s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.49,144.70$, $138.02,133.74,130.70,129.41,126.60,125.01,124.90,124.33,122.22,118.64,116.18,59.82$, 59.09, 46.52, 45.91, 42.18, 26.01, 22.66, 21.54, 18.61. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}: 449.1894$, observed: 449.1896.

5. Reference

[1] Viviano M,; Glasnov T N,; Reichart B.; Tekautz, G.; Kappe, C. O., A Scalable Two-Step Continuous Flow Synthesis of Nabumetone and Related 4-Aryl-2-butanones. Org. Process Res. Dev. 2011, 15, 4, 858-870.
[2] Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N., Enantioselective formal aza-Diels-Alder reactions of enones with cyclic imines catalyzed by primary aminothioureas. J. Am. Chem. Soc. 2013, 135, 1891-1894.
[3] Cochrane E. J.; Hassall, L. A.; Coldham, I., Preparation of 1-Substituted Tetrahydro-beta-carbolines by Lithiation-Substitution. J. Org. Chem., 2015, 80, 5964-5969.
[4] Cole, D. C.; Lennox, W. J.; Stock, J. R.; Ellingboe, J. W.; Mazandarani, H.; Smith, D. L. Zhang, G.; Tawa, G. J. Schechter, L. E. Conformationally constrained N1-arylsulfonyltryptamine derivatives as 5-HT6 receptor antagonists. Bioorg. Med. Chem. Lett., 2005, 15, 4780-4785.

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Products

(4R,12bS)-4-(4-methoxyphenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6aa)

(4S,12bS)-4-(4-methoxyphenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (7aa)

| 170 | 190 | 170 | 150 | 130 | 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(4R,12bS)-4-phenyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6ab)

| 10 | 190 | 170 | 150 | 130 | 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

4R,12bS)-4-o-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6ac)

(4R,12bS)-4-m-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 $\mathrm{H})$-one ($\mathbf{6 a d}$)

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	0

(4S,12bS)-4-m-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (7ad)

(4R,12bS)-4-p-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6ae)

$\int \|$

(4S,12bS)-4-p-tolyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (7ae)

(4R,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (6af)

${ }_{1}| || | \mid$

(4S,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (7af)

 $1 / 11$

\cdots	о
¢	
I	- - - -

(4R,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quin olizin-2(12H)-one (6ag)

1111
$\iint / / / 1$

(4S,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (7ag)

(4R,12bS)-12-tosyl-4-(4-(trifluoromethyl)phenyl)-1,3,4,6,7,12b-hexahydroindolo[
2,3-a]quinolizin-2(12H)-one (6ah)

(4S,12bS)-12-tosyl-4-(4-(trifluoromethyl)phenyl)-1,3,4,6,7,12b-hexahydroindolo[2 ,3-a]quinolizin-2(12H)-one (7ah)

(4R,12bS)-4-(3-nitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinoli zin-2(12H)-one (6ai)

| 10 | 190 | 170 | 150 | 130 | 110 |
| :--- |
| $\mathrm{fl}(\mathrm{ppm})$ | | | | | |

(4S,12bS)-4-(3-nitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinoli zin-2(12H)-one (7ai)

$1\||1 \||$

(4R,12bS)-4-(perfluorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quin olizin-2(12H)-one (6aj)

(4R,12bS)-4-(2,3-dichlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]q uinolizin-2(12H)-one (6ak)

,

(4R,12bS)-4-(2,4-dinitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]qui nolizin-2(12H)-one (6al)

(4R,12bS)-4-(thiophen-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinoli zin-2(12H)-one (6am)

$\int\|\|\|$

(4S,12bS)-4-(furan-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12H)-one (7an)

(4R,12bS)-4-(2-methylprop-1-enyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a] quinolizin-2(12H)-one (6ao)

$1 / 1 /$

7．HPLC Analysis for Products

（4R，12bS）－4－（4－methoxy－2－methylphenyl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo ［2，3－a］quinolizin－2（12H）－one（6aa）

	RT （min）	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	13.894	3642844	50.82	127182	68.29
2	28.505	3524769	49.18	59051	31.71

	RT (min)	Area （礦＊sec）	\％Area	Height （磺）	\％ Height 1 13.586
18161529	97.03	678618	98.52		
2	28.034	556071	2.97	10192	1.48

(4S,12bS)-4-(4-methoxyphenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]qui nolizin-2(12H)-one (7aa)

(4R,12bS)-4-phenyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (6ab)

	RT (min)	Area (礦*sec)	\% Area	Height (磺)	\% Height 1 12.153
1358388	98.15	552406	98.66		
2	22.726	255998	1.85	7497	1.34

(4S,12bS)-4-phenyl-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-2(12 H)-one (7ab)

	RT (min)	Area (磺*sec)	\% Area	Height (磺)	\% Height
1	8.716	1572979	4.65	96349	5.72
2	10.203	32232470	95.35	1588796	94.28

（4R，12bS）－4－o－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（6ac）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	10.175	6537485	49.33	335202	62.87
2	16.915	6714304	50.67	197990	37.13

	RT (min)	Area （磺＊sec）	\％Area	Height （磺）	\％ Height
1	11.361	1172439	9.09	48688	13.05
2	18.421	11732088	90.91	324503	86.95

（4S，12bS）－4－o－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（7ac）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	5.542	4737483	49.34	470092	60.57
2	8.174	4864579	50.66	305963	39.43

	RT (min)	Area （磺＊sec）	\％Area	Height （磺）	\％ Height
1	5.513	1035586	2.38	69720	2.81
2	8.111	42416839	97.62	2408481	97.19

（4R，12bS）－4－m－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（6ad）

	RT （min）	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	9.718	6108548	49.96	324377	66.92
2	18.512	6117766	50.04	160340	33.08

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	9.604	9880938	93.94	537006	96.79
2	18.113	637430	6.06	17788	3.21

（4S，12bS）－4－m－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（7ad）

	RT (min)	Area （磺＊sec）	\％Area	Height （磺）	$\%$ Height
1	7.652	11912822	50.20	813573	55.26
2	8.864	11817736	49.80	658771	44.74

	RT (min)	Area （磺＊sec）	\％Area	Height （礦）	\％ Height
1	7.668	20620022	96.04	1429444	96.63
2	8.956	849450	3.96	49847	3.37

（4R，12bS）－4－p－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（6ae）

	RT (min)	Area （礦＊sec）	\％Area	Height （磺）	\％ Height
1	10.454	28458999	49.99	1347378	66.40
2	19.725	28465245	50.01	681956	33.60

	RT （min）	Area （礦＊sec）	\％Area	Height （磺）	\％ Height
1	10.469	11839119	96.87	576254	98.40
2	19.573	383035	3.13	9345	1.60

（4S，12bS）－4－p－tolyl－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－2（12 H）－one（7ae）

	RT (min)	Area （磺＊sec）	\％Area	Height （礦）	\％ Height
1	24.370	79401256	50.18	876103	53.86
2	29.789	78837453	49.82	750455	46.14

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	24.563	6137584	1.97	58533	2.02
2	28.196	304820813	98.03	2841250	97.98

(4R,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (6af)

	RT (min)	Area (礦*sec)	\% Area	Height (礦)	\% Height
1	14.600	8140705	96.65	280112	97.12
2	19.851	282139	3.35	8304	2.88

(4S,12bS)-4-(4-chlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (7af)

	RT (min)	Area (磺*sec)	\% Area	Height (礦)	$\%$ Height
1	8.933	1117930	4.61	68283	5.15
2	9.754	23125555	95.39	1258557	94.85

(4R,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quin olizin-2(12H)-one (6ag)

	RT (min)	Area (磺*sec)	\% Area	Height (礦)	\% Height
1	15.144	56963946	92.66	1770535	94.79
2	22.481	4513051	7.34	97402	5.21

(4S,12bS)-4-(4-bromophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quino lizin-2(12H)-one (7ag)

（4R，12bS）－12－tosyl－4－（4－（trifluoromethyl）phenyl）－1，3，4，6，7，12b－hexahydroindolo［ 2，3－a］quinolizin－2（12H）－one（6ah）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	$\%$ Height
1	10.704	6143607	50.94	274565	66.97
2	18.901	5916034	49.06	135395	33.03

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	10.711	19144272	92.78	869692	96.56
2	18.964	1490615	7.22	31020	3.44

(4S,12bS)-12-tosyl-4-(4-(trifluoromethyl)phenyl)-1,3,4,6,7,12b-hexahydroindolo[2 ,3-a]quinolizin-2(12H)-one (7ah)

	RT (min)	Area (礦*sec)	\% Area	Height (礦)	\% Height
1	8.732	1276671	3.56	68463	3.76
2	10.452	34628979	96.44	1752243	96.24

（4R，12bS）－4－（3－nitrophenyl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinoli zin－2（12H）－one（6ai）

	RT (min)	Area （磺＊sec）	\％Area	Height （礦）	$\%$ Height
1	21.424	42004164	50.00	789309	55.65
2	30.029	42010200	50.00	629132	44.35

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	21.616	5876348	97.10	123642	97.60
2	29.933	175397	2.90	3037	2.40

（4S，12bS）－4－（3－nitrophenyl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinoli zin－2（12H）－one（7ai）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	10.759	7032030	49.91	345501	58.32
2	14.757	7058709	50.09	246936	41.68

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	10.744	960581	7.50	40724	8.93
2	14.740	11849259	92.50	415281	91.07

(4R,12bS)-4-(perfluorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quin olizin-2(12H)-one (6aj)

	RT (min)	Area (磺*sec)	\% Area	Height (礦)	\% Height
1	5.980	1220550	7.08	109814	11.05
2	9.166	16021575	92.92	884218	88.95

(4R,12bS)-4-(2,3-dichlorophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]q uinolizin-2(12H)-one (6ak)

	RT (min)	Area (礦*sec)	\% Area	Height (磺)	$\%$ Height
1	6.364	1851596	3.95	154739	5.35
2	8.500	44972089	96.05	2740268	94.65

(4R,12bS)-4-(2,4-dinitrophenyl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]qui nolizin-2(12H)-one (6al)

	RT (min)	Area (礦*sec)	\% Area	Height (磺)	\% Height
1	18.337	51267062	92.68	1301561	98.19
2	31.483	4051579	7.32	23930	1.81

（4R，12bS）－4－（thiophen－2－yl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinoli zin－2（12H）－one（6am）

	RT (min)	Area （磺＊sec）	\％Area	Height （磺）	\％ Height
1	16.325	17463526	50.08	538494	72.68
2	40.089	17409898	49.92	202463	27.32

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	16.274	9368534	94.65	293546	97.98
2	40.016	529384	5.35	6059	2.02

(4S,12bS)-4-(thiophen-2-yl)-12-tosyl-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinoli zin-2(12H)-one (7am)

	RT (min)	Area (硔*sec)	\% Area	Height (磺)	$\%$ Height
1	10.897	31898421	96.43	1508190	97.09
2	13.396	1180110	3.57	45183	2.91

（4R，12bS）－4－（furan－2－yl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin －2（12H）－one（6an）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	13.643	5978172	49.88	224792	73.78
2	34.381	6007709	50.12	79890	26.22

	RT (min)	Area （磺＊sec）	\％Area	Height （磺）	$\%$ Height
1	13.863	54302094	98.16	2007336	99.51
2	35.907	1015123	1.84	9952	0.49

（4S，12bS）－4－（furan－2－yl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］quinolizin－ 2（12H）－one（7an）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	17.450	8971460	50.20	237939	60.87
2	23.686	8901728	49.80	152949	39.13

	RT (min)	Area （磺＊sec）	\％Area	Height （礦）	\％ Height
1	16.810	1492725	2.26	45821	3.63
2	21.555	64463512	97.74	1216228	96.37

（4R，12bS）－4－（2－methylprop－1－enyl）－12－tosyl－1，3，4，6，7，12b－hexahydroindolo［2，3－a］ quinolizin－2（12H）－one（6ao）

	RT (min)	Area $\left(\right.$ 礦 $\left.{ }^{*} \mathrm{sec}\right)$	\％Area	Height （礦）	\％ Height
1	21.650	23468318	50.07	598416	53.14
2	23.979	23398599	49.93	527754	46.86

	RT (min)	Area （礦＊sec）	\％Area	Height （磺）	\％ Height 1 21.462
210616	7.28	5492	9.01		
2	23.897	2681560	92.72	55463	90.99

