
molecules

Article

Comparative Analysis of Radical Adduct Formation
(RAF) Products and Antioxidant Pathways between
Myricetin-3-O-Galactoside and Myricetin Aglycone

Xican Li 1,2,†,* , Xiaojian Ouyang 1,2,†, Minshi Liang 1,2 and Dongfeng Chen 3,4,*
1 Innovative Research & Development Laboratory of TCM of Guangdong Province, University of Chinese

Medicine, Guangzhou 510006, China
2 School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine, Guangzhou 510006, China
3 School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
4 The Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine,

Guangzhou 510006, China
* Correspondence: lixican@126.com (X.L.); chen888@gzucm.edu.cn (D.C.)
† These authors contributed equally to this work.

Received: 10 July 2019; Accepted: 29 July 2019; Published: 30 July 2019
����������
�������

Abstract: The biological process, 3-O-galactosylation, is important in plant cells. To understand
the mechanism of the reduction of flavonol antioxidative activity by 3-O-galactosylation,
myricetin-3-O-galactoside (M3OGa) and myricetin aglycone were each incubated with 2 mol
α,α-diphenyl-β-picrylhydrazyl radical (DPPH•) and subsequently comparatively analyzed for radical
adduct formation (RAF) products using ultra-performance liquid chromatography coupled with
electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS)
technology. The analyses revealed that M3OGa afforded an M3OGa–DPPH adduct (m/z 873.1573) and
an M3OGa–M3OGa dimer (m/z 958.1620). Similarly, myricetin yielded a myricetin–DPPH adduct (m/z
711.1039) and a myricetin–myricetin dimer (m/z 634.0544). Subsequently, M3OGa and myricetin were
compared using three redox-dependent antioxidant analyses, including DPPH•-trapping analysis,
2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping analysis, and •O2

inhibition analysis. In the three analyses, M3OGa always possessed higher IC50 values than those
of myricetin. Conclusively, M3OGa and its myricetin aglycone could trap the free radical via a
chain reaction comprising of a propagation step and a termination step. At the propagation step,
both M3OGa and myricetin could trap radicals through redox-dependent antioxidant pathways.
The 3-O-galactosylation process, however, could limit these pathways; thus, M3OGa is an inferior
antioxidant compared to its myricetin aglycone. Nevertheless, 3-O-galactosylation has a negligible
effect on the termination step. This 3-O-galactosylation effect has provided novel evidence that the
difference in the antioxidative activities of phytophenols exists at the propagation step rather than the
termination step.

Keywords: myricetin-3-O-galactoside; myricetin; 3-O-galactosylation; antioxidant pathway; radical
adduct formation

1. Introduction

Galactosylation is an important biological process in cellular metabolism [1,2] that is catalyzed by
certain enzymes, such as bovineβ (1,4)-galactosyltransferase [2], Sb3GT1 (UGT78B4) [3], AgUCGalT1 [4],
and α-1,3-galactosyltransferase (α3GalT) [5]. Through galactosylation, plant cells can link a galactose
residue to the 3-O atom in flavonol. This process is termed “3-O-galactosylation” [6]. The 3-O-
galactosylation process results in extensive coexistence of flavonol 3-O-galactoside and flavonol
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aglycone in the same plant. Thus far, at least six pairs of flavonol 3-O-galactoside and flavonol aglycone
have been found in identical plants (Supplementary File S1) [7–12].

Flavonol is well known as an effective natural antioxidant. Experimental [13–15] and theoretical
studies [16–18] have indicated that the antioxidant activity of flavonol is closely associated with the
presence of 3-OH. Accordingly, 3-O-galactosylation is believed to reduce the antioxidant activity of
flavonol, although no study on the mechanism of this reduction has been conducted.

Consequently, myricetin-3-O-galactoside (M3OGa) and its myricetin aglycone were selected as the
representatives for the comparative study. As shown in Figure 1A, M3OGa bears a β-galactose residue
at its 3-O position; thus, it can be regarded as the 3-O-galactosylation derivative of myricetin. If any
difference in their antioxidant activities exists, it can be attributed to 3-O-galactosylation. Recently,
M3OGa has been reported to coexist with its myricetin aglycone in white myrtle [11] and Nelumbo
nucifera [12]. Their coexistence in the same plant has actually enhanced the comparability and
biologically relevance of this comparative study.

Figure 1. Structures of myricetin-3-O-galactoside (M3OGa) (A) and myricetin (B).

In the comparative study, the final products of the interaction of M3OGa and myricetin
aglycone with α,α-diphenyl-β-picrylhydrazyl radical (DPPH•) were severally analyzed using
leading-edge ultra-performance liquid chromatography coupled with electrospray ionization
quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS) technology to test
the possibility of radical adduct formation (RAF). The high resolution of the Q-TOF-MS technology
ensures the reliability of the chemical analysis. Based on the RAF product analysis, M3OGa and
myricetin were further investigated for their antioxidant pathways using relevant chemical approaches.
Expectedly, the series of investigative experiments will provide profound knowledge on the mechanism
of the reduction of the antioxidant activity of flavonol by 3-O-galactosylation.

In addition, the understanding of the 3-O-galactosylation process is expected to be of benefit
to other types of 3-O-glycosylation processes, such as 3-O-glucosylation, 3-O-rhamnglycosylation,
and 3-O-arabinosylation. This is because these 3-O-glycosylation processes are essentially
not different from 3-O-galactosylation, and flavonoid-3-O-glycosides are present in plants (e.g.,
myricetin-3-O-glucoside, myricetin-3-O-rhamnoside, and myricetin-3-O-arabinoside). From an
antioxidant chemistry viewpoint, flavonol (or its glucoside) has the same antioxidant pathways
as those of other phytophenols [19–22]. Thus, the analysis of the RAF products, based on the
UPLC-ESI-Q-TOF-MS technology, will provide novel and reliable insights on the antioxidant chemistry
of all types of phytophenols, especially flavonoid 3-O-glucosides (e.g., isorhamnetin 3-O-galactoside [7],
hyperin [8], trifolin [9], and syringetin 3-O-galactoside [10]) and anthocyanin 3-O-galactosides (e.g.,
cyanidin-3-O-galactoside [23] and delphinidin-3-O-galactoside [24]).

2. Results and Discussion

According to previous reports [25,26], phytophenol antioxidants can afford final products through
the RAF reaction when they interact with free radicals [27–29]. Thus, the RAF product analysis may
be a potential tool for exploring antioxidant chemistry. The present study, however, used cut-edging
UPLC-ESI-Q-TOF-MS technology to analyze the RAF products of M3OGa and myricetin interacting
with 2 mol DPPH• radical.
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After treatment with 2 mol DPPH•, 1 mol of M3OGa yielded a chromatographic peak at a retention
time (Rt) of 2.486 min in the analysis. Moreover, the peak further afforded an m/z 873.1573 molecular
ion peak in the MS spectra (Figure 2D). This value (m/z 873.1573) represented the loss of exactly one H
atom (m/z 1.0091 [30]) as compared to the sum of the molecular weights of M3OGa (m/z 480.0858) and
DPPH• (m/z 394.0806, Supplementary File S2). Thereby, M3OGa may combine with DPPH to generate
an H atom and an adduct. The adduct can be further verified by the two characteristic fragments,
m/z 196 and 226 (Figure 2F). Our previous studies indicated that DPPH• or the DPPH adduct always
affords m/z 196 and 226 fragments in the negative ion model MS spectra [13,27,31–34]. Considering
that the above adduct is indeed M3OGa–DPPH, the relative deviation between the experimental
value (m/z 872.1482) and the calculated molecular weight value (M.W. 872.1535) was only 6.1 × 10−6.
Therefore, an M3OGa–DPPH adduct was definitively formed when M3OGa interacted with DPPH•.
Based on previously reported studies [13,27,31–34], the MS spectra of the M3OGa–DPPH adduct could
be elucidated, as shown in Figure 3A.
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Figure 2. Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of myricetin-3-
O-galactoside (M3OGa) when the formula, [C21H20O13-H]−, was extracted; (B) primary MS spectra
of M3OGa; (C) secondary MS spectra of M3OGa; (D) chromatogram of the radical adduct formation
(RAF) product of M3OGa–DPPH when the formula, [C39H31N5O19-H]−, was extracted; (E) primary
MS spectra of the RAF product of M3OGa–DPPH; (F) secondary MS spectra of the RAF product
of M3OGa–DPPH; (G) chromatogram of possible dimeric products of M3OGa when the formula,
[C42H38O26-H]−, was extracted; (H) primary MS spectra of possible dimeric products of M3OGa;
(I) secondary MS spectra of the RAF product of the dimeric products of M3OGa; (J) chromatogram
of myricetin when the formula, [C15H10O8-H]−, was extracted; (K) primary MS spectra of myricetin;
(L) secondary MS spectra of myricetin; (M) chromatogram of the RAF product of myricetin–DPPH
when the formula, [C33H21N5O14-H]−, was extracted; (N) primary MS spectra of the RAF product of
myricetin–DPPH; (O) secondary MS spectra of the RAF product of myricetin–DPPH; (P) chromatogram
of possible dimeric products of M3OGa when the formula, [C30H18O16-H]−, was extracted; (Q) primary
MS spectra of possible dimeric products of myricetin; (R) secondary MS spectra of the RAF product of
the dimeric products of myricetin.
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Figure 3. Proposed MS elucidations of the RAF reaction products between M3OGa and the DPPH•

radical. (A) M3OGa–DPPH adduct; (B) M3OGa–M3OGa dimer (the MS spectra were in the negative
ion mode. The accurate m/z values are simply expressed as integers. Other linking sites between
the M3OGa and DPPH moieties and other reasonable cleavages should not be excluded in the MS
elucidation).

Besides the adduct, a flavonol dimer was formed from the interaction with the free radical [35].
As illustrated in Figure 2G–H, M3OGa (m/z 480.0858) afforded an MS peak with m/z 958.1620 at an
Rt of 1.374 min. This strongly indicates that two M3OGa molecules dimerized into M3OGa–M3OGa.
During the dimerization process, two H atoms may have been lost via H atom transfer (HAT) pathways
(see below).

Thus, it is clear that M3OGa treated with 2 mol DPPH• can yield an M3OGa–DPPH adduct and
an M3OGa–M3OGa dimer. The adduct and dimer are the two main products of the RAF reactions.
Similarly, myricetin could also produce a myricetin–DPPH adduct and myricetin–myricetin dimers
(Figure 2M–P). The proposed RAF products of the myricetin reaction with DPPH• and their MS
elucidations are shown in Figure 4. The generation of two types of RAF products, however, could offer
further insights into the antioxidant chemistry of M3OGa and myricetin. Considering that the reaction
proceeds via a concerted pathway, excessive DPPH• (2 mol) will synchronously link the M3OGa
molecule to produce an M3OGa–DPPH adduct and no M3OGa–M3OGa dimer. Conversely, considering
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that the reaction is ion-mediated (rather than radical-mediated), M3OGa may be converted into M3OGa
(or M3OGaΘ). M3OGa (or M3OGaΘ) ions cannot link with each other. The co-existence of the
M3OGa–DPPH adduct and M3OGa–M3OGa dimer in the product mixture strongly suggests that the
DPPH-trapping reaction of M3OGa is a radical-mediated stepwise reaction. The reactivity of the free
radicals is so high that their stepwise reaction becomes a chain reaction. This agrees with the previous
literatures [36,37]. Furthermore, the literature has indicated that radical-trapping chain reactions can
be fulfilled via two steps (propagation and termination). In accordance with this, the DPPH•-trapping
reaction of M3OGa can be proposed, as shown in Figure 5.

Figure 4. Proposed MS elucidations of the RAF reaction products between myricetin and the DPPH•

radical. (A) Myricetin–DPPH adduct; (B) myricetin–myricetin dimer (the MS spectra were in the
negative ion mode. The circle indicates σ bond rotation. The accurate m/z values are simply expressed as
integers. Other linking sites between the myricetin and DPPH moieties and other reasonable cleavages
should not be excluded in the MS elucidation).
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Figure 5. Proposed chain reaction of M3OGa trapping 2 mol DPPH•.

As shown in Figure 5, the intermediate radicals play a key role in the radical chain reaction.
Intermediate radicals were formed when DPPH• accepted an H atom (H•) and the M3OGa antioxidant
donated an H atom (H•). Several successful pathways have been reported to achieve this change.
The first pathway is called the HAT pathway, where an H atom as one unit is directly transferred from
an antioxidant molecule to a free radical. In fact, HAT has been suggested as the main pathway of the
DPPH•-trapping reaction [38]. The results in Supplementary File S3 show that M3OGa and myricetin
increased their DPPH•-trapping abilities in a dose-dependent manner, implying that both M3OGa
and myricetin might have performed their antioxidant activities via the HAT pathway. This may
responsible for the above observation of m/z 1.0091.

Besides the HAT pathway, other pathways may also occur, including mere electron transfer
(ET) and ET plus proton transfer (PT). Furthermore, the ET plus proton transfer pathway can
be classified into four subtypes, i.e., proton loss single electron transfer (SPLET) [19,37,39–41],
sequential electron-proton transfer (SEPT) [42], proton-coupled electron transfer (PCET) [19,37,40,41,43],
and concerted proton–electron transfer (CPET) [44]. To test the possibility of the ET pathway, M3OGa
and myricetin were determined using PTIO•-trapping at pH 4.5. Cyclic voltammetry evidence indicated
that PTIO•-trapping at pH 4.5 is an ET-mediated process [45]. The results in Supplementary File S3 show
that M3OGa and myricetin effectively trapped the PTIO• radical at pH 4.5, implying that they were
able to undergo ET to trap the radical during the propagation step. At pH 7.4, M3OGa and myricetin
could also dose-dependently trap the PTIO• radical (Supplementary File S3). However, their IC50

values were lower than those at pH 4.5 (Table 1). These effects of pH suggest that the H+-transfer
pathway might mediate PTIO•-trapping during the propagation step. In short, the PTIO•-trapping
analyses at both pH 4.5 and 7.4 indicate that ET plus PT serve as the antioxidative pathway of M3OGa
and myricetin in physiological aqueous solution.

Table 1. IC50 values (µM) of M3OGa and myricetin in the antioxidant spectrophotometric analyses.

Antioxidant Analyses M3OGa Myricetin Trolox

DPPH•-trapping 12.9 ± 0.3 b 10.7 ± 0.3 a 26.4 ± 2.5
PTIO•-trapping (pH 4.5) 263.7 ± 3.5 b 132.9 ± 5.1 a 220.1 ± 4.6
PTIO•-trapping (pH 7.4) 131.2 ± 5.1 b 81.5 ± 2.4 a 142.9 ± 5.0

•O2
−-trapping 88.9 ± 7.2 b 73.3 ± 1.9 a 2777.5 ± 35.3

The IC50 value (in µM) was defined as the final concentration of 50% radical inhibition or relative reducing power,
determined by linear regression analysis and expressed as the mean ± SD (n = 3). The linear regression was analyzed
using version 6.0 of the Origin professional software. The IC50 values with different superscripts (a or b), between
M3OGa and myricetin, are significantly different (p < 0. 05). Trolox is the positive control. The dose response curves
are listed in Supplementary File S3, Figures S1–S4.

The above two free radicals, PTIO• and DPPH•, actually cannot be found in cells, and they
are merely chemical probes for antioxidant study. Dissimilar to the case with the two free radicals,
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the superoxide radical (•O2
−) occurs in cells and is a member of the reactive oxygen species (ROS)

family. Previous studies have suggested that the scavenging of the superoxide radical is involved in ET
and PT [46–50]; this was further supported by our observations that M3OGa and myricetin successfully
scavenged •O2

− in a concentration-dependent manner (Supplementary File S3).
Moreover, all these antioxidant pathways involve ET, which is the basis of the redox

reaction. Therefore, these pathways could be collectively termed as redox-dependent pathways.
The redox-dependent pathways, however, occur predominantly in the propagation step (Figure 5).
In these redox-dependent antioxidant analyses, M3OGa always afforded higher IC50 values (µM) than
those of myricetin (Table 1), suggesting that the 3-O-galactosylation process limits the redox-dependent
pathways in the propagation step. Such a detrimental effect may be attributed to the fact that
3-O-galactosylation has reduced the amount of phenolic –OH. In addition, the conformation analysis
revealed that the 3-O-galactosylation process introduces a bulky β-galactose residue to twist the planar
molecule (Figure 6). The breakage of the planarity has been reported to weaken the π-π conjugation [51]
and further reduce the antioxidant activity [52]. This makes M3OGa an inferior antioxidant compared
to its myricetin aglycone.
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view of M3OGa; (B) front view of myricetin; (C) right side view of M3OGa; (D) right side view
of myricetin. The preferential conformation was analyzed using the Chem3D Pro14.0 program
(PerkinElmer, Waltham, MA, USA).

Nevertheless, M3OGa and myricetin have previously been shown to similarly produce a dimer
product and an adduct product when interacting with the DPPH radical. This similarity indicates that
the 3-O-galactosylation process could slightly affect the RAF pathways and that it plays a negligible
role in the termination step. In other words, 3-O-galactosylation, as one of the structural factors in
phytophenols, can only undergo the propagation step to exert its effect.

Besides the 3-O-galactosylation process, other structural factors may also affect the antioxidant
activity of phytophenols, such as C-glycosidation, glucuronidation, isoprenylation, methylation,
geometrical configuration, and p-coumaroylation [32,52–56]. However, the effects of all these structural
factors were thought to be concentrated in the propagation step.

As reported in the literature [19,37], during the chain reaction, the propagation step proceeds
via the HAT (or ET plus PT) pathway to generate intermediate radicals. The previous literature has
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suggested that if undergoing the HAT pathway, phytophenols may require 77.0–86.7 kcal/mol BDE
(bond dissociation enthalpy or bond dissociation energy) to produce intermediate radicals [19,37].
However, if undergoing the ET plus PT pathway, phytophenols may require ionization energy (IE) and
vertical electron affinity (EA) [57,58]. For instance, the IE and EA values of the xanthones family were
100 kcal/mol and 40 kcal/mol, respectively [59]. This implies that the generation of radicals is always
difficult, regardless of the antioxidant pathway employed.

The termination step, however, occurs predominantly via the RAF pathway, a bonding reaction.
Conventionally, the bonding reaction is exothermic; thus, the termination step is spontaneous and
rapid. Therefore, the rate at which the antioxidant traps the free radical depends on the propagation
step, and the propagation step is the rate-determining step of the whole radical trapping process
of phytophenols. The structural factors (such as skeleton or substitute) can classify phytophenols
into different types or subtypes; however, they can only impose their effects during the propagation
step and not the termination step. Conversely, phytophenols have essentially no difference in their
antioxidant chemistry, and their antioxidant reactions are radical-mediated chain reactions [19–22].
Thus, it can be inferred that for the phytophenols family, the differentiation of antioxidant activities
may occur at the propagation step rather than the termination step. Generally, this was in agreement
with our novel evidence.

3. Materials and Methods

3.1. Chemicals

M3OGa (C21H20O13, CAS number: 15648-86-9, M.W.: 480.4, purity: 98%, Supplementary File S4)
was obtained from BioBioPha Co., Ltd. (Kunming, China); myricetin (C15H10O8, CAS number: 529-44-2,
M.W.: 318.2, purity: 98%, Supplementary File S5) was obtained from Chengdu Biopurify Phytochemicals
Ltd. (Chengdu, China). Pyrogallol and (±)-6-hydroxyl-2,5,7,8-tetramethylchromane-2-carboxylic acid
(Trolox) were obtained from Sigma-Aldrich (Shanghai, China). The α,α-Diphenyl-β-picrylhydrazyl
radical (DPPH•, C18H12N5O6) was obtained from Aladdin Chemical Ltd. (Shanghai, China).
The 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•) was obtained from TCI
Chemical Co. (Shanghai, China). Tris-hydroxymethyl amino methane (Tris) was obtained from
Dingguo Biotechnology Ltd. (Beijing, China). Methanol and the other reagents were purchased from
Guangdong Guanghua Chemical Plants Co., Ltd. (Shantou, China).

3.2. UPLC-ESI-Q-TOF-MS Analysis of DPPH• Reaction Products with M3OGa and Myricetin

The reaction of DPPH• with M3OGa and its myricetin aglycone proceeded under the conditions
described in a previous paper [60]. In brief, a methanol solution of M3OGa was mixed with a
methanol DPPH• solution with a molar ratio of 1:2, and the resulting mixture was incubated for
24 h at room temperature. Subsequently, the product was passed through a 0.22 µm filter for
UPLC-ESI-Q-TOF-MS analysis.

The UPLC-ESI-Q-TOF-MS analysis was based on the method described in our previous study [61].
The UPLC-ESI-Q-TOF-MS analysis system was equipped with a Phenomenex Luna C18 column (2.1 mm
inner diameter × 100 mm, 1.6 µm, Phenomenex Inc., Torrance, CA, USA). The mobile phase was
employed for the elution of the system and consisted of a mixture of methanol (phase A) and 0.1%
formic acid water (phase B). The column was eluted at a flow rate of 0.2 mL/min with the following
gradient elution program: 0–2 min, maintain 30% B; 2–10 min, 30–0% B; 10–12 min, 0–30% B. The sample
injection volume was set at 3 µL for the separation of the different components. The Q-TOF-MS
analysis was performed on a Triple TOF 5600plus mass spectrometer (AB SCIEX, Framingham, MA,
USA) equipped with an ESI source, which was run in the negative ionization mode. The scan range
was set at 100–2000 Da. The system was run with the following parameters: ion spray voltage, −4500 V;
ion source heater temperature, 550 ◦C; curtain gas pressure (CUR, N2), 30 psi; nebulizing gas pressure
(GS1, Air), 50 psi; Tis gas pressure (GS2, Air), 50 psi. The declustering potential (DP) was set at
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−100 V, whereas the collision energy (CE) was set at −45 V with a collision energy spread (CES) of 15 V.
For comparison, the myricetin mixed with methanol DPPH• solution was also analyzed under the
above UPLC–ESI–Q–TOF–MS conditions.

3.3. DPPH• Radical-Trapping Analysis

The DPPH• radical-trapping was determined as previously described [62]. Briefly, 80 µL of
DPPH• solution (0.1 mol/L) was mixed with methanolic sample solutions at the indicated concentration
(x = 0–10 µL, 0.05 mg/mL). The mixture was maintained at room temperature, and the absorbance
was measured at 519 nm on a microplate reader. The percentage of DPPH• scavenging activity was
calculated as follows (Equation (1)):

Inhibition % =
A0 −A

A0
× 100%, (1)

where A0 is the absorbance of the control without the sample, and A is the absorbance of the reaction
mixture with the sample.

3.4. PTIO•-Trapping Spectrophotometric Analysis

The PTIO•-trapping analyses (at pH 4.5 or pH 7.4) were conducted based on our previously
reported method [63]. In brief, the test sample solution (x = 4–20 µL, 0.25 mg/mL) was added to (20 − x)
µL of 95% ethanol, followed by 80 µL of an aqueous PTIO• solution. The aqueous PTIO• solution was
prepared using a phosphate-buffer solution (0.1 mM, pH 4.5 or pH 7.4). The mixture was maintained
at 30 °C for 1 h, and the absorbance was subsequently measured at 560 nm using a microplate reader.
The PTIO• percentage inhibition was calculated based on the formula presented in Section 3.3.

3.5. Superoxide Anion (•O2
−)-Scavenging Spectrophotometric Analysis (Pyrogallol Autoxidation Method)

The superoxide anion (•O2
−)-trapping activity was determined using a method previously

developed in our laboratory [64]. Briefly, a 5–25 µL sample solution (0.5 mg/mL) was added to a 0.05 M
Tris–HCl buffer (pH 7.4) containing Na2EDTA (1 mM), and the total volume was adjusted to 980 µL
using a buffer. Pyrogallol (20 µL) (1,2,3-trihydroxylbenzene) solution (60 mM in 1 mM HCl) was added
to the sample, and the resulting mixture was vigorously agitated before being analyzed at 325 nm
every 30 s for 5 min. The •O2

− radical-trapping ability was calculated as follows (Equation (2)):

Inhibition % =

(
∆A325nm,control

T

)
−

(
∆A325nm,sample

T

)
(

∆A325nm,control
T

) × 100%, (2)

where ∆A325 nm, control is the increase in the A325 nm value of the mixture without the sample;
∆A325 nm, sample is the increase in the A325 nm value of the mixture with the sample; T is the time
required for the determination (5 min in this case).

3.6. Preferential Conformation Analysis by Computational Chemistry and Molecular Weight Calculation

The preferential conformation was analyzed based on force fields by computational chemistry.
In brief, the energy minimization of both M3OGa and myricetin were respectively calculated through
molecular mechanics II (MM2) using the Chem3D Pro14.0 program (PerkinElmer, Waltham, MA,
USA) [65–67]. The preferential conformation was expressed using the molecular models in Figure 6A–D.

The Q-TOF-MS analysis is characterized by highly accurate m/z values, particularly molecular
weights. The molecular weight calculation based on the formula is vital for comparison with the
m/z values from the Q-TOF-MS analysis. In the present study, the molecular weight calculations of
M3OGa and myricetin were conducted based on the accurate relative atomic masses. The relative
atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively [30].
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3.7. Statistical Analysis

The results were reported as the mean ± SD of three independent measurements, the IC50 values
were calculated by linear regression analysis, and independent-sample t-tests were performed to
compare the different groups. A p-value of less than 0.05 was considered statistically significant.
The statistical analyses were performed using the SPSS software 17.0 (SPSS Inc., Chicago, IL, USA) for
Windows. All of the linear regression analyses described in this paper were processed using version
6.0 of the Origin professional software.

4. Conclusions and Perspective

Myricetin-3-O-galactoside (M3OGa) and myricetin aglycone may trap free radicals via a
chain reaction comprising of a propagation step and a termination step. The 3-O-galactosylation
process can limit the redox-dependent antioxidant pathways at the propagation step; this makes
myricetin-3-O-galactoside an inferior antioxidant compared to its aglycone. Nevertheless, both can
afford similar RAF products at the termination step. This effect of 3-O-galactosylation confirmed that
the antioxidative activities of phytophenols are differentiated at the propagation step rather than the
termination step.

Supplementary Materials: The following are available: Supplementary File S1. Flavonol-3-O-galactoside and
its aglycone; Supplementary File S2. The mass spectrum of the DPPH free radical; Supplementary File S3.
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ROS reactive oxygen species
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SPSS statistical product and service solutions
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quadrupole time-of-flight tandem mass spectrometry
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