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Abstract: Coumarins are an important class of natural heterocyclic compounds that have attracted
considerable synthetic and pharmacological interest due to their various biological activities. This
review emphasizes on the synthetic methods for the preparation of dialkyl 2-oxo-2H-1-benzo-
pyran-3-phosphonates and alkyl 1,2-benzoxaphosphorin-3-carboxylates. Their chemical properties as
acceptors in conjugate addition reactions, [2+2] and [3+2] cycloaddition reactions are discussed.

Keywords: coumarins; 2-oxo-2H-1-benzopyrans; 2-oxo-2H-chromenes; 1,2-bezoxaphosphorines;
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1. Introduction

Drug discovery plays an important role in the development of modern society as well as the
growth of the pharmaceutical and chemical industry. A key step in this process is the identification of
the compound properties and activities while planning its molecular structure.

The pyran group is characteristic of a great diversity of compounds possessing different
pharmacological properties. Coumarins, 2-oxo-2H-1-benzopyrans or 2-oxo-2H-chromenes are an
important class of natural heterocyclic compounds. The coumarin moiety could be found in different
plants’ secondary metabolites. They play a major role in the proper functioning of the individual
plant parts. Moreover, coumarin derivatives have gained considerable synthetic and pharmacological
interest due to their various biological activities like antitumor, anti-HIV, antimicrobial, anti-cancer,
serine protease inhibition, vasorelaxant and antioxidant activity [1–5].

Phosphorus-containing structures such as 1 and its analogue 2, presented in Figure 1, are of a great
importance in the areas of pharmacology, chemistry and agriculture due to the similarity of phosphorus
compounds to the naturally occurring carboxylic acid derivatives and their possible application in
diverse biological systems. Many research papers have illustrated that the chemical behavior of
coumarins depends mainly on the substituent at position C-3 in the lactone ring. A phosphoryl group
in this position should enhance the biological activities of the resulting 3-phosphonocoumarins as
well as influence the chemical properties owing its electron-withdrawing characteristic. Therefore,
the combination of the two fragments—a coumarin system containing a phosphoryl group—could
open a route to a new class of compounds, which structures might possess wide spectrum of biological
activities due to the presence of the different functional groups. In fact, the biological activity of
the two represented isomers on Figure 1 is less studied. The great interest to these compounds
is due to their application as important precursors for compounds with proven pharmacological
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properties. Structures of compounds possessing pharmacophore fragments and exhibiting anti-cancer,
anti-inflammatory, anti-arthritic and anticonvulsant activity are presented in Figure 2 [6–13].
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[15], many research groups have been interested in its chemical behavior and various synthetic 
strategies to access this molecule have been presented. There are several methods described in the 
literature for the synthesis of diethyl 2-oxo-2H-1-benzopyran-3-phosphonates 1 and their 
derivatives. These protocols can be grouped according to the method or reaction used into 
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The Knoevenagel reaction was the first to be applied in the synthesis of phosphonocoumarins as
many other 3-substituted coumarins. In the next decades the interest in those derivatives has increased
and new synthetic methods have been developed. The first 1,2-bezoxaphosphorines were obtained as
side products via lactonization conditions. Therefore, further procedures illustrate alternative routes for
their preparation. Surprisingly, only one review paper, published in 2004 [14], appeared presenting some
of the properties of these compounds. The aim of this review is to emphasize on the synthetic methods
for dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates and alkyl 1,2-benzoxaphosphorin-3-carboxylates
preparation. The particular interest towards this class of organic compounds is due to their potential
application as acceptors in different organic reactions with nucleophillic reagents and 1,3-dipolar
cycloaddition reactions as well as to their application as intermediates in the synthesis of products of
practical interest proving their biological activity as new therapeutics.

2. Synthesis and Some Reactions of Dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1

2.1. Synthesis of Dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1

Since the first synthesis of 3-diethylphosphonocoumarin (1a) by Robinson and Addison in
1966 [15], many research groups have been interested in its chemical behavior and various
synthetic strategies to access this molecule have been presented. There are several methods
described in the literature for the synthesis of diethyl 2-oxo-2H-1-benzopyran-3-phosphonates
1 and their derivatives. These protocols can be grouped according to the method or reaction
used into Knoevenagel condensations [15–21], applications of phosphoryl ketenimines [22] or
vinylphosphonates [23–27] as precursors, catalytic [28–32] or electrochemical [33–35] phosphorylation,
protocols using three-component and tandem coupling reactions [36–38] or through rearrangement
processes [39].
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2.1.1. Synthetic Protocols Applying Knoevenagel Reaction

3-Diethylphosphonocoumarin (1a) was obtained via a Knoevenagel condensation reaction [15] of
salicylaldehyde (3) with triethyl phosphonoacetate (4) under basic conditions. However, the formed
product could not be purified due to its high boiling point and the structure of 1a was determined on
the basis of the hydrolyzed product 5 (Scheme 1).
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acetate (4).

In 1985 Singh and Rogers [16] reported a modified procedure for the synthesis of substituted
3-diethylphosphonocoumarins by using triethyl phosphonoacetate (4) and series of salicylaldehydes
3a–f (Scheme 2, Method A). The reaction was accomplished in 18 h using titanium tetrachloride/

pyridine as a catalytic system and tetrahydrofuran as a solvent. The structures of isolated
3-dialkylphosphonocoumarins 1a–f were characterized for the first time by 31P-NMR spectra and for
1b by 1H-NMR.

Molecules 2019, 24, 2030 3 of 38 

 

phosphorylation, protocols using three-component and tandem coupling reactions [36–38] or 
through rearrangement processes [39].  

2.1.1. Synthetic Protocols Applying Knoevenagel Reaction 

3-Diethylphosphonocoumarin (1a) was obtained via a Knoevenagel condensation reaction [15] 
of salicylaldehyde (3) with triethyl phosphonoacetate (4) under basic conditions. However, the 
formed product could not be purified due to its high boiling point and the structure of 1a was 
determined on the basis of the hydrolyzed product 5 (Scheme 1). 

 

Scheme 1. Knoevenagel condensation reaction of salicylaldehyde (3a) with triethyl phosphono- 
acetate (4). 

In 1985 Singh and Rogers [16] reported a modified procedure for the synthesis of substituted 
3-diethylphosphonocoumarins by using triethyl phosphonoacetate (4) and series of salicylaldehydes 
3a–f (Scheme 2, Method A). The reaction was accomplished in 18 h using titanium 
tetrachloride/pyridine as a catalytic system and tetrahydrofuran as a solvent. The structures of 
isolated 3-dialkylphosphonocoumarins 1a–f were characterized for the first time by 31P-NMR spectra 
and for 1b by 1H-NMR. 

 
Scheme 2. Different synthetic methods for the formation of 3-dialkylphosphonocoumarins 1. 

Bouyssou and Chenault studied the formation of coumarins 1a and 1g under liquid/liquid 
phase transfer conditions at low temperatures [18]. The condensation reaction between acetylated 

Scheme 2. Different synthetic methods for the formation of 3-dialkylphosphonocoumarins 1.

Bouyssou and Chenault studied the formation of coumarins 1a and 1g under liquid/liquid
phase transfer conditions at low temperatures [18]. The condensation reaction between acetylated
hydroxyaromatic aldehydes 6a and 6g with triethyl phosphonoacetate (4) was carried out applying
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sodium hydroxide as a base (Scheme 2, Method B). The Knoevenagel condensation products 1a and 1g
were isolated in good yields (Scheme 2, Method B).

Falsone et al. [19] applied piperidine acetate/β-alanine as catalyst for the initiation of the
lactonization process. The reaction between substituted salicylaldehydes 3a–b, 3g–h and triethyl
phosphonoacetate (4, Scheme 2, Method C) resulted in the formation of 3-diethylphosphono- coumarins
1a,b and 1h,i in high yields. The applied catalyst demonstrated excellent activity in the Knoevenagel
condensation in comparison with the other catalytic systems used in Method A and Method B.

Chen and coauthors [17] were the first to report the formation of alkyl 1,2-benzoxa-
phosphorin-3-carboxylates 2 via Knoevenagel condensation. The reaction of triethyl phosphonoacetate
(4) and electron-donating group-substituted salicylaldehydes 3e and 3i,j was catalyzed by freshly
prepared piperidinium acetate. Thus, not only the corresponding 3-diethylphosphonocoumarins 1e
and 1h,i were isolated and characterized, but also their analogues 2a–c in which a P-atom replaced the
α-pyronyl carbon atom (Scheme 3). In Section 3. of the article the specific methods for the synthesis of
1,2-benzoxaphosphorines and their derivatives are discussed.
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Scheme 3. Knoevenagel condensation reaction with piperidine as catalyst.

Few years later another approach presented the synthesis of 3-diethylphosphonocoumarines and
1,2-benzoxaphosphorines applying various CH-acidic components. Bojilova et al. [20] performed
the Knoevenagel reaction under modified conditions using both organic and inorganic catalysts
(Table 1, Scheme 4). The main contribution of the study was the analysis of the ratio between the two
chemoisomers and the possible mechanism of the reaction.
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Scheme 4. Knoevenagel condensation reaction with organic and inorganic catalysts.

3-Diethylphosphonocoumarines 1a–c,j and 1,2-benzoxaphosphorines 2b–f were prepared in
solution (toluene and ethanol) and in the presence of an organic base (Method A, A1, C, D; Table 1).
Different adsorbents (Al2O3, zeolites, molecular sieves and Florisil) or titanium tetrachloride (Method
; Table 1) were also applied as catalysts and the only isolated product was the corresponding
substituted 3-diethylphosphonocoumarin.
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Table 1. Reaction conditions for the preparation of 1a–c,j and 2b–f using different catalysts.

R1 X R Method Overall Yield 1 a 2 a

Me COOEt H
A 51 33 11
A1 56 27 21
B 20 20 0

Et COOEt H

A 87 70 9
A1 98 84 14
B 50 50 0
C 74 66 8

Et COOSi(Me)3 H
A 59 47 8
C 28 20 2
D 73 57 9

Et CN H

A 69 45 24
A1 52 17 35
B 49 49 0
C 55 47 8
D 60 42 18

Et COOEt 6-Br
A 98 77 19
B 81 81 0
C 50 40 4

Et COOEt 6-Cl
A 78 65 9
B 71 71 0
C 67 41 20

Et COOEt 7-NEt2

A 81 64 17
B 3 3 0
C 86 71 15

Method A: Toluene/piperidine/Dean-Stark trap; Method A1: Toluene/piperidine/Dean-Stark short distance trap;
Method B: THF/TiCl4/pyridine; Method C: Toluene/β-alanine/piperidine acetate/Dean-Stark short path trap; Method
D: Toluene/piperidine/mol. siev. 4A, reflux. a Isolated yields.

The detailed results and information are presented in Table 1 where the different reaction
conditions, the comparisons of the ratios between the two products and the influence of the substituent
R are illustrated. The optimized conditions revealed that the crucial step for the condensation is the
azeotropic removal of water. For example the overall yield of 98%, and 84% for 1a, was achieved
when toluene/piperidine and a Dean-Stark short path trap were used for the reaction between triethyl
phosphonoacetate and salicylaldehyde. The effective condensation reaction depends on the used
CH-acidic component and the electronic effect of the substituent in the aromatic aldehydes.

The observed regioselectivity is explained on the base of the configuration of the two possible
intermediates I-1 and I-3 (Scheme 5) which are formed in the addition step. Subsequent trans-elimination
of a water molecule leads to formation of intermediates E-I-2 and Z-I-4. The following intermolecular
pre-esterification of the phosphoryl or ester group resulted in ring closure to the corresponding
3-diethylphosphonocoumarines or 1,2-benzoxaphosphorines. The preferred E-configuration of the
intermediate E-I-2 was due to the strong steric interaction between the bulky phosphoryl group and the
hydroxyphenyl substituent that could be observed in the intermediate I-3. The predominant isolation
of 3-diethylphosphonocoumarines over 1,2-benzoxaphosphorines is a result of the formation of the
stable E-isomer in that reaction conditions.
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The complete regioselectivity of the reaction in the presence of titanium tetrachloride (Method B)
or adsorbents was explained by a chelate-complex formation, Figure 3, involving 4 and the titanium
salt. An analogous orientation of the reactants on the surface of the adsorbent might also be assembled
in that case. Due to the strong steric effect between the phosphoryl and the aromatic group, the
formation of intermediate I-5 was favored and since this steric interaction could appear in the first step
of the process, it could prevent the formation of I-6. Therefore, the reaction took place as a preferential
stereoselective E-olefination.
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Figure 3. Titanium chelate-complex formation.

Regulating plant growth activity of a series of 3-diethylphosphonocoumarins and
1,2-benzoxaphosphorines, synthesized in this study, was tested [40] as auxins of different plant seeds.

During the investigations of the synthesis of new therapeutics, Budzisz et al. performed a reaction
of 2′-bromoacetoxyphenones 8a–e with trimethyl phosphite (9, Scheme 6) and coumarin compounds
were isolated as minor products [21]. The authors elaborated on the formation of Arbuzov type
CH-acidic compounds that proceeded in an intramolecular Knoevenagel condensation resulting in the
formation of 1l–p.
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Alkylating effect and cytotoxicity of several phosphorylated coumarins have been studied [41] on
some human leukemia cell lines HL-60 and NALM-6. Substituents in third or fourth position in the
lactone ring were essential for the increased cytotoxicity.

2.1.2. Synthetic Procedure Including Phosphoryl Ketenimines

In 1991, Bestmann and Lehnen [22] presented a synthesis of 3-diethylphosphonocoumarin (1a) from
compound 10 (Scheme 7). Instead of an unsymmetrical CH-acidic component, they used a multistep
procedure including methylendiphosphonate to prepare N-phenyl-bis(diethyl- phosphono)ketenimine
(10). In the next synthetic step, sodium 2-formylphenolate (11) was used as a Michael donor to form
the target molecule.
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2.1.3. Synthetic Procedure Including Vinylphosphonates—Friedel-Crafts Alkylation of Phenols

Another approach for the synthesis of the target 3-diethylphosphonocoumarins 1 was applied by
Janecki and coworkers [23–27], using strong acids as catalysts for Friedel-Crafts alkylation of differently
substituted phenols followed by spontaneous lactonization (Scheme 8).

From the reactions of 2-diethoxyphosphorylacrylates 12 with substituted phenols or naphthols 13,
series of substituted dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1e,f, 1q–ad were isolated
and characterized. The electrophilic addition was catalyzed by methanesulfonic acid or
trifluoromethanesulphonic acid at room temperature. However, strong acidic promoter as trifluoroacetic
acid was less effective in the described conditions. This synthetic procedure presents an alternative
method in which in higher yields the target compounds 1e,f, 1q–ad were obtained but the conversion
time for the reaction was long especially in the presence of methanesulfonic acid (Table 2). The
applied conditions were not suitable for the formation of 1t and 1z where the starting compound
was α-naphthol.

Table 2. Results from the reactions of 2-diethoxyphosphorylacrylates 12 with substituted phenols or
naphthols 13 in the presence of strong acids.

1 R1 R2 R3 R4 R5 Reaction Time [days] Yields Ref

1q H OMe H OMe H 6d 88% [23–25]
1e H H H OMe H 10d 81% [24,25]
1r H H -CH2OCH2- H 60d 73% [24,25]
1f H -CH=CH-CH=CH- H H 10d 88% [24,25]
1s H -CH=C(OH)-CH=CH- H H 18d 95% [24,25]
1t H H H -CH=CH-HC=CH- 14d 9% [24]
1u Me H H OMe H 3d 81% [26,27]
1v Me OMe H OMe H 3d 69% [26]
1w Me H H -CH=CH-HC=CH- 3d 60% [26]
1x Et H H OMe H 3d 59% [26]
1y Et OMe H OMe H 3d 47% [26]
1z Et H H -CH=CH-HC=CH- 3d 26% [26]

1aa n-Bu H H OMe H 3d 38% [26]
1ab n-Bu OMe H OMe H 3d 31% [26]
1ac Ph H H OMe H 3d 85% [26]
1ad Ph OMe H OMe H 3d 70% [26]
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In all performed reactions, a full regioselectivity to C-addition products was observed,
which further undergo intermolecular cyclization resulting in the formation of substituted
3-diethylphosphonocoumarins in moderate to very good yields.

2.1.4. Phosphorylation of Coumarins

Catalytic Phosphorylation

The direct C-H functionalization appeared to be an atom-economical and environmentally friendly
synthetic method. Lately manganese(III) acetate has been introduced as a new reagent for initiation of
phosphorus radicals. Zou and coauthors [28] presented a new approach for phosphonocoumarins using
direct phosphonation of C-H bond to sp2-hybridized carbon (Scheme 9). The reaction of coumarin 14
with diethylphosphite (15a) in the presence of Mn(OAc)3 for 30 min gave 3-diethylphosphonocoumarin
1v as a product of regioselective α-phosphonation in yield of 87% (Scheme 9, Method A). The selectivity
of the reaction to α-phosphorylation product was not only a result of dialkylphosphonyl radicals
formation but also due to the differentiation of α-position in arylalkene as a high electron density
center and stabilization of the benzyl radical generated after the attack at the α-position.
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The same group of authors [29] reported a modified procedure for the synthesis of a series of
substituted coumarin systems. The presented method displayed a regioselectivity for the C-3 position
in the coumarin and formation of compounds 1a, 1e, 1p, 1v, 1ae–ah in yields of 63 to 87%, (Scheme 9,
Method B). Substituents on the phenyl ring or at position C-4 at the benzopyran had no significant
impact on the yields of the target molecules.
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One year later, Wu and coworkers [30] reported a new protocol for selective synthesis of
substituted dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1a, 1e, 1af, 1ai–an via a direct Pd-catalyzed
phosphonation of coumarins (Scheme 10).
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Scheme 10. Catalytic phosphorylation with Pd-complexes.

The reactions were performed by using 2,2′-bipyridine as a ligand, PdCl2 as a transition-metal
source, potassium peroxodisulfate as an oxidant and acetonitrile as a solvent media. Different dialkyl
H-phosphonates 15a–f were tested in the optimized reaction conditions and the di-iso-propyl (yield
56%) and di-sec-butyl (yield 59%) H-phosphonates displayed better C-H phosphonation activity toward
the unsubstituted coumarin in comparison with the other dialkyl phosphonates (R = Me 44%; R = Et
48%; R = n-Bu 47%; R = i-Bu 51%). The coumarins bearing electron-donating groups reacted faster and
gave better yields than their analogues possessing electron-withdrawing groups. Substituents as Me
and OMe at position C-6 in the benzene ring showed significant influence on the phosphorylation
reaction yielding 1 in 52% and 63%. The coumarins 1aj and 1k were prepared in 10% lower yields
than 1e.

It is worth noting that the reaction conditions were tolerant of systems with hydroxyl and formyl
groups, even though the yields were low, 34% and 27%, respectively. Use of a radical scavenger
(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) provided evidence for a possible mechanism of
the reaction. In the performed parallel reactions the formation of the 3-diethylphosphonocoumarin
allowed the possibility of a radical mechanism to be discarded (Scheme 11).
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An efficient regioselective silver-catalyzed direct Csp2-H radical phosphorylation of coumarins
was presented by Mao et al. [31]. Phosphorus-containing compounds 1a, 1e, 1af–ag, 1am–ar were
prepared in a reaction of coumarins 14 with different dialkyl H-phosphonates 15a–d, 15f–h under
mild reaction conditions in the presence of catalyst AgNO3/Mg(NO3)2 × 6H2O (Scheme 12). The
metal-promoted synthetic protocol derived the expected products 1 with moderate to good yields
(45–65%).
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Scheme 12. Ag-catalyzed phosphorylation reaction.

According to the proposed mechanism (Scheme 13) Ag(I) promotes the initiation of phosphoryl
radicals which implied that the C-H phosphorylation of coumarins—experience a radical reaction
path. Indeed, formation of 3-dialkylphosphonocoumarin was not observed in the presence of radical
scavenger TEMPO that proved the radical mechanism of the process.
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In the conditions of radical phosphonation coumarins with electron-donating groups proceeded
with better results than their analogs having electron-withdrawing substituents. The diethylamino
group was found to be a substituent that activated the coumarin system toward the C-P formation,
thus, highest yields were observed in this case—65%. The electron-withdrawing effect of the nitro
group slightly deactivated the benzopyran system and therefore product 1ao was obtained in yield of
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45%. Interestingly, coumarin 1am was afforded in nearly doubled yield comparing with the previous
procedure. The di-iso-propyl (60%) and dimethyl (62%) H-phosphonates displayed better activity
for the coumarin 1a in comparison with the other dialkyl phosphonates (R = Et 55%; R = n-Bu 49%;
R = i-Bu 54%; R = n-Pr 50%; R = n-pentyl 45%).

A year later, Mao et al. reported [32] a modified selective protocol for the phosphorylation of
coumarins using N-heterocyclic carbene palladium complexes. The catalytic activity of different
NHC-complexes was implied in the reaction. The complex presented in Scheme 14 showed the best
catalytic efficiency in the phosphorylation reaction. A wide range of dialkyl H-phosphonates 15a–d,
15f–h reacted smoothly with coumarins 14 resulting in the complete regioselective synthesis of the
target molecules 1a, 1e, 1af, 1am–ar in moderate to high yields.
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The optimized conditions for the selective phosphorylation of coumarins 14 included a
combination of catalysts—Pd-bearing component and Ag(I) salts—thus, the highest yields were
reported. Substituents at C-7 or C-4 in the benzopyran system favored the phosphorylation reaction
(86–89%), though substituents at position C-6, either electron-withdrawing (41%) or electron-donating
groups (36%), resulted in lower yields. The results for the coumarin 1a remained higher using
di-iso-propyl (70%) and dimethyl (68%) H-phosphonates than other dialkyl phosphonates (R = Et 64%;
R = n-Bu 44%; R = i-Bu 46%; R = n-Pr 46%; R = n-pentyl 52%).

Electrochemical Phosphorylation

The preparation of 3-dialkylphosphonocoumarins through a direct phosphorylation of C-H bond
of the aromatic system remains one of the used synthetic approaches that corresponds to the principals
of green chemistry–atom economy, single step processes, low amounts of waste products, etc. Recent
approaches for the synthesis of 3-dialkylphosphonocoumarins include electrochemical initiation of
the phosphorylation. A new method for C-P bond formation at position C-3 in the benzopyran
system was reported in 2016 by Khrizanforov et al. [33,34]. The synthetic protocol was based on
an oxidation process of aromatic compounds 14 and diethyl phosphonate (15a) in the presence of
bimetallic catalytic systems (Scheme 15). Two bimetallic systems as the pairs MnCl2bipy/Ni(BF4)2bipy
and MnCl2bipy/CoCl2bipy were used where 2,2′-bipyridine was an additional ligand. The reaction
took place at room temperature by applying equimolar ratio between the coumarin and the used
phosphonate 15a. Coumarins, bearing electron-donating groups, gave better yields in phosphonation
reactions in comparison with the unsubstituted benzopyran system (Scheme 15).
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Subsequent investigations by Khrizanforov et al. [35] for the preparation of coumarin phosphonates
in the presence of MnCl2bipy/Ni(BF4)2bipy showed changes in the electrochemical parameters by
applying three dialkyl H-phosphonates (Scheme 16). In this study di-iso-propyl phosphonate resulted in
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mixture storage before electrolysis, which was necessary for the formation of the metal phosphonate
complex. Full conversion of the dialkyl H-phosphonate was observed under the described conditions.
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2.1.5. Synthetic Protocols Involving Coupling Reactions

Different approach for the synthesis of the target 3-dialkylphosphonocoumarins includes
three-component coupling of arynes, dimethyl formamide (DMF) and CH-acidic component 4
(Scheme 17).
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Scheme 17. Synthesis of 3-diethylphosphonocoumarin under coupling reaction.

The reported protocol [36] represents a reaction between an in situ generated benzyne fragment
(Scheme 18) and an active methylene compound bearing a diethylphosphoryl group in DMF at 80 ◦C.
The compound 1a was produced in 74% yield (Scheme 17).
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The course of the reaction was switched when the solvent was changed. The nucleophilic attack
of the carbonyl oxygen of DMF molecule to benzyne was a probable initiator of the reaction followed
by the formation of ortho-quinone methide intermediate (Scheme 18).

Currently several utilized methods of C-P bond construction as an electrophilic phosphorus
reagent and transition-metal-catalyzed cross-coupling synthetic protocols for the formation of
phosphorus-containing coumarin systems are listed. Another approach relied on a domino reaction
via an intermolecular addition of P-centered radicals to alkynes followed by fast cyclization onto
the aromatic π-system [37]. The tandem radical phosphorylation-cyclization reaction of readily
prepared phenyl alkynoates 17 with diethyl H-phosphonate substrate 15a was investigated in the
presence of combination of Ag2CO3, Mg(NO3)2x6H2O in CH3CN for 12 h to afford the corresponding
3-dialkylphosphonocoumarins 1l, 1as–bj (Scheme 19).
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The steric effect had strong impact on the accomplishing of the radical tandem reaction. For
example, the formation of compound 1bb was not observed due to the hindrance of the methyl group
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on the ortho-position of the phenoxy ring in 17. By applying aryl alkynoates bearing 4-Me, 4-OMe or
4-Cl substituents at the para-position in the phenoxy ring the authors studied the regioselectivity of the
reaction. Products 1bc/1bd and 1ae/1af were produced in a mixture of two isomers. Product 1ac was
formed in high yield (78%) with complete regioselectivity of the process. The products formation was
as a result of cyclization reaction preferably occurring at the opposite site of the substituent.

The cascade reaction was accomplished smoothly with dimethyl H-phosphonate and di-iso-butyl
H-phosphonate yielding the corresponding product 1l in 70% and 90%, respectively. A series of
controlled experiments using TEMPO as a radical scavenger and experiments with deuterium labelling
were executed to highlight the mechanism of the observed transformation (Scheme 20). The results
demonstrated that the cleavage of the C-H bond on the phenoxy ring was not involved in the
rate-determining step.

A photochemical technique for the synthesis of derivative 1l uses a cascade radical addition
of phosphorus nucleophiles to aryl propiolates. Xu et al. [38] employed catalytic quantities of the
commercially available Eosin Y (EY) as a photocatalyst and tert-butyl-hydroperoxide as an oxidant
(Scheme 21).
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2.1.6. Rearrangement Reactions

CH-acidic component as diethyl cyanomethylphosphonate (7c) was used in a reaction with some
α- and β-monohalocarbonyl compounds [39]. As a result of nucleophilic aromatic substitution an
intermediate A was formed from 4-chlorocoumarin (14) with 7c in the presence of an equimolar amount
of NaH in THF, Scheme 22. Tautomerization to vinylphosphonate 18 or thermal rearrangement to the
3-diethylphosphonocoumarin 1bk were next steps in the intermediate A transformation.

Molecules 2019, 24, 2030 14 of 38 

 

regioselectivity of the reaction. Products 1bc/1bd and 1ae/1af were produced in a mixture of two 
isomers. Product 1ac was formed in high yield (78%) with complete regioselectivity of the process. 
The products formation was as a result of cyclization reaction preferably occurring at the opposite 
site of the substituent. 

The cascade reaction was accomplished smoothly with dimethyl H-phosphonate and 
di-iso-butyl H-phosphonate yielding the corresponding product 1l in 70% and 90%, respectively. A 
series of controlled experiments using TEMPO as a radical scavenger and experiments with 
deuterium labelling were executed to highlight the mechanism of the observed transformation 
(Scheme 20). The results demonstrated that the cleavage of the C-H bond on the phenoxy ring was 
not involved in the rate-determining step. 

A photochemical technique for the synthesis of derivative 1l uses a cascade radical addition of 
phosphorus nucleophiles to aryl propiolates. Xu et al. [38] employed catalytic quantities of the 
commercially available Eosin Y (EY) as a photocatalyst and tert-butyl-hydroperoxide as an oxidant 
(Scheme 21).  

 
Scheme 21. Cascade-radical approach for the formation of 3-functionalized coumarin. 

2.1.6. Rearrangement Reactions 

CH-acidic component as diethyl cyanomethylphosphonate (7c) was used in a reaction with 
some α- and β-monohalocarbonyl compounds [39]. As a result of nucleophilic aromatic substitution 
an intermediate A was formed from 4-chlorocoumarin (14) with 7c in the presence of an equimolar 
amount of NaH in THF, Scheme 22. Tautomerization to vinylphosphonate 18 or thermal 
rearrangement to the 3-diethylphosphonocoumarin 1bk were next steps in the intermediate A 
transformation.  

 

Scheme 22. Rearrangement reaction of intermediate A. 

The observed rearrangement is expected because the chemical properties of 3-substituted 
coumarins frequently are pursued by such benzopyran-2-oxochroman transformation [42–46]. 

2.2. Reaction of Dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1  

The presence of a conjugate π-system in the lactone ring of 2-oxo-2H-1-benzopyran derivatives 
1 implies their involvement in nucleophilic addition reactions (Figure 4). Various factors as 
substituents in the lactone ring, the strength of the used nucleophile, the solvent, etc. influence the 
reaction rate, the type and the yields of the obtained products. There are many examples in the 
literature presenting a coumarin structure as an excellent Michael acceptor [42,47–49] producing 
adducts of type B as a main product (Figure 4). 

Scheme 22. Rearrangement reaction of intermediate A.

The observed rearrangement is expected because the chemical properties of 3-substituted
coumarins frequently are pursued by such benzopyran-2-oxochroman transformation [42–46].

2.2. Reaction of Dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates 1

The presence of a conjugate π-system in the lactone ring of 2-oxo-2H-1-benzopyran derivatives 1
implies their involvement in nucleophilic addition reactions (Figure 4). Various factors as substituents
in the lactone ring, the strength of the used nucleophile, the solvent, etc. influence the reaction rate, the
type and the yields of the obtained products. There are many examples in the literature presenting a
coumarin structure as an excellent Michael acceptor [42,47–49] producing adducts of type B as a main
product (Figure 4).
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2.2.1. Reactions with Nucleophilic Reagents

Chemical properties of diethyl 2-oxo-2H-1-benzopyran-3-phosphonate (1a), diethyl 3,4-dihydro-2-
oxo-2H-1-benzopyran-3-phosphonate (19), 2-oxo-2H-1-benzopyran-3-phosphonic acid (5) and diethyl
7-N,N-diethylamino-2-oxo-2H-1-benzopyran-3-phosphonate (1j, Figure 5) were the object of
experimental and theoretical reactivity parameter studies distinguishing the electrophilicity of the
center in the coumarin system by atomic electrostatic potential and XPS binding energies while
electronic localization was examined on the base of atomic Fukui indices [50]. The calculated electronic
structures have characterized with large negative charge on C-3-atom whereas C-4 atomic charge has
values close to zero. Obtained 2p-binding energies for P-atoms described identical local environment for
the coumarins. On contrary, in 7-diethylamino substituted compound energy was low probably due to
interaction between N- and P-substituents displayed as higher electronegativity at P-atom. Calculated
atomic electrostatic potentials also showed that the electrophilicity of the reaction centers in the
coumarin system increases in the presence of phosphonic group, especially in coumarin-3-phosphonic
acid 5. Electron donating group at C-7 increased electrophilicity of the C-7 carbon but at the same time
C-3 and O-2 atoms from the lactone ring increased their nucleophilicity.
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As a result the the phosphorus-containing coumarins C-3 atoms in these chemical structures were
defined as soft centers. Indeed, Fukui indices showed increased values for C-3, especially when a
phosphoryl and diethylphosphoryl group is bound, and characterized the center as hard. Actually,
phosphorus-containing substituents did not influence the electron localization at the C-3 atom like
withdrawing groups but were most like a hydrogen atom due to the similar electronegativity of H-
and P-atoms. Indices for the carbon atoms characterized C-3 atoms as hard centers compared with C-2.
Furthermore, the studied parameters anticipated the reactivity in the lactone ring accounting for the
lower nucleophilicity of the O-2 atom compared to C-3, and moreover, the participation in 1,2-addition
reactions with nucleophiles.

2.2.2. Reactions with Hydrides

The chemical behavior of diethyl 2-oxo-2H-1-benzopyran-3-phosphonate (1a) in hydrogenation/

acylation reactions under different conditions was studied [51] and high regioselectivity for the
C-acylation product 20 was observed. Two reaction paths presented in Scheme 23 demonstrate the
advantage of one-pot reactions versus the multistep routes. The first path shown as Method A involved
deprotonation of 3,4-dihydroadduct 19 by NaH or DMAP and formation of enolate ion which reacted
with anhydride to form the acylated product 20a. However, the yields were rather unsatisfactory, 31 or
38%. The second approach, Method B, presented a one-pot reaction with in situ generated enolate ion
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followed by its trapping with a series of anhydrides produced the expected products 20a–d in higher
yields (Scheme 23).
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The yields of products 20a–d depended strongly on the solvent—pyridine—and the
catalyst—DMPA—used in the process. During the optimization of the reaction conditions, the
ratio between the anhydrides and DMAP varied from 3:1 to 3:2.2. Acetic, propionic and butyric
anhydrides resulted in C-acylated products in 90%, 65% and 72% yield after 2.5 h at −4 ◦C. For bulky
acylating reagents such as iso-propyl anhydride, running the reaction at room temperature enhanced
the yield of 20d from 47 to 72%. The steric hindrance between the newly incorporated acyl group and
the phosphoryl group at position C-3 determined the outcome of the reaction.

Products of subsequent acylation 21 or further hydrogenation 22 and 23 were also isolated,
(Figure 6). The predominant presence of dihydro adduct 19 when the reaction was carried out in THF
confirmed the importance of the used solvent, and further hydrogenation of 19 resulted in formation
of derivatives 22 and 23.
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2.2.3. Reactions with Organometallic Reagents

The first reaction of 3-diethylphosphonocoumarin 1a with a Grignard reagent was reported by
Bestmann and Lehnen [22]. Product 24 was isolated as a result of Michael-type addition reaction
(Scheme 24). Though, the reaction took place as stereospecific cis-addition to the C3=C4 double bond
and the product was characterized by X-ray spectroscopy, no yields from the performed reactions were
given in the article.



Molecules 2019, 24, 2030 17 of 38
Molecules 2019, 24, 2030 17 of 38 

 

 
Scheme 24. Reaction of 3-diethylphosphonocoumarin 1a with Grignard reagent. 

A productive study on the option of applying 3-dialkylphosphonocoumarins 1q–t as key 
intermediates for the formation of α-methylene δ-lactones was reported by Janecki and co-workers 
[23–25,52]. Compounds like α-alkylidene γ-lactones, α-alkylidene δ-lactones and their analogs with 
lactam ring display pharmacological properties and in particular strong anti-cancer activity. The 
majority of the synthesized δ-lactones were tested on human leukemia cell lines NALM-6 and HL-60 
as well as MCF-7 breast cancer and HT-29 colon cancer cells. 

In order to obtain the phosphorus-containing adducts for the Horner–Wadsworth–Emmons 
olefination α-(diethoxyphosphoryl)-δ-lactones 25 were prepared by a 1,4-conjugate addition of 
organometallic compounds to substituted 3-diethylphosphonocoumarins 1q–t in the presence of 
catalytic amount of CuI (Scheme 25). The reactions proceeded in a fully diastereoselective manner 
while the time for conversion depended strongly on the substituents on the benzene ring. For 
example, when the interaction was performed with 1h (Y = 8-OMe) using MeMgI as a nucleophile 
the reaction time was 2.5h and the yield of 25 was 73%. However, when the same conditions were 
applied for coumarin 1e (Y = 7-OMe) the time for its conversion was 48h and the addition product 
was obtained in a yield of 69%. In general, using iso-propyl and n-butylmagnesium halide the yields 
were in the range of 51 to 93%, whereas for methylmagnesium halide the results were between 68–
85%. Interestingly, the structures of isolated compounds were characterized as the 
trans-β-substituted isomers. 

 
Scheme 25. 1,4-conjugate addition reactions with organometallic compounds. 

Fundamental research on the synthesis of compounds 25 was presented by Nikolova et al. [53]. 
In this study, ultrasonic waves were used as a promoter of the reaction—Method B, Scheme 25. The 
sonication method provides an unusual mechanism to generate high-energy chemistry due to the 
extraordinary temperatures and pressure generated by the collapse of cavitation bubbles, while it 
can accelerate organic reactions involving metal-mediated processes because of the metal surface 
activation and the particle size reduction, producing modified metal surfaces and at the same time 
speeding up the formation of organometallic reagents. The reaction between 
3-diethylphosphonocoumarin 1a and the organomagnesium compound was completed as 
Michael-type addition and the formation of trans-isomers of products 25 were observed. Methods 

Scheme 24. Reaction of 3-diethylphosphonocoumarin 1a with Grignard reagent.

A productive study on the option of applying 3-dialkylphosphonocoumarins 1q–t as
key intermediates for the formation of α-methylene δ-lactones was reported by Janecki and
co-workers [23–25,52]. Compounds like α-alkylidene γ-lactones, α-alkylidene δ-lactones and their
analogs with lactam ring display pharmacological properties and in particular strong anti-cancer
activity. The majority of the synthesized δ-lactones were tested on human leukemia cell lines NALM-6
and HL-60 as well as MCF-7 breast cancer and HT-29 colon cancer cells.

In order to obtain the phosphorus-containing adducts for the Horner–Wadsworth–Emmons
olefination α-(diethoxyphosphoryl)-δ-lactones 25 were prepared by a 1,4-conjugate addition of
organometallic compounds to substituted 3-diethylphosphonocoumarins 1q–t in the presence of
catalytic amount of CuI (Scheme 25). The reactions proceeded in a fully diastereoselective manner
while the time for conversion depended strongly on the substituents on the benzene ring. For example,
when the interaction was performed with 1h (Y = 8-OMe) using MeMgI as a nucleophile the reaction
time was 2.5 h and the yield of 25 was 73%. However, when the same conditions were applied for
coumarin 1e (Y = 7-OMe) the time for its conversion was 48 h and the addition product was obtained in
a yield of 69%. In general, using iso-propyl and n-butylmagnesium halide the yields were in the range
of 51 to 93%, whereas for methylmagnesium halide the results were between 68–85%. Interestingly, the
structures of isolated compounds were characterized as the trans-β-substituted isomers.
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Fundamental research on the synthesis of compounds 25 was presented by Nikolova et al. [53].
In this study, ultrasonic waves were used as a promoter of the reaction—Method B, Scheme 25. The
sonication method provides an unusual mechanism to generate high-energy chemistry due to the
extraordinary temperatures and pressure generated by the collapse of cavitation bubbles, while it can
accelerate organic reactions involving metal-mediated processes because of the metal surface activation
and the particle size reduction, producing modified metal surfaces and at the same time speeding
up the formation of organometallic reagents. The reaction between 3-diethylphosphonocoumarin 1a
and the organomagnesium compound was completed as Michael-type addition and the formation of
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trans-isomers of products 25 were observed. Methods for initiating the reaction—thermal or ultrasonic,
were further investigated and a relationship between the yields and the reaction time as well as the
applied technique was indicated in Table 3.

Table 3. Comparison between the results for reaction of 1a with organomagnesium reagents under
thermal and ultrasonic initiation.

Substituent R1
Reflux US

Reaction Time [min] Yield [%] Reaction Time [min] Yield [%]

Et 50 64 10 89
n-Pr 60 77 30 94
i-Pr 80 69 50 74

PhCH2 125 38 90 53
CH2COOt-Bu 75 78 30 95

The main disadvantage of the thermal initiation was the lack of reproducibility of the obtained
results. By applying the sonication method this obstacle was overcome. The data in Table 3
unambiguously showe the impact of sonication on the decrease of reaction time to 10–40 min, and
the increase of the yields of the target molecules. The studied reaction was specified with a complete
regioselectivity for the 4-substituted 3,4-dihydrophosphonocoumarins 25.

A comparison between Method A and Method B displayed distinctly shorter reaction times for
the sonicated reactions and absence of requirements as use a specific catalyst, inert atmosphere and
high excess of the Grignard reagents used.

Applying Method B to Reformatsky reagents afforded product of type 25 [53]. However, under
ultrasound irradiation, using different organozinc compounds, the dimeric systems 26 were obtained
in high yields [54] (Scheme 26).
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Obviously, the processes in Scheme 26 are characterized by two different mechanisms. When
compound 25 was formed, the reaction is classified as a Michael-type addition of C-nucleophiles to
electron-deficient systems. However, the formation of product 26 cannot be explained by a Michael
addition reaction. Therefore, Nikolova et al. investigated the mechanism of the process and it was
assumed a radical intermediate formation and a subsequent coupling between the initiated radicals
(Scheme 27).

During the investigations on the mechanism of the reaction, the authors tried to synthesize
heterodimers by combining coumarin systems with varied reactivity. However, the approaches were
not successful and the assumption was that the reaction conditions favored just the homodimerization
process whereas the used solvent played a major role in the reaction path. Products 26 were
isolated and characterized as meso-form structures due to the obtained analytic data from X-ray and
NMR spectroscopy.
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Applying 4-substituted 3-diethylphosphonocoumarins 1u–ad (Scheme 28), as Michael acceptors
another approach toward the investigation of the regioselectivity of the reaction and the
possibility for incorporation of a second alkyl substituent in δ-lactones 27 was presented [26,27].
The study was accomplished with a series of organomagnesium reagents (ethyl-, iso-propyl-,
n-butyl-, cyclohexylmagnesium chlorides, allylmagnesium iodide and benzylmagnesium bromide)
4,4-disubstituted 3-diethoxyphosphoryl-3,4-dihydro-2H-chroman-2-ones 27 were isolated in moderate
to good yields in a mixture of trans- and cis- isomers. Only in three cases the product was found to be a
single trans-isomer.

Molecules 2019, 24, 2030 19 of 38 

 

  

Scheme 27. Radical homodimerization mechanism. 

Applying 4-substituted 3-diethylphosphonocoumarins 1u–ad (Scheme 28), as Michael 
acceptors another approach toward the investigation of the regioselectivity of the reaction and the 
possibility for incorporation of a second alkyl substituent in δ-lactones 27 was presented [26,27]. The 
study was accomplished with a series of organomagnesium reagents (ethyl-, iso-propyl-, n-butyl-, 
cyclohexylmagnesium chlorides, allylmagnesium iodide and benzylmagnesium bromide) 
4,4-disubstituted 3-diethoxyphosphoryl-3,4-dihydro-2H-chroman-2-ones 27 were isolated in 
moderate to good yields in a mixture of trans- and cis- isomers. Only in three cases the product was 
found to be a single trans-isomer.  

 
Scheme 28. 1,4-conjugate addition reactions to 4-substituted 3-diethylphosphonocoumarins. 

2.2.4 Three-component Reactions of Diethyl 2-oxo-2H-1-benzopyran-3-phosphonate (1a) with 
Compounds Bearing Carbonyl and Amino Groups 

Conjugate addition reactions to 3-diethylphosphonocoumarin 1a using asymmetric 
nonstabilized azomethine ylides were investigated by Moshkin et al. [55,56]. The developed 
approach for the synthesis of products 28 and 29 utilized as starting material the in situ formed ylide 
derived from cyclohexanone and N-methylglycine (Scheme 29). The structure of compounds 29 
resemble the skeleton of adrenoceptor antagonists and are good precursors for new pharmaceutical 
agents for prostatic hyperplasia.  

 
Scheme 29. Reaction of 1a with cyclohexanone and N-methylglycine. 

The reaction can be illustrated as 1,3-dipolar cycloaddition to the 3-diethylphosphonocoumarin 
1a, therefore product 29 was the expected adduct. Surprisingly, the pyrrolidone 28 was also formed. 

Scheme 28. 1,4-conjugate addition reactions to 4-substituted 3-diethylphosphonocoumarins.

2.2.4. Three-Component Reactions of Diethyl 2-oxo-2H-1-benzopyran-3-phosphonate (1a) with
Compounds Bearing Carbonyl and Amino Groups

Conjugate addition reactions to 3-diethylphosphonocoumarin 1a using asymmetric nonstabilized
azomethine ylides were investigated by Moshkin et al. [55,56]. The developed approach for the
synthesis of products 28 and 29 utilized as starting material the in situ formed ylide derived from
cyclohexanone and N-methylglycine (Scheme 29). The structure of compounds 29 resemble the
skeleton of adrenoceptor antagonists and are good precursors for new pharmaceutical agents for
prostatic hyperplasia.
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Scheme 29. Reaction of 1a with cyclohexanone and N-methylglycine.

The reaction can be illustrated as 1,3-dipolar cycloaddition to the 3-diethylphosphonocoumarin
1a, therefore product 29 was the expected adduct. Surprisingly, the pyrrolidone 28 was also formed.
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Due to the steric hindrance, the deactivation of the cationic center and the loss of the dipolar
properties of the azomethine structure 30 an initial Michael addition followed by an intramolecular
cyclization leading to the formation of the heterocyclic compound 28 was observed (Scheme 30). The
participation of cyclohexanone in the formation of pyrrolidone 28 was identified by additional reactions.
Without the presence of cyclohexanone no interaction was observed, therefore it played a major role in
the formation of 28 as catalyst for the described domino reaction.
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When the used carbonyl compound was changed to paraformaldehyde (Scheme 31, Reaction (1)),
and the reaction was carried out in benzene with azeotropic removal of water, Moshkin and coworkers
observed the formation of benzopyranopyrrolidine derivative 31. The lactone ring conformation in the
formed product confirmed the synchronicity of the reaction of nonstabilized azomethine ylides with
3-diethylphosphonocoumarin 1a resulted in the cis-fusion in the new pyrrolidine structure.

Further investigation on the 1,3-dipolar cycloaddition of the ylide, derived from proline and
formaldehyde, using diethyl 2-oxo-2H-1-benzopyran-3-phosphonate 1a as a trapping dipolarophile,
resulted in the formation of pyrrolizidines 32 as a major product (Scheme 31, Reaction (2), n = 1), a
minor diastereomer 33, and the presence of the other isomers 34 and 35 were determined by 1H- and
31P-NMR spectroscopy.
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Different selectivity of the cyclization process was observed when pipecolic acid (Scheme 31,
Reaction (2), n = 2) was implied in the reaction mixture. The increase of the endo-cycloaddition product
35 might be due to the size and the flexibility of the azomethine ylide’s cyclic moiety and the absence
of steric hindrance in the transition state.

A large number of pyrrolizidines were observed when benzaldehyde was used as a carbonyl
component and only two of the isomers were isolated and characterized as being the major products
36 and 37 (Scheme 31, Reaction (3)).

Phosphorylated azaheterocycles were synthesized [57] by three-component reaction between
3-diethylphosphonocoumarin 1a with acetone, cyclopentanone or cyclohexanone and benzylamine.
These compounds are promising precursors for the preparation of polycyclic δ-lactams possessing
potential biological activity.

The reaction of 3-diethylphosphonocoumarin 1a with benzylamine and acetone, proceeded at
room temperature within one day and the desired product 38 was isolated as a single diastereomer in
87% yield (Scheme 32). The structure and absolute configuration of the product was determined by
single crystal X-ray crystallography.

Interestingly, only one product was observed when 3-diethylphosphonocoumarin 1a reacted with
cyclopentanone and benzylamine at room temperature at benzene as a solvent. The isolated product
39 was identified as benzoxazocine isomer with H-C(10), H-C(9)- trans and H-C(9), H-C(9a)-cis relative
configuration. Using X-ray analysis a 3aR*,9R*,9aR*,10R* configuration was assigned (Scheme 32).

It should be noted that the reaction of 1a with benzylamine and cyclohexanone was not
stereoselective like the previously mentioned reactions and a mixture of four isomers 40:41:42:43 in a
ratio of 1:0.25:0.25:0.1 were isolated.
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Scheme 32. Synthesis of polycyclic δ-lactams. 

The authors used enantiomerically pure (R)- and (S)-phenylamines as reagents in order to 
determine the absolute stereochemical course of the reactions. However, even under this approach 
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The authors used enantiomerically pure (R)- and (S)-phenylamines as reagents in order to
determine the absolute stereochemical course of the reactions. However, even under this approach the
unambiguously assignment of the relative configuration of the stereogenic centers C-9 and C-9a in 39–43
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was not achieved. When adducts were transformed into their corresponding α-methylene-δ-lactams
the configuration was distinguished.

Reactions with CH-acidic Compounds

CH-acidic compounds were also used as nucleophiles in conjugate addition reactions with
3-diethylphosphonocoumarin 1a and its derivatives. For example, Janecki et al. [52] applied the sodium
salt of nitromethane as an alternative reagent in a Michael type addition reaction to give coumarin 1a.
The reaction proceeded in 58% conversion of the starting material and product 44 was isolated as a
single diastereomer with a pseudo-axial disposition of the phosphoryl and nitro groups (Scheme 33,
Method A).
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The interaction between coumarin 1a and nitromethane using different bases (KF, Et3N, C5H11N)
in a protic solvent (EtOH) led to formation of compounds 45 and 46 (Scheme 33, Method B) [58].
Product 45 was isolated in an overall yield of 74% as a mixture of two trans-isomers in 1:1.25 ratio
when potassium fluoride was used as a base. The transformation involved a 1,4-conjugate addition
of nitromethane to the activated double bond in coumarin 1a and a subsequent attack of a solvent
molecule to the carbonyl group of the lactone ring. However, when using piperidine or propylamine
an additional product 1-hydroxy-4-(2′-hydroxyphenyl)-2,5-dioxopyrrolidin-3-yl-phosphonate (46)
was isolated as a single isomer. The mechanism of formation of 46, shown in Scheme 34, was a
result of a base-catalyzed tautomeric transformation of the Michael-type adduct 44 followed by a
Nef-reaction rearrangement.
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Scheme 35. Michael addition of enolizable ketones to 3-diethylphosphonocoumarin 1 using TBD and 
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Scheme 34. Proposed mechanism for the formation of 45 and 46.

The subsequent synthetic protocol, Method C, Scheme 33, illustrated the conjugate reaction with
nitromethane in free solvent conditions. The results emphasized the influence of the bases on the
reaction path and on the product ratio. The primary amine led to product 47, whereas secondary
amines promoted formation of 46 and 47. Compound 46 was isolated as an only product in very good
yields when triethylamine was used in the reaction. The product of Michael-type addition 44 still
remained as a major product in the presence of potassium fluoride as a trans-isomer.

A diastereoselective Michael addition of enolizable ketones to 3-diethylphosphonocoumarin 1a,
1c and 1h promoted by 1,5,7-triazabicyclo [4.4.0]dec-5-ene (TBD) was performed in the next work
of Krawczyk et al. [59,60] (Scheme 35). Due to the equilibrium of the process, the reactions were
performed in the presence of an excess of the used ketone and the TBD base. The electron-withdrawing
and electron-donating substituents equally influenced 3-diethylphosphono- coumarins 1c and 1h and
contributed to their high reactivity.
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Ketones as acetone, cyclopenatanone and 1-indanone have shown high stereoselectivity for the
addition products 48, 49, 51. In the case of cyclohexanone, a mixture of unidentified phosphorus-
containing products was afforded and the use of cesium carbonate (Cs2CO3) resolved the problem,
producing 50 in very good yields.

All of the α-phosphono-δ-lactonic products 48–51 were isolated as a mixture of C3-C4 cis- and
trans-isomers with predominant formation of the trans-product. A synclinal transition state might be
formed when the process was carried out with prochiral ketones. In the described case the Re-face
of the enolate approaches the Re-face of the 3-diethylphosphonocoumarin (Figure 7) leading to the
formation of a single C4-C2-syn diastereomer (Scheme 35).
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In tandem Michael-intermolecular Horner-Wadsworth-Emmons reactions involving
3-diethylphosphonocoumarin 1a and its substituted analogues 1c and 1h (Scheme 36), an
alternative CH-acidic compound, 2,5-hexanedione, was applied [61]. The performed reactions were
catalyzed by a stoichiometric amount of TBD at room temperature. The quenching of the process
resulted in the formation of the trans-isomer of product 52 and the corresponding hydroxyacid 53 in
almost equimolar amounts. The formation of product 53 was in a result of subsequent hydrolysis
catalyzed by the presence of TBD of the formed benzolactone adduct. Modified conditions utilizing a
protic solvent (MeOH), were applied to favor the formation of 53 as a sole product. However, the
products of type 53 were isolated as their methyl trans-cyclopentencarboxylate derivatives.
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Then the dione system was changed to cyclohexane-1,3-dione [62] products 54 were observed
(Scheme 36) and later used as adducts in a subsequent domino transesterification-cyclodehydration
process that resulted in the formation of methyl 2-(diethoxyphosphoryl)-2-(1-oxo-2,3,4,9-tetra-
hydro-1H-xanthen-9-yl)acetates. Products 54 were isolated as single diastereomers with anti-disposition
of the bulky groups.

A functionalization of the indole structure was performed by a conjugate addition of substituted
indoles to 3-diethylphosphonocoumarins 1a, 1c, 1h and 1bl [63]. The reaction was carried out in the
presence of TBD in CH2Cl2 at room temperature and products 55 were isolated as a mixture of cis-
and trans-diastereomers, the applied conditions favored the formation of the trans-adducts. In the
presence of TBD, substituted 3-diethylphosphonocoumarins 1c, 1h and 1bl participated with high
efficiency in the Michael-type addition process regardless the presence of electron-withdrawing or
electron-donating groups in the benzene moiety.

3. Synthesis and Some Reactions of Alkyl 1,2-benzoxaphosphorin-3-carboxylates 2

3.1. Synthesis of Substituted Alkyl 1,2-benzoxaphosphorin-3-carboxylates 2

3.1.1. Synthetic Protocols Involving Knoevenagel Condensation Reaction

The synthesis, isolation and characterization of the phosphoroheterocyclic analogue of
3-dialkylphosphonocoumarin, the corresponding alkyl 1,2-benzoxaphosphorin-3-carboxylates 2a–f via
Knoevenagel lactonization were previously discussed [17,20] in Section 2.

A synthetic protocol including the formation of dialkyl 1,2-benzoxaphosphorin-3-phosphonates
55a–f [64] under Knoevenagel reaction conditions (Scheme 37) was performed by using substituted
salicylaldehydes 3a–c,e,i,k and tetraethyl methylenebisphosphonate (7d). The products 55a–f were
isolated in yields from 69 to 92%.
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The optimized reaction conditions were elaborated on the reaction of salicylaldehyde (3a)
and tetraethyl methylenebisphosphonate (7d) in the presence of different catalysts—piperidine,
piperidine/AcOH, piperidine/ClCH2COOH and piperidine acetate/β-alanine. The best results were
obtained by slow addition of the used catalyst – piperidine or combination of piperidine/acetic acid.
The low activity of the methylenebisphosphonate 7d as a participating CH-acidic component was the
reason for the used excess of salicylaldehyde in comparison with the amount used for the Knoevenagel
reactions in the presence of phosphonoacetate 4.

In the described conditions, the aromatic aldehydes bearing electron-donating groups showed
high reactivity toward the condensation reaction, whereas, moderate yields were obtained in the
presence of electron-withdrawing groups in the benzene moiety (45–69%).

3.1.2. Synthetic Protocols Including Intermolecular Horner-Wadsworth-Emmons Reaction

Similar conditions were used in the reaction of salicylaldehyde (3a) with ethyl
diphenylphosphonoacetate in the presence of DBU and different salts (NaI, LiCl, KI, MgBr2) as catalytic



Molecules 2019, 24, 2030 26 of 38

systems (Scheme 38). A process involving intermolecular Horner-Wadsworth-Emmons reaction instead
of Knoevenagel condensation resulted in the formation of ethyl 1,2-oxaphosphorine-3-carboxylate (2d).
The best results were obtained by applying NaI as a catalyst and the reaction was performed at low
temperatures, thus affording the main product 2d in a yield of 61% [65]. A process involving HWE
reaction instead of Knoevenagel condensation was postulated, otherwise the more stable erythro-aldol
adduct should give the E-alkene and therefore the corresponding 3-diethylphosphonocoumarin 1a. The
less stable threo-aldol intermediate—the Z-alkene, afforded the ethyl 1,2-oxaphosphorine-3-carboxylate
2d (the intermediates were discussed in Section 2, Scheme 5). A reaction of triethyl phosphonoacetate
4, salicylaldehyde (3a) and DBU under refluxing toluene was carried out to test the proposed
transformation path. Neither the 3-dialkylphosphonocoumarin 1a nor the 1,2-oxaphosphorine 2d
were registered, therefore on the base of the made comparison erythro-aldol adduct was accepted as
intermediate in the applied conditions.
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In the same conditions, the performed reactions underwent as a Knoevenagel condensation
(Scheme 5) in the presence of piperidine or as HWE when DBU was used (Scheme 38). Therefore, the
outcome of the transformation depended strongly on the base applied in the reaction.

3.1.3. Synthetic Protocols on the Reaction of Oxaphospholes with Terminal Acetylenes

Substituted alkyl 1,2-benzoxaphosphorins of type 2, Figure 8, were obtained in reaction of
2,2,2-trichlorobenzo-1,3,2-dioxaphosphole (56) with phenyl- and alkylacetylenes [66,67] (Scheme 39).
The obtained 2,6-dichlorobezno[e]-1,2-oxaphosphinine-2-oxides 57 were converted to esters in
subsequent reactions with methanol, ethanol or triethyl orthoformate. The extensive research
of Mironov and coworkers was summarized in a review paper [68] presenting the synthesis of
numerous halophosphorinines.
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The described method combined the properties of P,P,P-trihalobenzodioxaphospholes derived
from 1,2-benzoquinones with a phosphorus trihalide. It is known that compounds like
P(V) halides interact with C≡C bond to form P-C bonda. During this transformation, the
phosphorus atom changed from a five- to four-coordinated state. Using the properties of the
dioxaphospholes the reactions with terminal aryl- and alkylacetylenes were performed affording
series of 2,6-dichlorobezno[e]-1,2-oxaphosphinine-2-oxides (57) (Scheme 39). The regioselectivity of
the reaction depended not only on the substituents on the phosphorus atom but also in the aromatic
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moiety of the P,P,P-trihalobenzodioxaphospholes 56 as well as substituents on the alkynyl component.
In all reaction conditions, a halogenation of the aromatic fragment from the released halogen of the
phosphole occurred. In most of the performed reactions, a mixture of 2-halo-1,2-phosphorinines 57a
and 57b was produced and the regiochemistry of the process is still not identified. Several reaction
mechanisms were proposed based on the obtained results by different researchers utilizing variously
substituted starting compounds.
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chroman-2,4-diones 61 was presented by Fu and coworkers [73,74]. It began with the preparation of 
dialkyl benzylphosphonates in yields of 80–85%. The obtained benzylphosphonates were converted 
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corresponding phosphonates 60 in very good yields (75–82%). The third step included a 
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Compounds of type 61 (Figure 9) were obtained by a rearrangement reaction and their 
alkylating effect and cytotoxicity was tested on some human leukemia cell lines HL-60 and NALM-6 
[41]. They have shown high alkylating activity in respect to both cell lines but were less active then 
3-dialkylphosphonocoumarins 1l–p.  
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In subsequent papers, the electronic effect of donor and acceptor substituents at the arylacetylenes
on the reaction rate was tested [69–72]. With the enhancement of the electron-donor properties of the
substituent, the reaction rate increased. Moreover, donor and acceptor effect of the substituents at
fourth position in the 1,2-oxaphosphinine ring influenced the electrophilicity of the phosphorus atom.

The 2-halo-1,2-phosphorinine adducts 57a,b were converted into acids, amides and salts with
different counterions with the sole purpose to apply them as promising additives for polymers, ligands
for metal complex catalysis and etc.

3.1.4. Synthetic Protocols on A Reaction of Dialkyl Benzylphosphonates with Methyl Salicylate

A multistep synthesis of 3-aryl 4-hydroxy-1,2-oxaphosphorines 62 and 3-arylphospha-
chroman-2,4-diones 61 was presented by Fu and coworkers [73,74]. It began with the preparation of
dialkyl benzylphosphonates in yields of 80–85%. The obtained benzylphosphonates were converted
to the more reactive halogenides 59 and in a subsequent reaction with methyl salicylate afforded the
corresponding phosphonates 60 in very good yields (75–82%). The third step included a P-heterocyclic
compound formation in the presence of KOH in dry pyridine. The product of the cyclization process was
a mixture of two tautomers with predominate keto vs. enol-form, compounds 61 and 62 (Scheme 40).
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Compounds of type 61 (Figure 9) were obtained by a rearrangement reaction and their alkylating
effect and cytotoxicity was tested on some human leukemia cell lines HL-60 and NALM-6 [41].
They have shown high alkylating activity in respect to both cell lines but were less active then
3-dialkylphosphonocoumarins 1l–p.
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gold catalysts, silver salts and a protic acid. Different gold compounds were applied for optimizing 
the reaction conditions. The highest results (yield of 84%) were observed when a combination of 
Ph3P-AuCl, AgOTf and TfOH was utilized for the activation of the triple bond (Scheme 42). 
Conditions where the reaction mixture was heated at 80 °C or the process was performed at room 
temperature, were both applicable. However, the best results for the hydroarylation were obtained 
at room temperature. Substituted diphenyl and ethyl phenyl alkynylphosphonates 66 afforded a 
broad range of 1,2-oxaphosphorine adducts 67 in yields of 60-95%. Elaborating on the mechanism of 
the reaction, alkynylphosphonates with substituents on the phenyl ring attached to oxygen was also 
examined. A relationship between the steric effect of the group R2 and the obtained yields for 
1,2-benzoxaphosphorines 67 was noted, when the hindrance effect of the group increased the yields 
of 67 decreased from 94 (R2 = Ph) to 60% (R2 = n-Bu or C3H6Cl). 
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3.1.5. Synthetic Protocols on for Reactions of 2-Ethoxyvinylphosphonic Dichloride with
Substituted Phenols

The 1,2-oxaphosphorines 64a–c and 65a–c were isolated in low yields during the synthesis of
macrocyclic P-containing phenols [75]. The method utilized 2-ethoxyvinylphosphonic dichloride (63)
and resorcinols 13g–i in ratio 1:2 as starting materials and trifluoroacetic acid as catalyst (Scheme 41).
The ratio between the 1,2-oxaphosphorine adducts 64a and the macrocyclic compound was found
to be 1:1, whereas, compound 65a was isolated in a yield of only 5%. In a subsequent paper [76]
the reaction was carried out in dioxane as a solvent at 60 ◦C thus resulting in reduction of the yield
of 1,2-oxaphosphorine 64a. One of the possible explanations for the observed reaction course was
the formation of the halogenide of oxaphosphorine as the main intermediate in the synthesis of the
macrocycles and the corresponding oxaphosphorine 64a was formed as a result of a parallel interaction.
Therefore, a modified procedure was published in 2015 representing [77] a condensation method for
preparation only of 1,2-oxaphosphorines 64c and 65b,c in toluene as a solvent media under reflux in
yields of 75–85%.
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3.1.6. Synthetic Protocols for Gold-Catalyzed Hydroarylation of Aryl Alkynylphosphonates

An alternative approach [78] for the preparation of the target 1,2-oxaphosphorines involved an
intramolecular hydroarylation of a series of substituted aryl alkynylphosphonates in the presence of
gold catalysts, silver salts and a protic acid. Different gold compounds were applied for optimizing
the reaction conditions. The highest results (yield of 84%) were observed when a combination
of Ph3P-AuCl, AgOTf and TfOH was utilized for the activation of the triple bond (Scheme 42).
Conditions where the reaction mixture was heated at 80 ◦C or the process was performed at room
temperature, were both applicable. However, the best results for the hydroarylation were obtained
at room temperature. Substituted diphenyl and ethyl phenyl alkynylphosphonates 66 afforded a
broad range of 1,2-oxaphosphorine adducts 67 in yields of 60–95%. Elaborating on the mechanism
of the reaction, alkynylphosphonates with substituents on the phenyl ring attached to oxygen was
also examined. A relationship between the steric effect of the group R2 and the obtained yields for
1,2-benzoxaphosphorines 67 was noted, when the hindrance effect of the group increased the yields of
67 decreased from 94 (R2 = Ph) to 60% (R2 = n-Bu or C3H6Cl).
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Scheme 42. Gold-catalyzed hydroarylation of aryl alkynylphosphonates. 
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2-(aryl)arylphosphonates 

Intramolecular Pd-catalyzed oxidative-cyclization reaction for the formation of 
1,2-oxaphosphorine derivatives 69 involving ethyl 2-(phenyl)phenylphosphonate and substituted 
alkyl 2-(aryl)arylphosphonates 68 was presented by Lee et al. [79]. The best reaction conditions 
included a combination of 10 mol% Pd(OAc)2 and two equiv. PhI(OAc)2 with N-acetyl-L-leucine as 
an additional ligand for the Pd(II)–Pd(IV) conversion. Substituted 1,2-oxaphosphorines of type 69 
were isolated in yields of 50-72%, Scheme 43.  
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The study on the mechanism of the cyclization showed that the C-O bond formation was the 
rate-determining step in which Pd(II)/Pd(IV) catalytic cycle might be involved (Scheme 44). 
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Scheme 42. Gold-catalyzed hydroarylation of aryl alkynylphosphonates.

3.1.7. Synthetic Protocols for Pd-Catalyzed Intramolecular Cross-Coupling Reactions of
Ethyl 2-(aryl)arylphosphonates

Intramolecular Pd-catalyzed oxidative-cyclization reaction for the formation of
1,2-oxaphosphorine derivatives 69 involving ethyl 2-(phenyl)phenylphosphonate and substituted alkyl
2-(aryl)arylphosphonates 68 was presented by Lee et al. [79]. The best reaction conditions included a
combination of 10 mol % Pd(OAc)2 and two equiv. PhI(OAc)2 with N-acetyl-L-leucine as an additional
ligand for the Pd(II)–Pd(IV) conversion. Substituted 1,2-oxaphosphorines of type 69 were isolated in
yields of 50–72%, Scheme 43.
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Scheme 43. Intramolecular Pd-catalyzed cyclization reaction.

The study on the mechanism of the cyclization showed that the C-O bond formation was the
rate-determining step in which Pd(II)/Pd(IV) catalytic cycle might be involved (Scheme 44).
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3.2. Chemical Reactions of Alkyl 1,2-benzoxaphosphorin-3-carboxylates 2

3.2.1. Reactions Resulting in the Formation of 4-O-substituted 1,2-benzoxaphosphorines

3-aryl-4-hydroxy-1,2-oxaphosphorine compounds 61a–e and 3-arylphosphachroman-2,4- diones
62a–e were used [73] in reactions with acetic anhydride, methylsulfonyl chloride, diethyl
phosphorochloridate and p-toluenesulfonyl chloridate in the presence of K2CO3 in acetone (Scheme 45).
The corresponding 4-O-substituted 1,2-benzoxaphosphorines 70 were isolated in yields of 82–97%.
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The obtained compounds 61a–e, 62a–e and 70 were tested as inhibitors against the enzyme SHP-1,
a member of the protein tyrosine phosphatase (PTP) family responsible for the regulating of numerous
cellular processes. Irregular functioning of this protein family could lead to cellular dysfunction
and various diseases, thus, PTP-inhibitors could provide potential therapeutic agents against such
abnormalities. Most of compounds 70 exhibited certain membrane-permeable PTP-inhibitor activity,
however, only the 1,2-benzoxaphosphorines bearing R3 = diethoxyphosphoryl group, R2 = Cl and R1

= Et indicated better inhibition properties.
The same mixture of tauromers 61a–e and 62a–e was implied [74] in an alkylation reaction with

series of alkyl halides. Products of C- and O-alkylation 70 and 71 were isolated in total yields of 77–90%
(Scheme 46). The ratio of the two products depended on the steric effect of the R2-substituent on the
benzene ring in third position of the oxaphosphorin systems. Substituents at ortho-position favored the
formation of O-alkylated product. The steric hindrance effect of the alkyl halide was also apparent. In
the case of CH3I the ratio was shifted to the C-alkylated product whereas with bulky alkyl groups the
proportion of the two products was almost equal.
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3.2.2. Participation in Coupling Reactions

In order to construct a variety of complex structures, 4-tosylphosphacoumarins of type 70 were
applied [73] in Sonogashira and Suzuki coupling reactions in the presence of 10% mol PdCl2(PPh3)2

and CuI or Et3N as an additive affording the formation of 4-aryl- and 4-alkynylderivatives 72 and 73
(Scheme 47).
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Furthermore, compounds 76 were used as diene systems and underwent inverse Diels-Alder
reactions with enamines (Scheme 49). Subsequent 1,2-elimination/dehydrogenation afforded the
fluorescent 1,2-benzoxaphosphorine structures of type 77a,b in very good yields (72–98%).
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4. Reactions of [2+2] and [3+2] Cycloadditions of Dialkyl
2-oxo-2H-1-benzopyran-3-phosphonates and Alkyl 1,2-benzoxaphosphorin-3-carboxylates

4.1. [2+2] Cycloaddition Reactions

The photochemical dimerization of coumarins is frequently used in organic synthesis. The possible
stereoisomers of the coumarin structure are given in Figure 10, representing different C3=C4 double
bond cyclization products.
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Figure 10. Cyclized stereoisomers.

Alkyl 1,2-benzoxaphosphorine-3-carboxylates have shown similar behavior [82], leading to the
formation of only anti-head-to-tail dimers 78 and 79 (Scheme 50). The reaction was accomplished in a
series of solvents from which protic polar solvents accelerate the dimerization process under sunlight
irradiation. Electron-withdrawing substituents in the benzene ring of 2 stabilized the intermediates
formed during cyclization and enhanced the yield of the stereoisomers, whereas electron-donating
groups such as diethylamino did not favor the performed interaction.
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Quantum-chemical calculations on the mechanism of the dimerization proposed an asynchronous
[2+2] reaction with dominant head-to-tail regioisomers due to the formation of diradicals or dipolar
intermediate through C3-C4′ interaction (Scheme 50).
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The different chemical behavior of the two isomers 1 and 2 toward [2+2] cycloaddition reactions
was illustrated by their ability to form the corresponding dimers [20]. While 1,2-benzoxaphosphorines
2 easily gave the head-to-tail adducts, 3-diethylphosphonocoumarins 1 have shown lack of reactivity
in the described transformation. This observation was due to the more aromatic characteristic of the
C3=C4 double bond in the lactone ring of the phosphonocoumarin moiety.

4.2. [3+2] Cycloaddition Reactions

Pyrazoline derivatives of 3-diethylphosphonocoumarin 80a,b, 1,2-benzoxa- phosphorine-3-
carboxylates and 1,2-benzoxaphosphorin-3-phosphonates 81 were prepared [64] in reactions with
ethyl diazoacetate. The solvent mixture for the three coumarins was different based on their solubility
and the solubility of the products. Benzene and chloroform were preferred as solvents in the case of
coumarins 1a and 1c and pyrazolines 80a,b were isolated in moderate yields (Scheme 51).
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In general, 1,2-benzoxaphosphorines participate in the cycloaddition reaction in a short time
giving higher yields due to the activated and more isolated double bond in the oxaphosphorine ring
(Scheme 52). The outcome from the reaction of 1,2-benzoxaphosphorine 2d was a mixture of two
epimeric pyrazolines 81a–c and 82a–c in different ratios. The ratio was influenced by the solvent
polarity and the desired cycloaddition products were isolated in good to excellent overall yields
ranging from 70% (60 days; benzene/n-hexane; ratio 81:82—1:0.25) to 95% (30 days; CH2Cl2/n-hexane;
ratio 81:82—1:0.14). The ether/n-hexane solvent mixture occurred to be the best condition for
1,2-benzoxaphosphorin-3-phosphonates 55a–b affording target products 81b,c/82b,c in overall yield of
76% and 70%, respectively. In all the cases the major isomer was 81a–c with cis-disposition of P=O
group and substituent at 3a-position (COOEt, P(O)(OEt)2).
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5. Conclusions

The interest towards dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates and alkyl
1,2-benzoxaphosphorin-3-carboxylates as precursors for biologically active compounds allowed us to
summarize the scientific research on their synthesis and participation in conjugate addition reactions.
In the beginning the methods for preparation of 3-dialkylphosphonocoumarins were discussed, where
Knoevenagel condensation reactione, application of phosphoryl ketenimines or vinylphosphonates,
phosphorylation of coumarins, three-component and tandem coupling reactions or rearrangement
processes, etc. were presented. The electronic effect of the substituents on the used substrates as well
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as the applied reaction conditions were accounted for by presenting the mechanisms, where they were
given, and the corresponding results from the studies were discussed. The comparisons between the
developed methods highlighted the advantages and drawbacks in the selected research papers. The
protocols for the synthesis of alkyl 1,2-benzoxaphosphorins were also summarized, where reactions
of oxaphospholes with terminal acetylenes, dialkyl benzylphosphonates with methyl salicylate, etc.
were analyzed.

The chemical behavior of dialkyl 2-oxo-2H-1-benzopyran-3-phosphonates in conjugate addition
reactions with different nucleophilic reagents—hydride ion, organometallic and CH-acidic
compounds—as well as reactions of [2+2] and [3+2] cycloaddition were reviewed in details.
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