# SUPPORTING INFORMATION

# **Optimizing Water-based Extraction of Bioactive Principles of Hawthorn:** from Experimental Laboratory Research to Homemade Preparations

Phu Cao Ngoc <sup>1</sup>, Laurent Leclercq <sup>1,\*</sup>, Jean-Christophe Rossi <sup>1</sup>, Isabelle Desvignes <sup>1</sup>, Jasmine Hertzog <sup>2,3</sup>, Anne-Sylvie Fabiano-Tixier <sup>4</sup>, Farid Chemat <sup>4</sup>, Philippe Schmitt-Kopplin <sup>2,3</sup> and Hervé Cottet <sup>1,\*</sup>

| 1 |                  | () ( ) 11       |              |                     |
|---|------------------|-----------------|--------------|---------------------|
| 1 | IBMM, University | of Montpellier, | CNRS, ENSCM, | Montpellier, France |

<sup>2</sup> Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, Neuherberg, Germany

<sup>3</sup> Analytical Food Chemistry, Technische Universität Muenchen, Freising, Germany

<sup>4</sup> University of Avignon, INRA, UMR408, GREEN Extraction Team, Avignon, France

\* Correspondence: herve.cottet@umontpellier.fr (H.C.) and laurent.leclercg@umontpellier.fr (L.L.)

#### Table of Content :

| Figure S1. Picture (A) and localization (B) of fresh hawthorn (marked in red)                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S2. Picture of the experimental set-up used for each extraction mode                                                                                                                                                                                                                     |
| <b>Figure S3.</b> Extraction kinetics of grinded (1 mm) hawthorn followed by UV absorbance at 198 nm for various extraction modes                                                                                                                                                               |
| <b>Figure S4.</b> UV absorbance values at 198 nm and at different extraction times (A: 5 min and B: 30 min) as a function of the extraction yields at the corresponding time for all extraction modes                                                                                           |
| Figure S5. UPLC profiles of hawthorn extracts obtained from different extraction modes for raw hawthorn6                                                                                                                                                                                        |
| <b>Figure S6.</b> Relative peak area distributions for the main compounds detected by UHPLC in the various hawthorn extracts as a function of the extraction mode, the granulometry, the nature and the state of the plant                                                                      |
| Figure S7. Chemical structures of all compounds identified by UHPLC-ESI-MS8                                                                                                                                                                                                                     |
| <b>Figure S8</b> . Mass spectra achieved by (-) ESI FT-ICR MS analysis of the hawthorn samples, in duplicate (green and red mass spectra), according to the extraction method, plant parts and state (fresh or dry)                                                                             |
| Figure S9. Hierarchical Cluster Analysis (HCA) and heatmap achieved from samples analyzed by (-) ESI FT-ICR MS                                                                                                                                                                                  |
| Figure S10. Pictures of cup (A), mug (B) and bowl (C) with dimensions and weights                                                                                                                                                                                                               |
| Figure S11.Decrease profile of temperature (without stirring) vs the nature of the container (cup, mug, bowl, Bodum <sup>®</sup> , three-neck flask)                                                                                                                                            |
| Figure S12. Pictures of raw and grinded hawthorn materials of various granulometries                                                                                                                                                                                                            |
| Figure S13. Size distributions of grinded hawthorn materials28                                                                                                                                                                                                                                  |
| <b>Figure S14.</b> Influence of the lot number of grinded (fine granulometry) hawthorn dry flowering tops (R78927, 1221478, H18001534, CB58120) and one lot of raw dry flowers (20334) on the UHPLC profiles of the corresponding hawthorn extracts                                             |
| <b>Figure S15.</b> Relative peak area distributions for the main compounds detected by UHPLC-UV in the various grinded (fine granulometry) hawthorn extracts as a function of the lot number of dry flowering tops (R78927, 1221478, H18001534, CB58120) and one lot of raw dry flowers (20334) |
| Table S1. List of the samples analyzed by UHPLC-ESI-MS and (-)ESI FT-ICR-MS.   33                                                                                                                                                                                                               |
| Table S2. Fitting parameters for the absorbance A(t) trace vs extraction time t for the infusion mode                                                                                                                                                                                           |
| Table S3. Compounds identified in hawthorn putatively assigned to raw formulae achieved by (-) ESI FT-ICRMS.35                                                                                                                                                                                  |

| Table S4. Putative compounds obtained from features specifically extracted depending on the plant states | S  |
|----------------------------------------------------------------------------------------------------------|----|
| (fresh vs dry and grinded vs raw) or parts (flowers vs flowering tops)                                   | 36 |

Figure S1. Picture (A) and localization (B) of fresh hawthorn (marked in red).



Hawthorn collected on a wild tree located at Le Grand-Village-Plage, F-17370, Oléron Island, France. GPS coordinates: 45°51'57.5"N 1°13'45.3"W



**Figure S2.** Picture of the experimental set-up used for each extraction mode (A: infusion; B: maceration; C: percolation; D: ultrasonic; E: Microwave; F: infusion using a French-Press Bodum® (with or without stirring)).



**Figure S3.** Extraction kinetics of grinded (1 mm) hawthorn followed by UV absorbance at 198 nm for various extraction modes. A: infusion mode at 250 rpm, 500 rpm, 750 rpm and 1000 rpm stirring speed, including the temperature profile at 500 rpm. B: maceration mode at 20°C, 40°C, 60°C and 80°C and at 500 rpm stirring speed. C: ultrasonic mode at 60°C and at 250 rpm stirring speed. In all cases, 2.5 g of raw hawthorn in 250 mL water was used. 100  $\mu$ L of solution were taken and added to 4 mL (or 8 mL if the absorbance values were above 1.7) water before each UV measurement. Error bars are ± one SD on *n* = 3 repetitions of independent extractions.



**Figure S4.** UV absorbance values at 198 nm and at different extraction times (A: 5 min and B: 30 min) as a function of the extraction yields at the corresponding time for all extraction modes. In all cases, 2.5 g of hawthorn material in 250 mL water was used. Maceration and ultrasonic extractions at 60°C, 100  $\mu$ L of solution were taken and added to 4 mL water before UV measurement. For all the absorbance values above 1.6, and to avoid the saturation of the detector, the solutions were diluted twice (the absorbance values were multiplied by 2 for better comparison). Error bars are ± one SD on *n* = 3 repetitions of independent extractions.



**Figure S5.** UPLC profiles of hawthorn extracts obtained from different extraction modes for raw hawthorn. All dry plant extracts are issued from lot n°20335. Experimental conditions: Luna® Omega polar C18 column (1.6  $\mu$ m, 100 × 2.1 mm), binary solvent system: water/formic acid (1‰, v/v) as solvent A and acetonitrile/formic acid (1‰, v/v) as solvent B. Gradient program: 5 % B, then increase of B to 100 % in 30 min with a convex increase. Flow rate: 0.4 mL.min<sup>-1</sup>. Injection volume: 4  $\mu$ L. Column temperature: 35°C. UV monitoring at 273 nm.



6

**Figure S6.** Relative peak area distributions for the main compounds detected by UHPLC in the various hawthorn extracts as a function of the extraction mode, the granulometry, the nature and the state of the plant. The relative area was calculated by dividing the peak area of each component by the sum of the peak area of the 12 identified components. Experimental conditions as in Figure S5.



Figure S7. Chemical structures of all compounds identified by UHPLC-ESI-MS.







HO

n

OH O

HO

OH

OH

OH

OH

OH

Chemical Formula: C<sub>30</sub>H<sub>24</sub>O<sub>12</sub> Exact Mass: 576,1268 Peak 10: Procyanidin A2

Chemical Formula: C<sub>21</sub>H<sub>20</sub>O<sub>12</sub> Exact Mass: 464,0955

Peak 11: Isoquercetin



Chemical Formula: C<sub>21</sub>H<sub>20</sub>O<sub>10</sub> Exact Mass: 432,1056 Peak 12: Apigenin-C-hexoside or Apigenin 7-glucoside **Figure S8**. Mass spectra achieved by (-) ESI FT-ICR MS analysis of the hawthorn samples, in duplicate (green and red mass spectra), according to the extraction method, plant parts and state (fresh or dry). The pie charts show the heteroatom class distribution and the achieved corresponding feature numbers. Van Krevelen diagram represents all the assigned features coloured by chemical class. The size of the bubble is relative to the peak intensity.







#### Grinded dry flowering tops extracted by infusion



#### Raw dry flowering tops extracted by infusion



### Grinded dry flowering tops extracted by maceration



#### Raw dry flowering tops extracted by maceration



#### Grinded dry flowering tops extracted by microwave



#### Raw dry flowering tops extracted by microwave



18



#### Raw dry flowering tops extracted by percolation



### Grinded dry flowering tops extracted by ultrasonication



#### Raw dry flowering tops extracted by ultrasonication



## Hydroalcolic plant extract



**Figure S9.** Hierarchical Cluster Analysis (HCA) and heatmap achieved from samples analyzed by (-) ESI FT-ICR MS. INF = Infusion. MAC = Maceration (at  $60^{\circ}$ C). PER = Percolation. US = Ultrasonic (at  $60^{\circ}$ C). MW = Microwave. Raw = raw dry flowering tops. Gr = Grinded (1 mm) flowering tops. Lot number: 20335 (flowering tops) and 20334 (flowers). 1 and 2 numbers correspond to two independent extractions of the same sample (2 repetitions).





Figure S10. Pictures of cup (A), mug (B) and bowl (C) with dimensions and weights.



**Figure S11.** Decrease profile of temperature (without stirring) *vs* the nature of the container (cup, mug, bowl, Bodum®, three-neck flask). Volume used: 125 mL (cup), 250 mL (mug, Bodum® and three-neck flask), 405 mL (bowl). Lines are guides for better reading. Error bars are  $\pm$  one SD on *n* = 3 repetitions of independent extractions.



Figure S12. Pictures of raw and grinded hawthorn materials of various granulometries.



**Figure S13.** Size distributions of grinded hawthorn materials. (A) Fine; (B) Coarse; (C) Ultrafine 10"; (D) Ultrafine 30"; (E) Grinded 1mm; (F) Grinded 2 mm. Lot N°CB58120. Experimental condition: see section 3.2.







**Figure S14.** Influence of the lot number of grinded (fine granulometry) hawthorn dry flowering tops (R78927, 1221478, H18001534, CB58120) and one lot of raw dry flowers (20334) on the UHPLC profiles of the corresponding hawthorn extracts. Infusion extraction using the optimized Bodum® setup (see section 3.8) using 2.5 g plant infused in 250 mL water. Experimental conditions of UHPLC as in Figure S5.



**Figure S15.** Relative peak area distributions for the main compounds detected by UHPLC-UV in the various grinded (fine granulometry) hawthorn extracts as a function of the lot number of dry flowering tops (R78927, 1221478, H18001534, CB58120) and one lot of raw dry flowers (20334). Same experimental conditions as in Figure S14.



**Table S1.** List of the samples analyzed by UHPLC-ESI-MS and (-)ESI FT-ICR-MS. All the samples correspond to 10 min extraction time (see section 3.14 for experimental details) and were duplicated (two independent extractions).

| Infusion             | Granulometry/nature          |
|----------------------|------------------------------|
| Lot n°20335          | Flowering tops, raw          |
| Lot n°20335          | Flowering tops, grinded 1 mm |
| Fresh                | Flowering tops, fresh        |
| Lot n°20334          | Flowers                      |
| Maceration at 60°C   | Granulometry/nature          |
| Lot n°20335          | Flowering tops, raw          |
| Lot n°20335          | Flowering tops, grinded 1 mm |
| US at 60°C           | Granulometry/nature          |
| Lot n°20335          | Flowering tops, raw          |
| Lot n°20335          | Flowering tops, grinded 1 mm |
| Percolation at 60 °C | Granulometry/nature          |
| Lot n°20335          | Flowering tops, raw          |
| Lot n°20335          | Flowering tops, grinded 1 mm |
| MW at 300W           | Granulometry/nature          |
| Lot n°20335          | Flowering tops, raw          |
| Lot n°20335          | Flowering tops, grinded 1 mm |

**Table S2.** Fitting parameters for the absorbance A(t) trace *vs* extraction time *t* for the infusion mode. Extraction kinetic curves are presented Figure 1 and Figure S3. \*: Temperature at 30 min extraction time.

| Extraction mode | Plant             | T (°C) | Stirring<br>speed<br>(rpm) | Stirring<br>type | τ1 (min) | <i>τ</i> ₂ (min) | A30 min | A <sub>w</sub> | <b>A</b> 1 |
|-----------------|-------------------|--------|----------------------------|------------------|----------|------------------|---------|----------------|------------|
|                 | Raw dry           | 41.7   | 250                        | Magnetic         | 1.55     | 21               | 1.407   | 1.627          | 0.640      |
|                 |                   | 41.4   | 500                        |                  | 1.95     | 21               | 1.512   | 1.713          | 0.821      |
|                 |                   | 40.0   | 750                        |                  | 2.3      | 25               | 1.466   | 1.685          | 0.995      |
| u               |                   | 39.6   | 1000                       |                  | 1.9      | 30.5             | 1.579   | 1.847          | 1.183      |
| iusio           |                   | 41.7   | 250                        |                  | 0.55     | 26               | 2.274   | 2.400          | 2.050      |
| Inf             | Grinded           | 41.4   | 500                        | Magnetic         | 0.45     | 26               | 2.413   | 2.506          | 2.237      |
|                 | (1 mm)            | 40.0   | 750                        |                  | 0.4      | 24               | 2.426   | 2.528          | 2.194      |
|                 |                   | 39.6   | 1000                       |                  | 0.4      | 26               | 2.517   | 2.658          | 2.272      |
|                 | Fresh             | 41.4   | 500                        | Magnetic         | 2.35     | 32.5             | 0.721   | 1.105          | 0.122      |
|                 | Raw dry           | 20     |                            | Mecanic          | 2.1      | 34               | 0.663   | 0.910          | 0.292      |
|                 |                   | 40     | 250                        |                  | 1.95     | 31.5             | 0.803   | 1.100          | 0.320      |
|                 |                   | 60     | 250                        |                  | 1.9      | 29               | 1.165   | 1.596          | 0.378      |
| tion            |                   | 80     |                            |                  | 2.0      | 30               | 1.755   | 2.404          | 0.642      |
| erat            | Fresh             | 60     | 500                        | Magnetic         | 1.2      | 36.5             | 0.58    | 0.798          | 0.244      |
| Mac             | Grinded<br>(1 mm) | 20     |                            |                  | 2.1      | 30               | 1.759   | 2.409          | 0.685      |
|                 |                   | 40     | 500                        |                  | 2.1      | 26               | 2.068   | 2.275          | 1.573      |
|                 |                   | 60     | 500                        | magnetic         | 0.65     | 30               | 2.301   | 2.531          | 1.904      |
|                 |                   | 80     |                            |                  | 0.6      | 33.5             | 2.579   | 2.837          | 2.121      |
|                 | Raw dry           | 20     |                            | Mecanic          | 2.1      | 32               | 1.381   | 1.892          | 0.637      |
| <b>/</b>        |                   | 40     | 250                        |                  | 2.2      | 38               | 1.63    | 2.233          | 0.967      |
| SU              |                   | 60     |                            |                  | 2,0      | 38               | 2.14    | 2.932          | 1.140      |
|                 | Grinded<br>(1 mm) | 60     | 250                        | Mecanic          | 0.65     | 10.5             | 3.055   | 3.100          | 2.286      |

**Table S3**. Compounds identified in hawthorn putatively assigned to raw formulae achieved by (-) ESI FT-ICR MS.

| Theoretical mass [M-H] <sup>-</sup> | Putative compounds M                                                     |
|-------------------------------------|--------------------------------------------------------------------------|
| 131.046217                          | Asparagine                                                               |
| 132.030233                          | Aspartate                                                                |
| 133.014249                          | Malic acid                                                               |
| 137.024419                          | Protocatechuic aldehyde/Hydroxybenzoic acid                              |
| 146.045883                          | Glutamate                                                                |
| 153.019334                          | Protocatechuic acid                                                      |
| 163.040069                          | Coumaric acid                                                            |
| 164.071703                          | Phenylalanine                                                            |
| 169.014249                          | Gallic acid                                                              |
| 179.034984                          | Caffeic acid                                                             |
| 179.056114                          | Glucose/fructose/Inositol                                                |
| 180.066618                          | Tvrosine                                                                 |
| 181.071764                          | Sorbitol                                                                 |
| 188.035318                          | alpha-cyano-4-hydroxycinnamic acid (HCCA)                                |
| 191.019729                          | Citric acid                                                              |
| 191.056114                          | Quinic acid                                                              |
| 193.050634                          | Ferulic acid                                                             |
| 203.082602                          | Tryptophan                                                               |
| 223.061199                          | Sinapinic acid                                                           |
| 285.040464                          | Kaempferol/cvanidin (-2H <sup>-</sup> )                                  |
| 289 071764                          | Catechin/enicatechin                                                     |
| 300 998994                          | Ellagic acid                                                             |
| 301 035379                          | Quercetin                                                                |
| 315 051029                          | Sexangularetin                                                           |
| 331.067074                          | Gallovlglucose                                                           |
| 341 108939                          | Sucrose                                                                  |
| 353 087809                          | Chlorogenic acid / 5-Q-Caffeovlquinic acid                               |
| 385.092894                          | Diferulic acid                                                           |
| 413.087809                          | Pinnatifida A/C                                                          |
| 417.082724                          | Kaempferol-O-arabinoside (crataegide)                                    |
| 431.098374                          | Vitexin / Isovitexin / Apigenin-C-hexoside                               |
| 433.077639                          | Quercetin pentoside                                                      |
| 447 000000                          | Orientin / Luteolin-7-O-glucuronide/ Ideain /                            |
| 447.093289                          | Methoxykaempferol-pentoside / Luteolin-C-hexoside                        |
| 455.098374                          | Pinnatifida B/D                                                          |
| 455.353069                          | Oleanolic or ursonic acid                                                |
| 461.072554                          | Luteolin-7-O-glucuronide                                                 |
| 461.108939                          | Methyl luteolin-C-hexoside                                               |
| 463.088204                          | Hyperoside/Isoquercitin/Spiraeoside                                      |
| 473.072554                          | Chicoric acid                                                            |
| 473.108939                          | Acetyl vitexin                                                           |
| 477.103854                          | Sexangularetin-3-O-glucoside                                             |
| 483.078034                          | Digalloylglucose                                                         |
| 489.103854                          | Acetylorientin                                                           |
| 505.098769                          | Quercetin acetyl hexoside                                                |
| 563.104249                          | Sexangularetin-3-O-(malonyl) glucoside                                   |
| 563.140634                          | Schaftoside                                                              |
| 575.119504                          | Procyanidin A2                                                           |
| 577.135154                          | Procyanidin B2                                                           |
| 577.156284                          | Iso/Vitexin 2-O-rhamnoside                                               |
| 593.151199                          | Vincenin / Keampferol-3-O-neopheridoside /<br>Iso/Orientin-O- rhamnoside |
| 609.146114                          | Rutin / Quercetin-3-O-rhamnosvlgalactoside                               |
| 619.166849                          | Vitexin acetyl rhamnoside                                                |
| C22 4 C1 7 C 4                      | Sexangularetin-3-O-neohesperidoside /                                    |
| 623.161764                          | metoyxykaepferol methylpentosylhexoside                                  |
| 755.204024                          | Quercetin di rhamnosyl hexoside/ Rhamnosyl rutin                         |
| 771.198939                          | Vitexin-di-O-glucoside                                                   |
| 865.198544                          | Procyanidin C1                                                           |

**Table S4**. Putative compounds obtained from features specifically extracted depending on the plant states (fresh vs dry and grinded vs raw) or parts (flowers vs flowering tops). See Table S1 for the lot numbers.

| _      | Fresh vs. I                                   | Dry flowering tops                                                                                             | Dry Flower vs. dry Flowering tops                                                  |                                                                                                                   | Grinded vs. Raw Flowering tops                    |                 |
|--------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|
| Order* | Fresh                                         | Dry                                                                                                            | Flowers                                                                            | Flowering tops                                                                                                    | Grinded                                           | Raw             |
| 1      | Sucrose                                       | Chlorogenic acid / 5-O-<br>Caffeoylquinic acid                                                                 | Sexangularetin-3-<br>O-glucoside                                                   | Orientin / Luteolin-7-<br>O-glucuronide/<br>Ideain /<br>Methoxykaempferol-<br>pentoside / Luteolin-<br>C-hexoside | Chlorogenic acid / 5-O-<br>Caffeoylquinic acid    | Ferulic<br>acid |
| 2      | Sexangularetin-3-<br>O-(malonyl)<br>glucoside | Orientin / Luteolin-7-O-<br>glucuronide/ Ideain /<br>Methoxykaempferol-<br>pentoside / Luteolin-C-<br>hexoside | Kaempferol-O-<br>arabinoside<br>(crataegide)                                       | Vitexin acetyl<br>rhamnoside                                                                                      | Catechin/Epicatechin                              |                 |
| 3      | Acetylorientin                                | Vitexin acetyl rhamnoside                                                                                      | Schaftoside                                                                        | Galloylglucose                                                                                                    | Procyanidin B2                                    |                 |
| 4      | Quercetin<br>pentoside                        | Vitexin/Isovitexin/Apigenin-<br>C-hexoside                                                                     | Quercetin<br>pentoside                                                             | Luteolin-7-O-<br>glucuronide                                                                                      | Coumaric acid                                     |                 |
| 5      | Oleanolic/ursonic<br>acid                     | Schaftoside                                                                                                    | Vincenin /<br>Keampferol-3-O-<br>neopheridoside /<br>Iso/Orientin-O-<br>rhamnoside | Ellagic acid                                                                                                      | Procyanidin A2                                    |                 |
| 6      | Pinnatifida A/C                               | Galloylglucose                                                                                                 | Coumaric acid                                                                      |                                                                                                                   | Diferulic acid                                    |                 |
| 7      | Procyanidin A2                                | Malic acid                                                                                                     | Malic acid                                                                         |                                                                                                                   | Pinnatifida B/D                                   |                 |
| 8      |                                               |                                                                                                                | Tryptophan                                                                         |                                                                                                                   | Protocatechuic<br>aldehyde/hydroxybenzoic<br>acid |                 |
| 9      |                                               |                                                                                                                | Glutamate                                                                          |                                                                                                                   | Glutamate                                         |                 |