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Abstract: Zirconocene-mediated selective dimerization of α-olefins usually occurs when precatalyst
(η5-C5H5)2ZrCl2 is activated by minimal excess of methylalumoxane (MAO). In this paper, we present
the results of density functional theory (DFT) simulation of the initiation, propagation, and termination
stages of dimerization and oligomerization of propylene within the framework of Zr-Al binuclear
mechanism at M-06x/DGDZVP level of theory. The results of the analysis of the reaction profiles allow
to explain experimental facts such as oligomerization of α-olefins at high MAO/(η5-C5H5)2ZrCl2
ratios and increase of the selectivity of dimerization in the presence of R2AlCl. The results of DFT
simulations confirm the crucial role of the presence of chloride in the selectivity of dimerization.
The molecular hydrogen was found in silico and proven experimentally as an effective agent that
increases the rate and selectivity of dimerization.

Keywords: density functional theory; dimerization of α-olefins; polymerization; single-site
catalysts; zirconocene

1. Introduction

Despite half-century of the fruitful study of zirconocene-catalyzed polymerization of α-olefins,
some aspects of the reaction mechanism are unclear. One of the clouds obscuring the clear sky of
Cosse-Arlman cationic coordination-insertion mechanism combined with few termination event
pathways [1–7] (Scheme 1) is a highly selective dimerization of α-olefins with a formation of
methylenealkanes [8–13].

Highly selective dimerization of α-olefins was detected when (η5-C5H5)2ZrCl2 [8–10] or
Z(η5-C5H4)2ZrCl2 (Z-bridge between Cp rings) [13] have been activated by minimal excess of
methylalumoxane (MAO). In the first publication of Bergman [9], the 1:1 Al/Zr ratio was used. In our
experiments, we successfully applied two-stage activation of zirconocene dichlorides by the reaction
with triisobutylaluminium (TIBA) and 5–10 equivalents of MAO [13]. Given that the reaction of LZrCl2
with TIBA results in the formation of Zr-Al hydride complexes [14–17], we proposed that the addition
of minimal amounts of MAO results in the formation of cationic Zr-Al hydride species that catalyze
dimerization of α-olefins. Relatively stable di-Zr complexes [18] could hardly be seen as prototype of
catalytic species. Zr-Al complexes can vary in a number of coordinated Al atoms [15,19–27]. To explain
experimental facts, we recently proposed a binuclear Zr-Al model (Scheme 2) [13,28] involving the
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catalytic species that are closely related to discrete ionic pairs containing Zr-(µ-Me)2AlMe2 fragments
formed at the initial stage of zirconocene dichloride activation by MAO [29–35]. In References [13,28]
we assumed that Zr-(µ-Cl)-Al species maintain selective dimerization, whereas Zr-(µ-H)-Al complexes
catalyze the formation of higher oligomers.
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In the present paper, we report the results of DFT modeling of initiation, propagation, and
termination stages of α-olefin dimerization and oligomerization catalyzed by cationic (η5-C5H5)2Zr-Al
species derived from R2AlX (R = Me, iBu; X = H, Cl, Me, Scheme 2) in comparison with traditional
cationic mechanism.

2. Results

Propylene as an easiest α-olefin was chosen to minimize the time of calculations. For simulations
of the reaction mechanisms, we used Gaussian-09 program package [36] at M-06x/DGDZVP [37,38]
level of theory (for details, see Section 4.1). The results of the optimization of stationary points and
transition states are provided in section S1 in the Supporting Information.

2.1. DFT Modeling of the Initiation Stage

In our calculations, we considered [(η5-C5H5)2Zr-H]+ as a starting stationary point I-0 for
traditional cationic mechanism. The formation of π-complex I-1 with propylene molecule was found
to be highly exergonic (−17.5 kcal/mol), this complex easily transformed to [(η5-C5H5)2Zr–C3H7]+

via transition state TS-1 with low activation barrier (2.1 kcal/mol). n-Propyl cationic complexes can
be stabilized by additional agostic Zr-H bonding, the results of our calculations demonstrated that
β-agostic complex I-1_b is 10.6 kcal/mol more stable than α-agostic complex I-1_a (Scheme 3).



Molecules 2019, 24, 3565 3 of 13

Molecules 2019, 24, x 3 of 13 

 

The propensity of [(η5-C5H5)2Zr–H]+ to form stable adducts with R2Al–X (R = Me, iBu; X = H, Cl, 
Me) has been confirmed by considerable (more than 30 kcal/mol) lowering of the free energies in 
formation of the starting complexes I-0X by the formula [(η5-C5H5)2Zr(μ-H)(μ-X)AlR2]+. To compare 
the relative free energies and free enthalpies of the species that correspond to mononuclear and 
binuclear mechanisms, this negative change was accounted by the subtraction of G (R2AlX) and H 
(R2AlX) from the values of G and H calculated for Zr–XAlR2 species. The values of free energies and 
free enthalpies of stationary points and transition states for both mechanisms relative to G (I-2_b) 
and H (I-2_b) are presented in Table 1. 

Zr
X

H
Al

R

R

I-1XI-0X

Zr

X

H
Al
R

R

Zr
X Al

R

R
H

I-2X_bi

I-2X_a

Zr
X

Al
R

R

Zr
X Al

R

R
H

TS-1X
Zr

X Al
R

R

H

I-2X_b'

H

Zr
X

Al
R

R
H

I-2X_bo

(b)

Zr H Zr
H

I-1I-0

Zr
H

I-2-_b

Zr
H

TS-1

Zr

H
I-2_a

(a)

 

Scheme 3. Stationary points and transition states of the initiation stage for (a) cationic and (b) 
binuclear mechanisms (X = H, Cl, and Me). 

The coordination of propylene with a formation of I-1X is exergonic for X = H and endergonic 
for X = Cl and Me. The difference in free energies of the insertion transition state TS-1X and I-1X is 
minimal for X = Cl, but in general the value of the activation barrier of the formation of alkyl 
complexes I-2X is lower for X = H (Table 1). In the propyl cationic complexes I-2X, Zr-(μ-X)-Al 
coordination retains. Taking into consideration the possibility of the agostic Zr-H bonding, we 
calculated geometries and free energies of four types of I-2X and found that the most stable are 
agostic complexes I-2X_a and I-2X_bo (Scheme 3). The formation of β-agostic complexes by isobutyl 
fragment (for R = iBu) was also accounted and found to be insignificant (see section S1 the 
Supporting Information for details). The complexes I-2H_bo (Figure 1) are remarkably stable (−28.0 
and −28.1 kcal/mol for R = Me and iBu, respectively) in comparison with other β-agostic complexes 
containing Zr-(μ-X)-Al fragments (X = Cl, Me). Higher stability of I-2H_bo with outside β-H 
coordination can be explained by the minima of steric distortions driven by Zr-(μ-X)-Al fragments 
for X = H. Extremely low free energies of I-2H_bo and closely related I-4H_bo (−39.7 and −42.5 
kcal/mol for R = Me and iBu, respectively) are important factors that allow to explain the results of 
oligomerization experiments (see Section 2.3). 

Scheme 3. Stationary points and transition states of the initiation stage for (a) cationic and (b) binuclear
mechanisms (X = H, Cl, and Me).

The propensity of [(η5-C5H5)2Zr–H]+ to form stable adducts with R2Al–X (R = Me, iBu; X = H,
Cl, Me) has been confirmed by considerable (more than 30 kcal/mol) lowering of the free energies in
formation of the starting complexes I-0X by the formula [(η5-C5H5)2Zr(µ-H)(µ-X)AlR2]+. To compare
the relative free energies and free enthalpies of the species that correspond to mononuclear and
binuclear mechanisms, this negative change was accounted by the subtraction of G (R2AlX) and H
(R2AlX) from the values of G and H calculated for Zr–XAlR2 species. The values of free energies and
free enthalpies of stationary points and transition states for both mechanisms relative to G (I-2_b) and
H (I-2_b) are presented in Table 1.

The coordination of propylene with a formation of I-1X is exergonic for X = H and endergonic
for X = Cl and Me. The difference in free energies of the insertion transition state TS-1X and I-1X is
minimal for X = Cl, but in general the value of the activation barrier of the formation of alkyl complexes
I-2X is lower for X = H (Table 1). In the propyl cationic complexes I-2X, Zr-(µ-X)-Al coordination
retains. Taking into consideration the possibility of the agostic Zr-H bonding, we calculated geometries
and free energies of four types of I-2X and found that the most stable are agostic complexes I-2X_a and
I-2X_bo (Scheme 3). The formation of β-agostic complexes by isobutyl fragment (for R = iBu) was also
accounted and found to be insignificant (see section S1 the Supporting Information for details). The
complexes I-2H_bo (Figure 1) are remarkably stable (−28.0 and −28.1 kcal/mol for R = Me and iBu,
respectively) in comparison with other β-agostic complexes containing Zr-(µ-X)-Al fragments (X = Cl,
Me). Higher stability of I-2H_bo with outside β-H coordination can be explained by the minima of
steric distortions driven by Zr-(µ-X)-Al fragments for X = H. Extremely low free energies of I-2H_bo
and closely related I-4H_bo (−39.7 and −42.5 kcal/mol for R = Me and iBu, respectively) are important
factors that allow to explain the results of oligomerization experiments (see Section 2.3).

2.2. DFT Modeling of the Propagation Stage and Dimer Formation

Stationary points and transition states for coordination/insertion of the second and third propylene
molecules and for chain termination are presented in Scheme 4. For cationic mechanism, the
coordination of the second propylene molecule was energetically favorable (−4.4 kcal/mol), the
activation barrier of the second monomer insertion ∆G, = G(TS-2) − G(I-3) was 10.4 kcal/mol. The
calculated activation barrier for chain release via transfer to monomer (TS-3, Scheme 4) was 17.1
kcal/mol. The most stable product of the second monomer insertion was β-agostic 2-methylpentyl
zirconocene cation I-4_b. This complex can eliminate 2-methylpentene-1 via TS-4 with a formation of
I-5 (∆G, = 8.7 kcal/mol) or coordinate (I-6) and insert (TS-5) the third propylene molecule (∆G, = 8.4
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kcal/mol). Therefore, the chain propagation in the case of [(η5-C5H5)2Zr–C6H13]+ was found to be
preferable, with the minimal difference in free energies between transition states of chain propagation
and chain termination via β-hydride elimination (0.3 kcal/mol).
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Within the framework of binuclear mechanism, we failed to find stationary points containing
coordinated R2AlX and propylene molecules. Hence, the coordination of propylene resulted in loss of
Zr-X bonding, and the stationary points I-3 and I-6 as well as transition states TS-2, TS-3, and TS-5
had been common for mononuclear and binuclear mechanisms. The fundamental difference between
mononuclear and binuclear mechanisms had arisen at the stage of the formation of 2-methylpentyl
complexes I-4X followed by β-hydride elimination via TS-4X to π-complexes I-5X.

We optimized the geometries of I-4X, TS-4X, and I-5X for R = Me and iBu. The results of
our calculations clearly demonstrated that β-agostic complexes I-4X_bo have lower free energies in
comparison with isomeric β-agostic complexes I-4X_bi and α-agostic complexes I-4X_a (Scheme 4).
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The only exception was I-4Cl_a (R = Me) that was 1.2 kcal/mol more stable in comparison with I-4X_bo.
The nature and geometries of the transition states TS-4X deserves separate consideration. In these
transition states, Al atoms demonstrated cooperative effect (Figure 2). For R = Me, the values of the
activation barriers ∆G, = G(TS-4X) − G(I-4X) were 17.7 (H), 13.6 (Cl), and 16.2 (Me) kcal/mol. Thus,
β-hydride elimination had been the most affected by Me2AlCl coordination at Zr atom. This pattern
was also manifested for R = iBu (Table 1).
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The comparison of the relative free energies of chain termination transition states TS-4X and
chain propagation transition state TS-5 allowed us to make the conclusion that β-hydride elimination
is energetically preferable for X = H and Cl. For X = Me, β-hydride elimination and dissociation of
[(η5-C5H5)2Zr(C6H13)–AlMe3]+ with subsequent coordination-insertion of propylene molecule being
equal. Apart from that, in the case of [(η5-C5H5)2Zr(C6H13)–AlMeiBu2]+, the chain propagation was
preferable (Table 1).

Table 1. Calculated free energies and free enthalpies (kcal/mol) of stationary points and transition
states for mononuclear and binuclear reaction mechanisms. 1

Structure Cationic
Mechanism

R =Me R = iBu

X=H X=Cl X=Me X=H X=Cl X=Me

I-0
I-0X

G 27.5 −8.4 −4.6 −2.7 −11.8 −6.3 −3.5
H 40.8 −9.9 −6.7 −2.6 −11.2 −8.6 −6.6

I-1
I-1X

G 10.0 −13.5 0.0 5.1 −14.9 −1.8 5.3
H 9.8 −26.7 −14.0 −1.6 −29.7 −17.3 −12.2

TS-1
TS-1X

G 12.1 −7.0 4.3 10.6 −9.2 3.7 11.8
H 11.4 −21.9 −10.9 −4.1 −25.2 −12.8 −6.9

I-2_b
I-2X_bi

G 0.0 −13.1 −7.0 −1.6 –16.3 −9.8 −1.4
H 0.0 −26.9 −19.5 −11.6 −28.9 –23.0 −15.2

I-2+_a
I-2X_a

G 10.6 −22.1 −13.0 −7.8 −21.0 −12.7 −6.1
H 10.6 −35.9 −28.4 −22.6 −36.7 −29.3 −24.7

I-2_b
I-2X_bo

G 0.0 −28.0 −10.4 −9.1 −28.1 −11.0 −6.8
H 0.0 −41.9 −26.9 −24.0 −43.7 −28.8 −26.7

I-3
G −4.4
H −16.3

I-3_b
G −3.2
H −15.8

TS-2
G 6.0
H −9.3
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Table 1. Cont.

Structure Cationic
Mechanism

R =Me R = iBu

X=H X=Cl X=Me X=H X=Cl X=Me

TS-3
G 12.7 12.7 12.7 12.7 12.7 12.7 12.7
H −1.9 −1.9 −1.9 −1.9 −1.9 −1.9 −1.9

I-4_b
I-4X_bi

G −12.5 −27.1 −19.1 −12.7 −28.0 −22.4 −13.8
H −26.4 −52.0 −45.9 −38.0 −55.1 −49.8 −43.3

I-4_a
I-4X_a

G −3.0 −34.8 −23.6 −20.7 −33.9 −22.8 −19.0
H −15.7 −61.9 −51.7 −48.2 −62.8 −53.8 −50.6

I-4_b
I-4X_bo

G −12.5 −39.7 −22.4 −20.8 −42.5 −23.7 −18.7
H −26.4 −68.3 −51.8 −49.1 −71.0 −53.9 −51.6

TS-4
TS-4X

G −3.8 −22.0 −9.9 −4.6 −21.4 −6.5 0.3
H −17.9 −50.5 −38.9 −32.1 −51.6 −38.3 −33.2

I-5
I-5X

G −8.2 −30.5 −18.6 −12.3 −31.2 −17.4 −10.4
H −19.7 −56.6 −45.0 −37.7 −59.3 −45.6 −40.2

I-6
G −15.7
H −41.2

I-6_b
G −16.0
H −41.3

TS-5
G −4.1
H −32.5

1 Relative to I-2_b.

2.3. Dimerization and Oligomerization of 1-Hexene: Experimental Study

We performed a series of experiments using (η5-C5H5)2ZrCl2 as a precatalyst. In these experiments,
(η5-C5H5)2ZrCl2 (0.1 mmol) was suspended in 200 mmol of 1-hexene and treated with TIBA solution
(2 mmol) at 60 ◦C. After 10 min of stirring (no reaction detected), the calculated amount of MMAO-12
solution was added. The mixtures were analyzed by GC and 1H NMR spectroscopy after 1, 2, 3, and 4
h. The final results of these experiments are presented in Table 2. We found that after activation of
(η5-C5H5)2ZrCl2 by 200 eq. MMAO-12 typical oligomerization proceeds (Table 2, run 1), the ratio of
dimer, trimer, tetramer, and pentamer of 1-hexene can be interpreted by standard Flory distribution.
The same results have been obtained by Kissin [39,40]. In the presence of 100 eq. MMAO-12 (Table 2, run
2), the relative rate of the dimer increased. In the following experiments, the rate of higher oligomers
decreased with lowering of MMAO/Zr ratios (Table 2, runs 3–6, see Figure S2 in the Supporting
Information). It should be noted that the rate of the reaction had a local minima at MMAO/Zr = 20
(Table 2, run 4).

The addition of R2AlCl resulted in an increase in the relative proportion of dimer. The best results
were obtained when Me2AlCl was added (Table 2, run 7). The increasing of Et2AlCl/Zr ratio resulted
in slowing down the reaction (Table 2, runs 8–11, Figure S3 in the Supporting Information). We also
found that the addition of trimethylaluminium (Table 2, run 12) resulted in deceleration of the reaction
with a formation of large amounts of higher oligomers. The activity of the catalyst and the selectivity
of dimerization substantially increased in the atmosphere of the molecular hydrogen (Table 2, run 13;
this issue is discussed below).
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Table 2. Zirconocene-catalyzed oligomerization of 1-hexene (in bulk, 60 ◦C, 4 h). 1

Run
MMAO-12

eq.
R2AlX eq. 1-Hexene

Conv., %
Product Distribution (wt.%) 2

2-C6 C12 C18 C24 C30 Higher Oligomers

1 200 0 99 1.7 53.8 13.2 5.3 3.2 21.7
2 100 0 98 1.9 69.5 7.5 3.8 2.4 14.1
3 50 0 96 2.0 75.1 6.9 3.1 1.6 7.7
4 20 0 93 2.0 77.8 5.2 2.3 1.1 4.8
5 10 0 97 3.4 82.3 5.9 1.5 0.3 3.6
6 5 0 95 3.8 81.6 5.4 1.3 0.3 2.6
7 10 Me2AlCl, 1 98 3.6 87.4 3.2 1.1 0.3 2.5
8 10 Et2AlCl, 1 88 3.6 78.1 2.9 1.0 0.3 2.2
9 10 Et2AlCl, 2 97 3.8 85.7 3.3 1.2 0.4 2.7
10 10 Et2AlCl, 5 59 2.0 53.2 1.1 0.3 <0.1 <0.2
11 10 Et2AlCl, 10 31 0.6 29.1 0.3 <0.1 <0.1 <0.2
12 10 Me3Al, 2 61 0.9 36.6 9.6 3.3 1.4 9.2

13 3 10 10 99 2.8 88.8 3.2 1.4 0.6 2.1
1 Activation by 20 eq. of TIBA for 10 min at 60 ◦C followed by the addition of given amount of MMAO-12. 2 The
data were obtained by GC, the rate of higher oligomers was determined by the weighting of the residue after stirring
the treated reaction mixture at 250 ◦C and 0.1 Torr. 3 Oligomerization at 1 bar of the molecular hydrogen.

3. Discussion

Using the data presented in Table 1, we drawn free energy profiles for the oligomerization of
propylene catalyzed by zirconocene cation and by (η5-C5H5)2Zr–XAlR2 cationic complexes for X = H,
Cl, and Me. These profiles are presented in Figure 3a,b for R = Me and iBu, respectively. We calculated
the free activation energies for two reaction pathways, namely, chain termination with a formation of
2-methylpentene-1 (vinylidene dimer of propylene) via TS-4 and chain propagation via TS-5. These
values were determined as a differences between G (TS-4) or G (TS-5) and free energies of the most
stable intermediates I-4. The values of the free activation energies for insertion of the second monomer
molecule TS-2, β-hydride elimination after this insertion TS-4, and insertion of the third monomer
molecule TS-5 are presented in Figure 3. It is the difference between TS-4 or TS-4X and TS-5 that
determines the main direction of the reaction as a selective dimerization or oligomerization.

The first conclusion from the analysis of the reaction profiles (Figure 3) is the preference of
β-hydride elimination after insertion of the second molecule of monomer in (η5-C5H5)2Zr-XAlR2

cationic complexes for the case of X = H and Cl. Within the framework of cationic mechanism and for
X = Me, oligomerization and dimerization of propylene seem to be equal by the value of the activation
barrier. This conclusion allows to explain higher oligomer content at higher MAO/Zr ratios (Table 1,
runs 1 and 2) by the formation of the catalytic particles that are mononuclear cationic Zr complex or
binuclear Zr complex with Me3Al. At high MAO/Zr ratios (100 and more) the large excess of MAO
plays the role of “R2AlX sponge”, the ability of MAO to form stable complexes with Me2AlCl and
Me3Al had been confirmed experimentally [41–44]. Note that the formation of oligomers was detected
by Bergman when (η5-C5H5)2ZrMe2 was activated with 10 eq. of MAO instead of (η5-C5H5)2ZrCl2 [10].

When X = Cl, DFT modeling predicted the preferable formation of vinylidene dimers at low
MAO/Zr ratios. In our experiments (Table 2, runs 7–9), we detected the highly positive effect of
the addition of R2AlCl to the reaction mixture. Bergman [9,10] demonstrated that the presence of
Cl is crucial for high selectivity of dimerization; recently the chemists of Idemitsu [45,46] and our
laboratory [13,47] applied the addition of R2AlCl to reach maximum yields of α-olefin dimers.
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Figure 3. Reaction profiles for zirconocene-catalyzed oligomerization of propylene for mononuclear
and binuclear reaction mechanisms for R = Me (a) and iBu (b). The free energies of stationary points
and transition states are presented relative to I-2_b. The free activation energies for insertion of the
second propylene molecule (via TS-2), β-hydride elimination with a formation of dimer (TS-4), and
insertion of the third propylene molecule (TS-5) are presented in color.

Our calculations predicted that hydride complex I-2H_bo is ~17 kcal/mol more stable than
I-2Cl_bo and can, therefore, be considered as a typical “dormant site” for the binuclear mechanism.
Evidently, the formation of alkyl-hydride Zr-Al complexes is more than likely under the reaction
conditions used in our experiments. Moreover, these inactive species can make up the most of
Zr-containing particles. Keeping in mind that the metal-hydride agostic interaction makes the main
contribution to the stabilization of I-2H_bo, we proposed that the molecular hydrogen can activate this
dormant site by the cleavage of agostic Zr-βH bonding. We made optimizations of different structures
formed from I-2H_bo and H2 molecule and found a novel stationary point I-2H_H2 (Figure 4). In this
complex, the agostic bonding Zr-H is absent that potentially facilitates the formation of stationary
points and transition states of the propagation stage which is completed by selective formation of the
dimer when X = H.
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In complex I-2H_H2, the molecule of H2 plays the role of the additional activator. The interatomic
distance d(H-H) in I-2H_H2 was only 0.1 Å higher than in hydrogen molecule. This complex may be
stabilized with a formation of α-agostic complex I-2H_a_H2 (see S1.9 in the Supporting Information).
The free energy of this complex is 12.2 kcal/mol higher than I-2H_bo. It is evident that the similar
complex can be formed from I-4H_bo. Apparently, the molecular hydrogen can activate the “dormant”
β-agostic hydride complexes with an increase in selectivity of the dimer formation. To confirm this
assumption, we performed the catalytic experiment at 1 bar of H2 (Table 2, run 13) and detected
99% conversion of the monomer with 89% dimer selectivity without the formation of saturated
hydrocarbons. This experiment has clearly demonstrated the role of the molecular hydrogen as an
activator, but not as a reactant.

4. Materials and Methods

4.1. DFT Calculations

The initial cartesian coordinates of the stationary points had been found by PRIRODA program
(version 4.0, M.V. Lomonosov Moscow University, Moscow, Russia) [48] using the 3ζ basis. The final
optimization and determination of the thermodynamic parameters for stationary points and transition
states were carried out using Gaussian 09 program [36] for gas phase at 298.15 K, the root mean square
(RMS) force criterion was 3 × 10−4. The M-06x functional [37] and DGDZVP basis set [38,49] were
used in the optimizations. As was demonstrated earlier, M-06x functional is one of the most correct
functionals for calculations of the free energies in DFT modeling of zirconocene-catalyzed reactions [50].
Transition states were found by energy scanning with sequential changing of key geometric parameters
with a step of 0.01 Å followed by Berny optimization and confirmed by intrinsic reaction coordinate
(IRC) simulations (see Figure S1 and find *_IRC.gif animation files in the Supporting Information).

4.2. General Experimentsl Remarks

TIBA (1 M solution in hexane, Merck, Darmstadt, Germany), MMAO-12 (1.52 M solution in
toluene, Merck), (η5-C5H5)2ZrCl2 (Merck), and CDCl3 (99.8% 2H, Cambridge Isotope Laboratories,
Inc., MS, USA) were used as purchased. 1-Hexene (Merck) was stored over Na wire and distilled
under argon. The 1H NMR spectra were recorded on a Bruker AVANCE 400 spectrometer (400 MHz,
Bruker, MS, USA) at 20 ◦C. The chemical shifts are reported in ppm relative to the solvent residual
peaks. The distribution of oligomers produced in zirconocene-catalyzed reactions was measured
by gas chromatography (GC) method. GC analysis was carried out with a KRISTALL-2000M gas
chromatograph (Meta-chrom Ltd., Yoshkar-Ola, Russian Federation) equipped with a SolGel-1ms (60
m × 0.25 mm × 0.25 µm) column and a flame ionization detector. Helium was used as a carrier gas at
a rate of 1.364 cc/min and with a split ratio of 73.3:1. The injection temperature was 320 ◦C, and the
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column temperature was 200 ◦C within 5 min and then increased from 200 ◦C to 300 ◦C at a rate of
10 ◦C/min.

4.3. Dimerization and Oligomerization Experiments

1-Hexene (25 mL, 200 mmol) and TIBA (2 mL of 1 M solution in hexane, 20 mmol) were mixed in
a two-necked flask prefilled with argon, which was then placed in a thermostated bath with diethylene
glycol. After maintaining the external bath at 60 ◦C for 2 min, zirconocene precatalyst (0.1 mmol) was
added to the flask. After 20 min of stirring, given amounts of MMAO-12 (1.52 M solution in toluene)
and R2AlCl (if applied, 1 M solutions in hexane) were added. The reaction probes were analyzed by
NMR and GC after 1, 2, 3, and 4 h. After 4 h of the reaction, 1 mL of methanol and 1 mL of water were
added, the organic phase was separated, and the residue was extracted with hexane. The combined
organic phases were evaporated under reduced pressure, the residue was stirred at 250 ◦C (0.1 Torr) to
remove C12–C30 reaction products and to determine the weight of the higher oligomers.

5. Conclusions

In the present paper, we report the results of DFT modeling of the binuclear mechanism of
zirconocene-catalyzed oligomerization of α-olefins (by the case of propylene) that consider the catalytic
particles as a cationic species with coordinated R2AlX fragments (X = H, F, Cl, Me). We have
proposed this mechanism earlier [13,28] for specific reaction conditions, when starting zirconocene
dichloride precatalyst has been activated by minimal excess of MAO (up to 10 equivalents). The
comparison of the reaction profiles for traditional mononuclear [(η5-C5H5)2Zr-Alkyl]+ and binuclear
[(η5-C5H5)2Zr-Alkyl(R2AlX)]+ species demonstrated the qualitative difference between mononuclear
and binuclear mechanisms. Without R2AlX coordination, oligomerization is a preferable reaction
pathway. If X = H, highly stable β-agostic complexes I-2X_bo form, and the reactions slow down. If
X = Cl, the formation of vinylidene dimers becomes a main direction of the reaction. The transition
states of β-hydride elimination TS-4X (X = H, Cl) demonstrate explicit Zr-Al cooperative effect. For
X = Me, there is no significant assistance for β-hydride elimination. These results of DFT modeling
correlate with the results obtained in the experimental study of 1-hexene oligomerization.

We also found that molecular hydrogen under “low MAO” conditions demonstrates the
chemical behavior that is not typical for Ziegler-Natta processes. In the presence of hydrogen,
the dimerization accelerates with substantial increase of selectivity, without the formation of the
products of hydrogenolysis. We used the “molecular hydrogen” probe in DFT calculations to find and
visualize the mechanism of this effect and found that the complex I-2H_bo can react with H2 without
cleavage of the H–H bond but with the complete loss of β-agostic coordination. Thus, H2 acts as an
additional activator for hydride complex that grows as an active and selective dimerization catalyst.

Obviously, the mechanistic concept proposed and presented in our paper is approximate and
something speculative. However, we believe that Zr-Al binuclear mechanistic concept, which
takes into account the direct impact of R2AlX in catalytic process, will be a valuable addition to
traditional mechanism of single-site polymerization of α-olefins. The simplicity of the model is
attractive to compare in silico the reactivity of zirconium complexes with different ligand environment
under industrially important “low MAO” conditions and for the design of prospective zirconocene
oligomerization and polymerization catalysts. An extensive experimental and theoretical work in this
field is underway in our laboratory.

Supplementary Materials: The following are available online. DFT calculations data: plots of the molecular
geometries, energies, and cartesian coordinates for all stationary points and transition states; Figure S1: The
dependence of the composition of the reaction mixtures (1-hexene oligomerization in bulk, 60 ◦C, 4 h) from
AlMMAO-12/Zr ratio; Figure S2: The effect of R3AlCl on the composition of the reaction mixtures (1-hexene
oligomerization in bulk, 60 ◦C, 4 h, AlMMAO-12/Zr = 10), in pdf. format. 19 animation files for all transition states
and 3 animation files demonstrating the IRC procedure (in gif. format).
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