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Abstract: Using targeted ligands to deliver alpha-emitting radionuclides directly to tumor cells has
become a promising therapeutic strategy. To calculate the radiation dose to patients, activities of
parent and daughter radionuclides must be measured. Scintillation detectors can be used to quantify
these activities; however, activities found in pre-clinical and clinical studies can exceed their optimal
performance range. Therefore, a method of correcting scintillation detector measurements at higher
activities was developed using Monte Carlo modeling. Because there are currently no National
Institute of Standards and Technology traceable Actinium-225 (225Ac) standards available, a well-type
ionization chamber was used to measure 70.3 ± 7.0, 144.3 ± 14.4, 222.0 ± 22.2, 299.7 ± 30.0, 370.0 ±
37.0, and 447.7 ± 44.7 kBq samples of 225Ac obtained from Oak Ridge National Lab. Samples were
then placed in a well-type NaI(Tl) scintillation detector and spectra were obtained. Alpha particle
activity for each species was calculated using gamma abundance per alpha decay. MCNP6 Monte
Carlo software was used to simulate the 4π-geometry of the NaI(Tl) detector. Using the ionization
chamber reading as activity input to the Monte Carlo model, spectra were obtained and compared to
NaI(Tl) spectra. Successive simulations of different activities were run until a spectrum minimizing
the mean percent difference between the two was identified. This was repeated for each sample
activity. Ionization chamber calibration measurements showed increase in error from 3% to 10% as
activities decreased, resulting from decreasing detection efficiency. Measurements of 225Ac using
both detector types agreed within 7% of Oak Ridge stated activities. Simulated Monte Carlo spectra
of 225Ac were successfully generated. Activities obtained from these spectra differed with ionization
chamber readings up to 156% at 147.7 kBq. Simulated spectra were then adjusted to correct NaI(Tl)
measurements to be within 1%. These were compared to ionization chamber readings and a response
relationship was determined between the two instruments. Measurements of 225Ac and daughter
activity were conducted using a NaI(Tl) scintillation detector calibrated for energy and efficiency and
an ionization chamber calibrated for efficiency using a surrogate calibration reference. Corrections
provided by Monte Carlo modeling improve the accuracy of activity quantification for alpha-particle
emitting radiopharmaceuticals in pre-clinical and clinical studies.
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1. Introduction

The use of targeted ligands to deliver alpha particles directly to cancer cells has become a promising
strategy to treat tumors [1–4]. This is because of their short path length of 40–80 µm and high linear
energy transfer (LET~100 keV/µm) [5]. These two properties make alpha particles highly cytotoxic to
targeted cells, with little damage to surrounding normal cells.

Owing to the large amount of energy deposited by alpha particles, it is important to quantify the
radioactivity of the targeted radiopharmaceutical initially injected and its subsequent biodistribution,
pharmacokinetics, and radiation dose deposited in various tissues. As a result of its short path length,
the direct measurement of alpha particles’ activity in tissues is not possible in most, if not all, preclinical
scenarios. If a parent metastable radioisotope also emits gamma rays, indirect methods of detection
such as gamma spectroscopy can be used to estimate activity using scintillation detectors and well-type
ion chambers that are commonly available in research laboratories and nuclear medicine clinics.

Actinium-225 (225Ac) was chosen as the radionuclide for alpha-particle therapy (TAT) targeted
to the melanocortin 1 receptor for treatment of metastatic uveal melanoma [6], the prostate-specific
membrane antigen (PSMA) for metastatic prostate cancer [1], and CD33 for acute myeloid leukemia [7].
Clinical studies have been carried out for the PSMA and CD33 TATs and others in pre-clinical
development will soon go to clinical trials [6]

225Ac has a 10-day half-life and decays via six daughter radionuclides resulting in a net of four
alpha particles per Actinium disintegration (Figure 1.) [8,9]. 225Ac and two of its daughters, 221Fr and
213Bi, also decay with accompanying isomeric gamma photons. Using gamma detection systems, such
as ion chambers or scintillation detectors, it is possible to indirectly determine the alpha activity by
gamma ray abundance per decay conversions.
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Figure 1. Decay chain of Actinium-225 (225Ac).

In the clinic, ion chambers are readily available and their use is the standard of practice for
checking activities for diagnostic and therapeutic agents. An ion chamber reading does not discriminate
the collected charge between the parent and daughter radionuclides because it does not provide
energy identification. In these situations, gamma spectroscopy using scintillation or semiconductor
detectors, such as a sodium iodide doped with thallium scintillation detector [NaI(Tl)] or a high purity
germanium (HPGe) detector, can be used. With this approach, it is possible to determine the activity of
each gamma emitting daughter, which gives more information on how the decay species behave.
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While HPGe seems to be the attractive option owing to its superior energy resolution, its
performance suffers as a result of its low detection efficiency, cost, and requirement of sophisticated
cooling systems. Despite the advantages of the NaI(Tl), dead time losses at higher activities and poor
energy resolution may also provide incorrect activity measurements, leading to underestimation or
overestimation of radiation dose [10].

In pre-clinical and clinical biodistribution studies, activity measurements of collected blood
and tissues are used to calculate pharmacokinetics and radiation dosimetry. Therefore, accurate
measurements for 225Ac and daughters are needed. Hence, scintillation detector measurements
are needed to generate these spectra. Alpha radiation dosimetry is performed using the methods
recommended by the Committee on Medical Internal Radiation Dose [11]. It is essential that these
measurements are accurate because the dosimetry estimates are then extrapolated to human estimations
and, therefore, serve as the fundamental basis for all patient safety measures.

Scintillation detectors are calibrated by analyzing three aspects of the detector: energy, resolution,
and efficiency [12]. Once the detector is fully calibrated, it can be used to perform gamma spectroscopic
measurements in order to determine the activity of radioactive samples [13–18]. Ion chambers
are calibrated by measuring a sample of the radiopharmaceutical in question with known activity,
correcting for decay, and applying a calibration factor. The American National Standards Institute
(ANSI) recommends that the applied calibration factor adjusts the measurement to within ±10% of
the known activity [19]. Although reference standards have been developed for isotopes used in
internal radiotherapy, for example, 177Lu [20] 225Ac standards are currently under development by
NIST and are not yet available. For this study, 225Ac provided by Oak Ridge National Lab was used as
a cross-reference source.

While there are evident limitations in making clinical predictions when translating a
radiopharmaceutical from mice to humans, it is important to minimize these limitations that are the
result of instrumentation. Herein, a threshold is identified above which the scintillation detector cannot
accurately measure the activities of 225Ac and daughters. An activity response relationship between
the ion chamber and scintillation detector measurements is reported and used in a method to improve
activity determination above the threshold by correcting scintillation detector measurements via
Monte Carlo simulations. These corrections improve the dosimetry of pre-clinical work and ultimately
facilitate the translation of the new radiopharmaceutical to the human clinic.

2. Results

The system of ordinary differential equations describing the 225Ac decay chain was solved to
determine the daughters’ activities as a function of time; these results are plotted in Figure 2 for 225Ac,
221Fr, and 213Bi. For an initial activity of 3.7 × 104 kBq of 225Ac, 221Fr reaches secular equilibrium with
225Ac in 55 minutes, while 213Bi takes 380 minutes. Therefore, after 380 minutes (6.37 h), the parent
and all daughter nuclides are in secular equilibrium.

To account for the statistical variance of physical spectra, a Gaussian energy broadening function
was integrated with the ideal Monte Carlo simulation model. The parameters of this function were
determined by nonlinear fitting of the measured FWHM versus energy. These parameters were
determined to be a = 0.005616, b = 0.0521, and c = 2.027 with an R-squared value of 0.9984. This
allowed the benchmark validation of the Monte Carlo model using the 137Cs standard source (Figure 3).
Simulating 155.4 kBq, the known source activity, showed a 1.02 mean percent difference at analogous
bins between measured and simulated spectra.
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Figure 3. Comparison of measured and simulated spectra of 137Cs.

The measured NaI(Tl) gamma spectrum and Gaussian peak fitting of 225Ac and its daughters can
be seen in Figure 4. The two source method was used to determine the dead time of the scintillation
detector to characterize the saturation of the signal with increasing activity. The value was determined
to be 4.6 × 10−5 s-1. The dead time value was incorporated into the gamma spectrum fitting method that
was used to determine the scintillation detector activities of 225Ac, 221Fr, and 213Bi, and these values
were compared to the ion chamber measurements (Table 1). All samples were in secular equilibrium
during measurement, as shown in Figure 2. The ion chamber manufacturer error is reported as 3%.
Measurements using NIST-traceable sources within the activity range of 5.705 to 39.257 MBq had 3%
uncertainties. However, when measuring NIST-traceable sources at the lower activities of 158.73 and
391.09 kBq, the uncertainties were 9.7% and 9.6%, respectively.
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Table 1. Ion chamber and NaI(Tl) measured activities. Single measurements were taken in each detector.
Notice that as the ion chamber readings increase, the discrepancies with the NaI(Tl) increase. All values
in kBq. Note that the uncertainties in the ion chamber readings are expressed as 10% in accordance with
the calibration measurements in the activity range (above). The NaI(Tl) uncertainties are expressed as
the propagation of uncertainties in all steps of the calculation. The difference between the ion chamber
readings and the NaI(Tl) determined activity for 225Ac are indicated in the last column to the right.

Ion Chamber Reading NaI(Tl) Determined Activities
225Ac 221Fr 213Bi 225Ac Percent Difference

70.3 ± 7.0 57.35 ± 7.57 66.97 ± 8.18 63.64 ± 7.98 20.23
144.3 ± 14.4 96.20 ± 9.81 115.07 ± 10.73 111.74 ± 10.57 40.00
222.0 ± 22.2 124.69 ± 11.17 152.81 ± 12.36 143.93 ± 12.00 56.14
299.7 ± 30.0 140.23 ± 11.84 177.97 ± 13.34 165.39 ± 12.86 72.50
370.0 ± 37.0 152.07 ± 12.33 198.32 ± 14.08 182.41 ± 13.51 83.49
447.7 ± 44.7 140.23 ± 11.84 211.64 ± 14.55 187.59 ± 13.70 104.59

The spectra acquired by the scintillation detector (Figure 4) have overlapping multiple peaks
that are further masked by the poor resolution of the detector. Monte Carlo simulations with 1 keV
resolution were run for the parent and gamma emitting daughter radioisotopes. As observed in
Figure 5, 225Ac, 221Fr, and 213Bi all exhibit many peaks in the 90 to 200 keV range. Monte Carlo
simulations allowed for the accounting of contributions from each individual radioisotope to the
overlapping gamma spectra.

Monte Carlo simulations were run using the bin width of the NaI(Tl) detector and ion chamber
readings. The resulting spectra were compared to the corresponding scintillation detector spectra
and it was observed that as the readings increased, the percent difference between the measured and
simulated spectra increased. The percent differences ranged from 19% at 70.3 kBq up to 156% at
447.7 kBq. This is illustrated in Figure 6. The readings that minimized the mean percent differences
were used as the equilibrium input activities in the Monte Carlo simulations. Figure 7 shows the
matching of simulated spectra to measured spectra for all six of the samples of different quantities.
This procedure was repeated for all ion chamber readings. Figure 8 shows the ion chamber reading
and the simulated activity that matches to within 1% of the NaI(Tl) spectra for all of the samples. At
low readings, the measured and simulated quantities agree reasonably well: 70.3 kBq measured in
the ion chamber matched with 62.9 kBq equilibrium Monte Carlo activity and 144.3 kBq measured in
the ion chamber matched with 107.3 kBq Monte Carlo activity. For larger ion chamber readings, the
matched response began to plateau.
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Figure 7. Measured vs. simulated 225Ac spectra for (A) 70.3 kBq (0.17%), (B) 144.3 kBq (0.5%), (C) 222.0
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parentheses are the mean percent differences between the two spectra.
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3. Discussion

The purpose of this work is to develop a method to determine the activities of 225Ac and daughters
in samples using standard clinical instruments. This is important for the determination of blood
clearance pharmacokinetics and tissue biodistribution, both of which are used for radiation dosimetry
calculations. In this work, an activity response relationship is determined between two radiation
detectors commonly used for pre-clinical and clinical applications, a well-type NaI(Tl) scintillation
detector and an ion chamber, respectively, where 225Ac activities between the range of 70 to 450 kBq are
not accurately measured by the scintillation detector. This relationship was used to inform Monte Carlo
simulations that corrected scintillation detector measurements for accurate readings within this range.
Although the error of the ion chamber measurements increased to ~10% within this activity range,
compared with errors of 3% observed when measuring activities as low as 6 MBq, the error within
this range for the scintillation detector as compared with the benchmarked Monte Carlo simulations
ranged from 20% to 160% (Figure 6).

Several preclinical studies have reported using a NaI(Tl) gamma counter to measure 225Ac
injection and biodistribution activities [21–25]. Ion chambers are commonly used in nuclear medicine
departments to prepare radiopharmaceuticals for patient injection. Measuring the activity of
radioisotopes with complicated decay pathways, such as in the case of 225Ac, the readings are
not only the result of the parent’s activity, but also from the contributions from the daughters’ activities.
From the solution of the system of decay equations, it was determined that 225Ac and its daughters
reached secular equilibrium in less than seven hours. While the daughters emit alpha particles and/or
beta particles, the ranges of these particles are not penetrative enough to enter the ion chamber.
Therefore, the ion chamber reading is a result of the gamma rays emitted from 225Ac, 221Fr, and 213Bi.
For example, a recent human 225Ac therapy study reported injection activities for 225Ac, but it was not
clear if the reported values were from bulk measurements or if spectra were acquired and only 225Ac
emissions were considered [1].

Several groups have built Monte Carlo models of NaI(Tl) detectors to simulate response functions
based on standard benchmark simulations and measurements of 137Cs without description of further
extensions of their models [26–31]. Herein, this procedure was extended to include the detector
response for 225Ac and its daughters. Implementation of the adjustment coefficients obtained by
the nonlinear fitting into the Monte Carlo model adequately described the Gaussian spread of the
detector pulses and was evident in benchmark testing. For all simulations, it was assumed that 225Ac,
221Fr, and 213Bi were in secular equilibrium and thus had equal activities. The high-definition Monte
Carlo simulations showed that both 221Fr and 213Bi exhibit peaks in the energy range of 225Ac gamma
pulse height distribution. Because of the 12.5 keV energy resolution of the NaI(Tl) detector, these
peaks are summed to form a larger composite photopeak resulting in greater net counts, and thus
over-calculated activities.

Gamma spectroscopic measurements were performed using the NaI(Tl) scintillation detector.
All samples were measured after the calculated time to reach secular equilibrium, but the resulting
activities were not equal. Further, the sum of activities for all three species greatly overestimated the
ion chamber readings. Although the activities determined for the three isotopes should theoretically be
identical, discrepancies are the result of the low energy bin resolution of the detector and the dead time
count saturation. Using the measured ion chamber readings as input to the Monte Carlo simulations
(Figure 6) largely overestimated the measured NaI(Tl) spectrum.

After minimizing the difference between each sample spectra and the Monte Carlo output, an
activity response function relationship was determined for the two detectors (Figure 8). Both the
Monte Carlo activity and the ion chamber reading represent the sum of the activities of 225Ac, 221Fr,
and 213Bi. The plot shows a curve with a decreasing positive slope as the ion chamber measurements
increased beyond 148 kBq. This is a result of the NaI(Tl) dead time losses. As the activity of a sample
increases, more pulses are lost, leading to errors in counting. The discrepancy between the low energy
measured and simulated peaks in Figure 7 is also a result of dead time effects. The ratio of simulated
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to measured peaks increases with increasing activity because the Monte Carlo model does not account
for dead time. Further, the disagreement in the simulated and measured spectra in the low count
region arises from the fact that the model represents an idealized detector and does not account for the
metallic impurities of a real detector.

Standard NIST-traceable samples of 225Ac are currently unavailable, so 225Ac obtained from Oak
Ridge was used as a surrogate calibration reference. These samples did not come with uncertainty
estimations. As measurements using the recommended dial number agreed with the Oak Ridge
surrogate reference samples to less than 10%, the readings of the ionization chamber were considered
reliable for the study carried out in this work. The scintillation detector’s measured energy resolution
and detection efficiency over the energy range of 225Ac gamma emissions (40-662 keV) agreed with
other published studies and reports [28,32–34]. Consequently, this detector was also considered to
be calibrated in efficiency and energy for 225Ac analysis. The calibration sources used were all less
than 185 kBq. When calibrating the ion chamber with sources with activity above 5.71 MBq, the error
was less than 3%. When testing with sources in the lower activity range, error in the measurements
increased to 10%, which is still within ANSI recommended tolerance. The measurement results showed
that the responses from these two detectors do not correlate well in the activity range of 70 to 450
kBq, even though both detectors were calibrated for efficiency and energy resolution according to
their respective recommended methods. The Monte Carlo model developed herein corrects NaI(Tl)
measurements, allowing for a more accurate estimate of 225Ac and daughter activities over a range of
activities useful for both pre-clinical and clinical use.

4. Materials and Methods

4.1. Mathematical Model

The 225Ac decay chain can be characterized by a system of ordinary differential equations that
describe the activities and abundances of each species as a function of time (Figure 9) [35].Molecules 2019, 24, x FOR PEER REVIEW 10 of 15 
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Figure 9. System of equations describing the decay of 225Ac to the very long-lived 209Bi.

In Figure 9, Nx and λx denote the number of atoms of radionuclide and the decay constant of
radionuclide X, respectively. These equations were simultaneously solved in Mathematica with the
initial (time zero) 225Ac activity set to 3.7 x 104 kBq and all daughters’ activities set to 0 kBq to determine
the times at which daughter products reach equilibrium with the parent.

4.2. Monte Carlo Model

The Monte Carlo N-Particle version 6.1 (MCNP6.1) package was used to simulate the pulse
height gamma distribution from 225Ac [36]. A computational model of the 2” × 2” NaI(Tl) 4π detector



Molecules 2019, 24, 3397 10 of 15

was built using the material compositions and dimensions given in the manufacturer’s manual, as
illustrated in Figure 10 [32].
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Figure 10. Geometry of the Monte Carlo model wipe test scintillator detector. Image generated using
the Visual Editor software for MCNP. 2: NaI; 3: MgO; 4: Al; 6: polyethylene; 7: air; 8: H20 with 225Ac,
221Fr, 213Bi source distributions.

A standard 5 mL polyethylene test tube filled with 1 mL of water was placed in the well of the
detector. The source was defined to be uniformly distributed in the 1 mL water volume. All 75 photon
emissions from 225Ac, 221Fr, and 213Bi were defined by energy and abundance [9]. The photomultiplier
tube was modeled as a 30 mm diameter aluminum cylinder to account for backscatter [26].

Photon transport was conducted using the mcplib84 photoatomic data library and detailed photon
physics interactions [37]. These include Thomson scattering, Compton scattering, and photoelectric
absorption with the creation of fluorescence photons or Auger electrons. Full photon and electron
simulations were performed and spectra were compared to those obtained from only photon transport.
Photon and electron cell importances were set to 1 for all cells in the geometry. A mean percent
difference of less than 1% between photon/electron transport and photon only transport was observed
in benchmark generated spectra of 137Cs. There were also less than 1% differences in the Compton edge
and Compton regions. Therefore, the computationally expensive tracking of electrons was omitted in
subsequent simulations and electron cell importances were set to 0. In this case, the electrons generated
are assumed to deposit their energy locally. Any electron induced bremsstrahlung photons produced
are accounted for in the thick-target bremsstrahlung model [38]. This model skips the electron tracking
step and transports the generated photon in the direction of the parent electron.

The pulse height distribution tally (F8) was used to calculate the deposited energy in the NaI(Tl)
crystal. This tally accumulates the kinetic energy lost by local photon-induced secondary electrons,
per history, in a specified volume. The tally was divided into 64 bins, each with a 12.5 keV width to
match the energy resolution of the detector. To relate the simulated response to activity, values for the
number of gamma emissions per disintegration for each isotope, scaled by the activity, were placed on
the source probability card in the source definition. The resulting tallies were then multiplied by the
sum of these values, the live acquisition time, and an activity conversion factor containing photon
abundance per decay. For each simulation, 2 x 108 histories were run to achieve less than 1% error
under each photopeak.

MCNP6.1 models an ideal detector and thus does not take into account the Gaussian shape of
experimental NaI(Tl) energy resolution resulting from intrinsic light collection inefficiency, statistical
fluctuation in charge multiplication in the photomultiplier tube, and electronic noise [39]. To account
for the statistical variance of physical spectra, a Gaussian energy broadening function (MCNP6.1
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FT8 GEB) was applied to the simulated pulse height distribution. The GEB function was obtained
experimentally from measurements of the detector’s specific full width at half maximum (FWHM)
from a set of isotopes of differing energies. Spectra from five isotopes were measured and the FWHM
of each peak was calculated. The isotopes used and their physical characteristics are listed in Table 2.

Table 2. Physical characteristics of the radioactive sources used for NaI(Tl) detector energy response
measurements [9].

Source Half-Life Energy (keV)
129I 1.67 yr 39.5

241Am 432.6 yr 59.5
57Co 271.7 d 122.0
68Ga 67.7 m 511.0
137Cs 30.1 yr 661.6

A curve of FWHM as a function of energy was fit with the following nonlinear function shown in
Equation (1) [36]:

FWHM = a + b
√

E + cE2, (1)

where E is the incident energy of the incident photon in keV; and a, b, and c are parameters that were
determined by least squares fitting and input in the FT8 command.

4.3. Monte Carlo Simulations

There are no standard NIST-traceable calibration sources for 225Ac to validate the detector model.
Instead, the spectrum of a NIST-traceable 155.4 kBq 137Cs (662 keV photopeak) source was measured
in the NaI(Tl) detector and compared to a simulated spectrum of the same activity for validation.

After the model was validated, a high definition version of the F8 pulse height tally (1 keV bin
width) was simulated with only 225Ac defined as the source. This was followed by separate high
definition simulations of 221Fr and 213Bi. These simulations were done to see what radiations contribute
to each peak, which are masked by the poor energy resolution of the NaI(Tl) detector.

4.4. Experimental Measurements

The 225Ac used in this work was obtained from Oak Ridge National Laboratory (ORNL). The
AtomlabTM Wipe Test Counter (Biodex Medical Systems, Inc., Shirley, New York, USA) was used to
perform gamma spectroscopy measurements with 225Ac. The wipe test counter is a 2” × 2” NaI(Tl)
well-type scintillation detector with 1.2 cm of lead shielding. The multichannel analyzer associated
with the wipe test NaI(Tl) detector has 64 12.5 keV channels ranging from 0 to 800 keV. Spectra obtained
with the NaI(Tl) detector for 30 s acquisition time and full energy window to include gamma counts
from 225Ac, with composite peak at 99.8 keV, and from its two gamma-emitting daughters, 221Fr (T1/2

= 4.9 min) with a peak at 218.1 keV and 213Bi (T1/2 = 46 min) with a peak at 440.5 keV. Background
spectrum measurements were performed and subtracted from all obtained 225Ac spectra. The net
background readings for the NaI(Tl) detector were in the range of 100 to 200 net counts per minute.
The net counts for an 225Ac sample of 45 kBq activity was 444,000 per minute.

Dead time measurements and calculations were performed according to the two-source
method [10]. Two different sources of 22Na with different activities were each measured individually
and then in combination.

In-house software was developed using MATLAB to calculate the net number of gamma counts,
N, by fitting each peak with a Gaussian fit and integrating. Alpha particle activity for each species was
calculated using factors for gamma abundance (Y) per alpha decay: 225Ac (1%), 221Fr (11.4%), 213Bi
(25.9%) [9].
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The detector efficiency, ε, and energy calibration for the NaI(Tl) detector were determined by
performing measurements of NIST-traceable 137Cs,133Ba, and 57Co sources. These radionuclides have
numerous photopeaks covering the gamma energy spectrum of 225Ac. The activity is then given by the
following Equation (2):

A =
N

t ∗ ε ∗Y
, (2)

where t is live time. The activity of 225Ac determined using this approach was compared to a decay
corrected sample of known activity from ORNL. A factor of 0.082 was applied to Equation (2) to
obtain 225Ac activity values to within 5% of the ORNL specified 225Ac activity. The uncertainty in the
NaI(Tl)-determined activity was calculated by propagating individual uncertainties in the net number
of counts and the efficiency measurements, as is typically done in nuclear counting measurements.

The AtomlabTM 500 Dose Calibrator is a well-type pressured ion chamber filled with argon gas
that is commonly used in the clinic. This instrument was calibrated for energy and efficiency with the
following NIST-traceable sources: 137Cs (6.63 MBq), 57Co (39.26 MBq), and 133Ba (5.71 MBq) by the
vendor. Lower activity NIST-traceable sources provided by Eckert & Ziegler were also used: 137Cs with
158.73 kBq and 57Co with 391.09 kBq activities. No significant variation in the calibration coefficient as
a function of photon energy was observed. An ion chamber linearity test was performed with 18F in
the activity range of 1.2 GBq to 266.0 kBq and a variance of 1.4% was observed. The dial number was
set at 38.2 for 225Ac, as indicated by the vendor and confirmed by our comparison with two decay
corrected samples of different activities obtained from Oak Ridge. Measurements of these samples
in the ion chamber agreed with the Oak Ridge measurements to within 7%. In order to determine
the relationship between this ion chamber and the NaI(Tl) detector, six different activities of 225Ac
samples were measured using the ion chamber: 70.3 ± 7.0, 144.3 ± 14.4, 222.0 ± 22.2, 299.7 ± 30.0,
370.0 ± 37.0, and 447.7 ± 44.7 kBq. Each sample was measured and placed in the NaI(Tl) detector,
and a spectrum was obtained and compared. Using the activity reading from the ion chamber as
the initial parent–daughter equilibrium activity input for the Monte Carlo model, simulated spectra
were calculated and compared to the measured spectra from the NaI(Tl) detector. Mean absolute
percent differences at analogous bins between the experimental and simulated spectra were calculated.
Using the ion chamber measured activity as input to the Monte Carlo simulations underestimated
the readings from the NaI(Tl), so several successive runs were completed using different activities
as input in symmetrical range around the initial point in order to match the spectra. The percent
differences were plotted against input activity and fitted with a linear model. The x-intercept was found
in order to determine the minimum mean percent difference between the measured and simulated
spectra. This process was repeated for each sample and an activity response function relationship
was determined between the ion chamber and the NaI(Tl) detector. The uncertainty in the activity
relationship determined using this methodology was analyzed by adding the uncertainties in the
NaI(Tl) measurements, σ2

NaI; the ion chamber measurements, σ2
IC; and the Monte Carlo calculations,

σ2
MC, in quadrature (Equation (3)):

σA =
√
σ2

NaI + σ2
IC + σ2

MC. (3)

5. Conclusions

In this work, the 225Ac activity response function between two commonly used instruments
was investigated, a range of activities (70 to 450 kBq) was identified, and a method was developed
using Monte Carlo simulations to correct scintillation detector measurements within this range. The
scintillation detector was calibrated in energy and efficiency using NIST-traceable sources covering a
broad energy range, while the ion chamber was calibrated in efficiency using a surrogate calibration
reference. The error of ion chamber measurements increased with decreasing activity, but remained
within the ANSI recommended value of 10%. The NaI(Tl) performed poorly from 70 to 450 kBq.
Therefore, a Monte Carlo model was built to correct the NaI(Tl) measurements, thereby providing
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improved accuracy. The corrections provided by the Monte Carlo model will provide a useful tool to
make corrections to the activity values measured by the well-type NaI(Tl) detector. This allows for
the better quantification of alpha-particle emitting radiopharmaceuticals and daughter byproducts
in pre-clinical and clinical studies. In this case, use of scintillation gamma spectroscopy will be the
preferred method.
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