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Abstract: Mulberry (Morus alba L.) leaves are not only used as the main feed for silkworms
(Bombyx mori) but also as an added feed for livestock and poultry. In order to rapidly select
high-quality mulberry leaves, a hand-held near-infrared (NIR) spectrometer combined with partial
least squares (PLS) regression and wavelength optimization methods were used to establish a
predictive model for the quantitative determination of water content in fresh mulberry leaves, as
well as crude protein and soluble sugar in dried mulberry leaves. For the water content in fresh
mulberry leaves, the R-square of the calibration set (R2

C), R-square of the cross-validation set (R2
CV) and

R-square of the prediction set (R2
P) are 0.93, 0.90 and 0.91, respectively, the corresponding root mean

square error of calibration set (RMSEC), root mean square error of cross-validation set (RMSECV)
and root mean square error of prediction set (RMSEP) are 0.96%, 1.13%, and 1.18%, respectively.
The R2

C, R2
CV and R2

P of the crude protein prediction model are 0.91, 0.83 and 0.92, respectively, and
the corresponding RMSEC, RMSECV and RMSEP are 0.71%, 0.97% and 0.61%, respectively. The
soluble sugar prediction model has R2

C, R2
CV, and R2

P of 0.64, 0.51, and 0.71, respectively, and the
corresponding RMSEC, RMSECV, and RMSEP are 2.33%, 2.73%, and 2.36%, respectively. Therefore,
the use of handheld NIR spectrometers combined with wavelength optimization can fastly detect the
water content in fresh mulberry leaves and crude protein in dried mulberry leaves. However, it is a
slightly lower predictive performance for soluble sugar in mulberry leaves.

Keywords: mulberry leaves; water content; crude protein; soluble sugar; near-infrared spectroscopy;
hand-held spectrometers; wavelength selection

1. Introduction

Mulberry is a perennial root plant, and the leaves contain a variety of nutrients, such as proteins,
soluble sugars, and fat, which are essential nutrients for the growth and development of silkworm [1].
The amino acids (made up of proteins) in mulberry leaves are abundant and suitable in proportion,
and the essential and semi-essential amino acids account for more than half of the total amino acids,
with the contents of methionine and lysine higher than that of conventional feed. Besides, mulberry
leaves are palatable, highly digestible, and barrier-free feeding. They contain a variety of biologically
active substances, which have effects on the improvement of immunity, anti-inflammatory, and
anti-oxidant [2,3].

In the traditional sericulture industry, mulberry leaves are mainly used as feed for silkworms [4].
In recent years, mulberry leaves have been extended from silkworm feed to livestock feed. Islam [5]
confirmed that the addition of mulberry leaf meal to broiler feed could lower their cholesterol and
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reduce production costs. Zhu [6] added 15% mulberry leaf powder to the finished pigs’ diet and
found that it can change the muscle fiber properties, resulting in enhanced antioxidant capacity and
increased intramuscular fat to improve meat quality. At present, the demand of mulberry leaves is
increasing in the livestock industry [7]. However, differences in a mulberry growth environment
and field management can result in quality differences of mulberry leaves [8]. In order to obtain
high-quality mulberry leaves, a fast, simple, and effective method for the determination of mulberry
leaves is in urgent need, instead of the conventional wet biochemical methods that have disadvantages
of a long time, high cost and inconvenient.

NIR spectroscopy is widely used in food for advantages rapid detection, low analysis cost,
excellent reproducibility [9–11]. Toledo-Martín et al. [12] used NIR spectroscopy and modified partial
least squares (MPLS) to establish a regression model for the fast determination of total phenolic content
(TPC) and total carotenoid content (TCC) in blackberry. The ratio of the standard deviation to standard
error of prediction (performance) (RPD) and ratio of the range to standard error of prediction (RER) of
the TPC model were 1.52 and 5.92, respectively, and the RPD and RER of the TCC model were 1.82 and
8.63, respectively. The results show that NIR spectroscopy can be used for the detection of substances
in blackberries. In recent years, NIR spectroscopy has also been used in the feed industry [13–15].
Swart et al. [16] successfully used NIR spectroscopy to detect dry matter (DM), ash, crude protein
(CP), ether extract (EE), crude fiber (CF), acid detergent fibre (ADF), neutral detergent fibre (NDF),
gross energy (GE), calcium (Ca), phosphorus (P), etc., to achieve a rapid, non-destructive quantitative
analysis of nutrients in the ostrich mixed rations. Tahir et al. [17] used NIR reflectance spectroscopy to
achieve accurate estimates of total and phytate phosphorus in poultry feed.

The recent progress in miniaturization that has taken advantage of new micro-technologies such
as micro-electro-mechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS) and
micro-mirror arrays or linear variable filters (LVFs) has led to a drastic reduction of spectrometer size
while allowing excellent performance due to the high-precision implementation of essential elements in
the final device, which is dramatically facilitates the on-site and real-time detection [18]. Neve et al. [19]
applied hand-held NIR instruments to record the NIR spectra of a variety of different pasta sauce
blends and established six models for different nutritional parameters such as energy, protein, fat,
carbohydrate, sugar and fiber. The predictive model, the experimental results show the feasibility of
handheld NIR spectroscopy to predict dietary nutrition parameters.

Thus, based on the handheld NIR spectrometer, this study established rapid analysis methods
for the determination of water content in fresh mulberry leaves, and crude protein and soluble
sugar in dry mulberry leaves. Three wavelength optimization methods, including uninformative
variable elimination (UVE) [14], competitive adaptive reweighted sampling (CARS) [20], and
random frog (RF) [21] were used to select high informative wavelength variables to improve the
determination accuracy.

2. Results and Discussion

2.1. Spectral Characteristics

The raw NIR spectra of fresh mulberry leaves and dry mulberry leaves are shown in Figure 1,
which shows that the primary trend of the spectral curves is similar. The spectra have an overtone
absorption peak of the weak C-H bond at 1190 nm and a distinct -OH absorption peak at 1440 nm. The
peak strength of -OH bond absorption peaks in the spectra of fresh mulberry leaves is higher than that
of dry mulberry leaves, which is mainly due to the higher water content in fresh mulberry leaves.
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Figure 1. Raw spectra of: (a) fresh mulberry leaves, (b) mulberry leaf powders. 
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Figure 1. Raw spectra of: (a) fresh mulberry leaves, (b) mulberry leaf powders.

2.2. Reference Values

The statistics of water content, crude protein, and soluble sugar in mulberry leaves are shown in
Table 1. The range of water, crude protein, and soluble sugar in mulberry leaves were 60.44~78.46%,
11.10~23.50 and 8.47~31.01%, the average and standard deviation were 68.24 ± 3.75%, 17.41 ± 2.27%,
19.97 ± 3.92. The range, average, and standard deviation of the calibration set and the unknown sample
set are close, indicating that these values are highly representative, so the model constructed will be
better applied in practice.

Table 1. Statistical results of reference values of the components in mulberry leaves.

Samples Components (%) Data Set Number Min Max Mean Range SD

Fresh
mulberry

leaves
Water content

Total 110 60.44 78.46 68.24 18.02 3.75
Cal 83 60.58 77.81 68.28 17.22 3.66
Pre 27 60.44 78.46 68.14 18.02 4.06

Dry
mulberry

leaves

Crude protein
Total 101 11.10 23.50 17.41 12.40 2.27
Cal 77 11.10 23.50 17.50 12.40 2.34
Pre 24 11.80 21.60 17.14 9.80 2.03

Soluble sugar
Total 104 8.47 31.01 19.97 22.54 3.92
Cal 80 8.55 31.01 20.09 22.46 3.91
Pre 24 8.47 26.62 19.59 18.15 4.04

2.3. Spectral Pretreatment

Different methods were used to pretreat spectral data. The results are shown in Table 2, in which
the pretreatment has significantly affected the prediction accuracy of the models. The combination of
the first-order derivative (1st Der) + standard normal variate (SNV) + autoscaling pretreated spectra
show the best results of modeling (Figure 2).
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Table 2. The influence of pretreatment methods on the performance of model prediction accuracy.

Components Pretreatment
Method LVs RMSEC

(%) R2
C RMSECV (%) R2

CV

Water
content

None 7 1.18 0.89 1.34 0.86
1st Der+ mean center 7 1.09 0.91 1.32 0.87

SNV+ mean center 7 1.04 0.92 1.21 0.89
autoscaling 7 1.23 0.89 1.46 0.84

1st Der+ SNV+ mean center 7 1.06 0.92 1.25 0.88
1st Der+ autoscaling 7 1.19 0.89 1.38 0.86

SNV+ autoscaling 7 1.08 0.91 1.24 0.88
1st Der+ SNV+ autoscaling 7 1.00 0.92 1.17 0.90

Crude
protein

None 9 0.89 0.85 1.11 0.78
SNV+ mean center 8 0.82 0.88 1.00 0.82

1st Der+ mean center 9 0.85 0.87 1.08 0.79
autoscaling 9 0.88 0.86 1.10 0.78

1st Der+ SNV+ mean center 8 0.80 0.88 0.97 0.83
1st Der+ autoscaling 8 0.86 0.86 1.05 0.80

SNV+ autoscaling 8 0.76 0.89 0.97 0.83
1st Der+ SNV+ autoscaling 8 0.74 0.90 0.97 0.83

Soluble
sugar

None 9 2.56 0.56 3.21 0.35
SNV+ mean center 8 2.52 0.58 3.33 0.32

1st Der+ mean center 8 2.43 0.61 3.14 0.37
autoscaling 9 2.53 0.57 3.30 0.33

1st Der+ SNV+ mean center 8 2.53 0.58 3.18 0.36
1st Der+ autoscaling 8 2.52 0.58 3.09 0.40

SNV+ autoscaling 7 2.54 0.57 3.08 0.39
1st Der+ SNV+ autoscaling 7 2.45 0.60 2.90 0.45
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Figure 2. The spectra pretreated with 1st Der+ SNV+ autoscaling for: (a) fresh mulberry leaves, (b) dry
mulberry leaves.

As shown in Table 2, for the water content, when the optimal number of factors is seven, the R2
C

and R2
CV are 0.92 and 0.90, respectively, and the corresponding RMSEC and RMSECV are 1.00% and

1.17%, respectively. When eight factors are applied for the protein content, the R2
C and R2

CV are 0.90
and 0.83, respectively, and the corresponding RMSEC and RMSECV are 0.74% and 0.97%, respectively.
For soluble sugars, when the optimal number of factors is seven, the R2

C and R2
CV are 0.60 and 0.45,

respectively, and the RMSEC and RMSECV are 2.45% and 2.90%, respectively. The pretreatment of the
raw spectra improves the prediction accuracy of the model because SNV can correct the scattering
caused by sample roughness and particle unevenness, the first derivative can deduct the baseline drift
and background noise interference to improve resolution, and autoscaling enhances the difference
between spectral data [15].
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2.4. Wavelength Optimization

Figure 3 shows diagrams of the wavelength variable screening for the water content of mulberry
leaves. For the CARS (Figure 3a), the first graph is the trend graph of the number of selected wavelength
variables with the number of sampling runs. As the number of sampling runs increases, the number of
selected wavelength variables decreases from fast to slow.
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Figure 3. Wavelength variable selection with the: (a) CARS, (b) UVE, (c) RF.

The second graph is a graph of RMSECV changes. Before the sample was iterated seven times,
RMSECV gradually decreased, indicating that the wavelength variables not related to the moisture
content of mulberry leaves were eliminated. After seven times, RMSECV gradually increased,
indicating that essential wavelength variables related to the moisture content of mulberry leaves were
eliminated. The third graph is the changing trend of the regression coefficient of each wavelength
variable during the screening process. The position of “*” in the figure corresponds to the minimum
value of RMSECV. The colored line indicates the trend of the regression coefficient of each wavelength
variable, which increases as the number of samples increases.

For the wavelength selection of UVE, as shown in Figure 3b, data on the left side of the abscissa is
the actual spectral wavelength variable, and the right part is the system’s noise variable generated by
the random noise simulation. The numerical values in the ordinate direction indicate the stability of
each wavelength variable, and the two horizontal dashed lines represent the stability threshold of the
selected actual spectral wavelength variable. The wavelength variable corresponding to the stability
value within the threshold range didn’t participate in PLS modeling. The stability variables outside



Molecules 2019, 24, 4439 6 of 13

the threshold range were useful for the water content of mulberry leaves and were selected for the
PLS modeling.

For the RF, as shown in the wavelength variable screening graph (Figure 3c), the ordinate is the
probability of the wavelength variable selected. According to the importance of the wavelength variable,
50 wavelength variables with larger possibilities were selected to participate in the PLS modeling.

The selected wavelength variables are shown in Figure 4. For the determination of water content
in fresh mulberry leaves, it is interesting that the selected wavelength variables are not shown in the
absorption peak of water, and the variables on the shoulder were selected. For the protein, a few
variables are selected. For the soluble sugar, the selected variables are similar to that for water, which
may be that a lot OH in soluble sugar.
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Figure 4. The selected wavelength variables for: (a) water content in fresh mulberry leaves, (b) crude
protein in mulberry leaves, and (c) soluble sugar in mulberry leaves.

The number of factors has a significant impact on the prediction ability of models. When the
number of factors is less, it does not reflect the characteristics of the substance, which leads to a low
prediction accuracy of the model. Many factors lead to over-fitting, which gives a high prediction
accuracy; however, when applied to unknown sample detection, the prediction effect is weak. In this
work, the cross-validation of leave-one-out was applied to obtain an optimal number of factors. The
results are shown in Table 3.

For the water content in fresh leaves, the RF method has the best performance in the selection of
wavelength variables, and the final wavelength variables were reduced from 125 to 50 (Figure 4a). The
RMSEC and RMSECV are 0.96% and 1.13%, respectively, and decrease by 4.00% and 3.42%, respectively,
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compared to the model with the whole wavelength variables. The corresponding R2
C and R2

CV are 0.93
and 0.90, respectively, Cross-validation relative analysis error (RPDCV) was 3.25. The low RMSEC and
RMSECV values, and the high R2

C and R2
CV values indicate the high prediction accuracy of the model.

Furthermore, their values are similar, which demonstrates that the model is robust. Therefore, the
model can be accurately and reliably used to predict the water content of unknown mulberry leaves.

For crude protein, the CARS, UVE, and RF methods effectively improved the prediction accuracy
of the model, among which the CARS method was the best (Figure 4b). When the number of optimal
factors is 9, the R2

C and R2
CV are 0.91 and 0.83, respectively, and the corresponding RMSEC and RMSECV

are 0.71% and 0.97%, respectively, and the RPDCV is 2.43, it indicates that the model can predict crude
protein of mulberry leaves. However, the difference between RMSEC and RMSECV values indicates
that the model is less robust.

For soluble sugar, 60 spectral wavelength variables were selected to establish the PLS model
(Figure 4c). When the optimal factor is 8, the RMSEC and RMSECV are 2.33% and 2.73%,
respectively, and they are reduced by 4.90% and 5.86%, respectively, compared with the model
with whole-wavelength variables. The R2

C and R2
CV are 0.64 and 0.51, respectively, and are increased

by 6.25% and 13.33%, respectively, and the RPDCV was 1.43. RPDCV < 2.5, which indicates that the
predicted value of this model is not high and can only be used for rough evaluation. Moreover, RMEC
and RMSECV, R2

C, and R2
CV differ greatly from each other, reflecting the instability of the model.

Table 3. Model results of mulberry leaf wavelength optimization.

Components Methods LVs RMSEC
(%) R2

C
RMSECV

(%) R2
CV

RMSEP
(%) R2

P RPDCV RPDR RER

Water content

PLS 7 1.00 0.92 1.17 0.90 1.22 0.91 3.14 3.33 14.80
CARS-PLS 7 0.95 0.93 1.11 0.91 1.21 0.91 3.30 3.36 14.93
UVE-PLS 7 0.94 0.93 1.10 0.91 1.19 0.91 3.34 3.41 15.12
RF-PLS 7 0.96 0.93 1.13 0.90 1.18 0.91 3.25 3.43 15.21

Crude
protein

PLS 8 0.74 0.90 0.97 0.83 0.67 0.89 2.42 3.02 14.56
CARS-PLS 9 0.71 0.91 0.97 0.83 0.61 0.92 2.43 3.34 16.11
UVE-PLS 7 0.73 0.90 0.86 0.86 0.64 0.91 2.74 3.19 15.39
RF-PLS 7 0.74 0.90 0.88 0.86 0.65 0.90 2.67 3.11 14.99

Soluble sugar

PLS 7 2.45 0.60 2.90 0.45 2.57 0.64 1.35 1.19 4.54
CARS-PLS 9 2.32 0.64 2.84 0.48 2.37 0.72 1.38 1.28 4.92
UVE-PLS 8 2.33 0.64 2.73 0.51 2.36 0.71 1.43 1.29 4.93

RF-PLS 10 2.27 0.66 2.84 0.48 2.40 0.71 1.38 1.27 4.86

2.5. Validation for Unknown Samples

The results of the verification of the unknown sample to the model are shown in Table 3. 27
unknown samples were collected to verify the predictive power of the moisture model for mulberry
leaves. The results showed that R2

P and RMSEP were 0.91 and 1.18%, respectively, and the RPDP and
RER were 3.43 and 15.21, respectively, R2

P was high, closer to R2
C and R2

CV, RMSEP was low, similar to
RMSEC and RMSECV, RPDP > 3, and RER > 10, indicating that the model is accurate and robust. The
absolute error range is −2.58~2.16%, and the relative error range is −3.28~3.16% (Table 4), indicating
that the model has accurate prediction ability. Figure 5a is a scatter plot of measured and predicted
values for mulberry water content. This value is close to the regression line, which indicates that
the model has higher prediction accuracy. Ni et al. [22] applied NIR spectroscopy and the stacked
autoencoder combined with support vector regression to establish a prediction model for the moisture
content of Masson pine seedling leaves. The R2

C and R2
P are 0.9946 and 0.9621, respectively, and the

RMSEC and RMSEP are 0.1636 0.4249, respectively. The performance of calibration is higher than that
of this study, mainly because the NIR spectrometer used is a Fourier-Transform NIR spectrometer, with
a wide spectral range. However, this kind of instrument is expensive and is hard to be widely used.

Twenty four samples were collected to assess the predictive performance of the crude protein
model. The R2

P and RMSEP are 0.92% and 0.61%, respectively, and the RPDP and RER are 3.34 and 16.11,
respectively. The absolute error range is −1.31 to 1.36%, and the relative error range is −6.55~7.30%
(Table 4). In Figure 5b, the measured and predicted values are close to the regression line. These results
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show that although the established model can predict crude protein of mulberry leaves, the robustness
and prediction accuracy of the model are poor.

A set of 22 samples was collected to form a test set to validate the performance of the determination
of soluble sugar in mulberry leaves. The R2

P is 0.71, and the RMSEP is 2.36%, the RPDP and RER are
1.29 and 4.93, respectively, RPDP < 2.5, RER < 10, and the absolute error range and relative error
range between predicted and measured values are −3.04~3.33% and −14.81 to 21.09%, respectively
(Table 4). In the scatter plot of the measured and predicted sugar content (Figure 5c), the measured
and predicted value is not close to the regression line, which indicates that the predictive ability of
the model is relatively weak, so it is difficult to predict the soluble sugar content in mulberry leaves
accurately in practice. Quentin et al. [23] established a PLS prediction model for soluble sugar in
spherical eucalyptus leaves by NIR spectroscopy. The R2 is 0.70 and RMSEP > 2.3%, which are basically
consistent with the achieved results in this work.

In this work, the accuracy of models for the determination of water content in fresh mulberry
leaves is high, and the prediction accuracy for the crude protein in mulberry leaves is not as high as that
of the water content, it is because the NIR spectra are sensitive to water [18]. The soluble sugar content
of the mulberry leaves prediction model is not very effective, and it may because that the soluble sugar
is similar to carbohydrates, polysaccharides, and cellulose, which interfere with the NIR spectra.

Table 4. Verification results for unknown samples with the built models.

Comp
Onents No. Measured

Value
Predicted

Value
Absolute

Error
Relative
Error No. Measured

Value
Predicted

Value
Absolute

Error
Relative
Error

Water
content
(n = 27)

W1 60.44 61.94 1.50 2.48 W15 68.32 70.48 2.16 3.16
W2 63.22 63.19 −0.03 −0.04 W16 68.53 67.19 −1.35 −1.97
W3 63.84 63.98 0.14 0.21 W17 68.95 69.83 0.88 1.28
W4 64.07 64.43 0.37 0.57 W18 69.14 69.78 0.65 0.93
W5 64.44 65.42 0.98 1.53 W19 69.62 71.12 1.50 2.15
W6 65.06 65.52 0.46 0.71 W20 70.00 69.99 0.00 0.00
W7 65.18 66.80 1.62 2.49 W21 70.23 69.46 −0.77 −1.10
W8 65.48 65.69 0.21 0.33 W22 71.04 69.88 −1.16 −1.63
W9 65.87 65.21 −0.66 −1.00 W23 71.50 72.71 1.21 1.69
W10 66.01 66.54 0.53 0.80 W24 72.22 73.45 1.23 1.70
W11 66.26 66.30 0.04 0.05 W25 74.88 76.41 1.53 2.04
W12 66.64 65.27 −1.37 −2.05 W26 75.49 73.74 −1.75 −2.32
W13 66.97 67.95 0.99 1.48 W27 78.46 75.89 −2.58 −3.28
W14 67.86 66.75 −1.11 −1.63

Crude
protein
(n = 20)

P1 11.80 12.29 0.49 4.13 P13 17.10 16.98 −0.12 −0.70
P2 14.90 14.41 −0.49 −3.29 P14 17.40 17.94 0.54 3.12
P3 15.10 14.58 −0.52 −3.43 P15 17.60 16.67 −0.93 −5.28
P4 15.20 15.52 0.32 2.08 P16 17.90 17.87 −0.03 −0.19
P5 15.50 15.94 0.44 2.85 P17 18.20 18.08 −0.12 −0.63
P6 15.70 15.79 0.09 0.60 P18 18.40 19.37 0.97 5.26
P7 16.10 15.48 −0.62 -3.83 P19 18.70 20.06 1.36 7.30
P8 16.20 16.63 0.43 2.63 P20 18.90 17.59 −1.31 −6.95
P9 16.40 16.45 0.05 0.33 P21 19.10 19.39 0.29 1.52

P10 16.40 16.48 0.08 0.51 P22 19.50 19.92 0.42 2.16
P11 16.80 16.24 −0.56 −3.34 P23 19.80 20.74 0.94 4.73
P12 17.00 16.82 −0.18 −1.04 P24 21.60 21.85 0.25 1.16

Soluble
sugar

(n = 21)

S1 14.97 17.58 2.61 17.43 S12 20.35 23.35 3.00 14.74
S2 15.79 19.12 3.33 21.09 S13 20.52 17.48 −3.04 −14.81
S3 17.15 17.14 −0.01 −0.06 S14 20.84 20.53 −0.31 −1.49
S4 17.69 18.69 1.00 5.65 S15 21.31 20.20 −1.11 −5.21
S5 18.02 17.75 −0.27 −1.50 S16 22.32 20.21 −2.11 −9.45
S6 18.32 20.26 1.94 10.59 S17 22.88 22.84 −0.04 −0.17
S7 18.44 17.76 −0.68 −3.69 S18 23.05 21.72 −1.33 −5.77
S8 18.73 19.20 0.47 2.51 S19 23.56 22.69 −0.87 −3.69
S9 18.87 21.29 2.42 12.82 S20 24.08 23.28 −0.80 −3.32

S10 19.73 21.55 1.82 9.22 S21 25.52 25.58 0.06 0.24
S11 19.91 21.34 1.43 7.18 S22 26.62 25.98 −0.64 −2.40
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Figure 5. Scatter diagrams of the measured and predicted values of unknown samples; (a) water content
in fresh mulberry leaves, (b) crude protein in mulberry leaves, and (c) soluble sugar in mulberry leaves.

3. Conclusions

A handheld NIR spectrometer combined with chemometric methods can quickly detect the
moisture in fresh mulberry leaves, as well as the crude protein and soluble sugar content in dried
mulberry leaves. The detection accuracy of water and protein content was high; the RMSEPs are 0.91%
and 0.92%, the RPDs are 3.43 and 3.34, respectively, and the RERs are 15.21 and 16.11, respectively.
However, soluble sugar content is slightly low, and the RMSEP, RPD, and RER are 0.71%, 1.29, and
4.93, respectively. With the developed method, it will be of great importance to improve the quality of
mulberry leaves for animal feeds.

4. Materials and Methods

4.1. Mulberry Leaves

Fresh mulberry leaves were collected from the mulberry resource center, the sericultural research
institute, Chinese academy of agricultural sciences (Zhenjiang, Jiangsu, China). The whole leaves of
the seventh or eighth position of the mulberry branch were plucked as calibration sets. The numbers
of samples were 83, 77, and 80 for the calibration sets of water content, crude protein, and soluble
sugar, respectively.
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4.2. Methods

4.2.1. NIR Spectra Collection

The NIR transflective spectra of fresh mulberry leaves were collected by a handheld NIR
spectrometer (MicroNIR1700, JDSU, Santa Rosa, CA, USA). Spectra were collected from four points
on each of the two superimposed samples (Figure 6a). Each point was collected three times, and the
spectrometer was rotated 120◦ each time to collect the spectrum. A total of 12 spectra were averaged as
the final spectrum of a sample.
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Fresh mulberry leaves were placed in an oven and dried to constant weight at 60 ◦C, and then
pulverized and passed through a 60-mesh sieve to obtain mulberry leaf powders. As shown in
Figure 6b, 1.5~2 cm high of mulberry leaf powder was poured in the drum (the bottom of which is the
window of the NIR spectrometer) to collect the NIR diffuse reflectance spectrum of the mulberry leaf
powder. Each sample was collected three times, and the sample was rotated 120◦ each time to collect
the spectrum, an average of the three spectra was used as the final spectrum of a sample.

For the spectral acquisition parameters, the spectral range was 950~1650 nm, and the spectral
resolution was 12.5 nm (at 1000 nm), the number of scans was 50, and the integration time was 15 ms.
As a reference, a 99% Spectralon reflection standard (Labsphere, Inc., North Sutton, NA, USA) was
used, all measurements were performed at room temperature and relative humidity of 35–40%.

4.2.2. Reference Determination

The water content of fresh mulberry leaves was determined by the drying method at 105 ◦C. The
crude protein and soluble sugar in dry mulberry leaves were determined by the Kjeldahl method [24]
and the anthrone-sulfuric acid colorimetric method [25], respectively. Each component was subjected
to three parallel determinations, and the average value was used as the final result.

4.2.3. Spectra Pretreatment

Collected NIR spectra contain not only the component information of the sample but also
interference information such as stray light, baseline drift, background noise, etc., which can reduce
the reliability and stability of the spectral model. This may be due to the rough surface of leaves, an
abundance of veins on fresh mulberry leaves, and uneven mulberry leaf particles. In this work, spectral
data were pretreated using different combinations of the 1st Der, SNV, mean center, and autoscaling to
eliminate interfering information and to highlight spectral information.

4.2.4. Wavelength Selection

Generally, there is redundant information in the raw NIR spectra. Therefore, when the prediction
model is built with the whole wavelength variables, the accuracy of the model will be reduced. The
wavelength optimization can extract the characteristic wavelength variables of the component in
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samples to establish a more reliable prediction model [26]. At present, the commonly used characteristic
wavelength screening algorithms mainly include genetic algorithms [27], CARS, UVE, moving window,
and RF. In this work, the UVE, CARS, and RF methods were used to improve the reliability and
accuracy of the prediction model.

The CARS is based on the simple and effective “survival of the fittest” principle to select wavelength
variables, and it selects the optimal combination of wavelength variables with larger absolute regression
coefficients in PLS regression [28]. The UVE is a wavelength optimization method based on the PLS
regression coefficient b to eliminate the useless information of spectral data [14]. RF is a novel feature
wavelength optimization method that can be iteratively modeled with a small number of wavelength
variables [29,30]. This algorithm can calculate the probability that each variable is selected, and the
wavelength is preferred according to the magnitude of the probability.

4.2.5. PLS Calibration

PLS is a linear regression modeling method for multiple independent variables versus multiple
dependent variables [31–33]. It was used in calibration in this work.

4.2.6. Evaluation Method

The evaluation indicators for the model mainly include RMSEC, RMSECV, R2
C, and R2

CV. The
smaller the values of RMSEC and RMSECV and the closer they are to each other, the more the prediction
accuracy and the higher the stability of the model. The R2 is used to describe the correlation between
the two group variables. In the prediction model, the R2 between the predicted and the measured
values has a value range of 0~1, the closer the R2 is to 1, the closer the predicted value is to the actual
value. RPD is the ratio of SD to RMSE for the prediction set [34]. The higher the RPD value, the better
the prediction ability of the established model. When RPD ≥ 3, it indicates that the prediction model
has a good effect and can be used for rapid analysis and detection of unknown samples. When 2.5 <

RPD <3, it indicates that the prediction model has general analysis ability, and the prediction accuracy
needs to be improved. When RPD < 2.5, the prediction model is difficult. Rapid detection and analysis
of unknown samples. RER is the ratio of the reference range of the prediction set to the RMSEP, which
is similar in nature to RPD, but at least higher than 10 indicates that the prediction model is reliable.

4.2.7. Validation With Unknown Samples

Unknown mulberry leaves were collected to validate the prediction capability of built models for
the water content, crude protein, and soluble sugar.

4.2.8. Software

The UVE was run on the toolbox of Chemoactbx, and the CARS and RF algorithms were performed
with the libPLS toolbox (http://www.libpls.net/) [28], and they were all run on the MATLAB R2009
(MathWorks, Natick, MA, USA).

Author Contributions: Data curation, Y.M.; Funding acquisition, G.-Z.Z.; Investigation, Y.M., G.-Z.Z. and
S.A.-A.R.-C.; Writing—Review & Editing, Y.M., G.-Z.Z. and S.A.-A.R.-C.; Methodology, G.-Z.Z. and Y.M.

Funding: This research was funded by the Ministry of Agriculture and Rural Affairs of the People’s Republic of
China, grant number CARS-18.

Conflicts of Interest: The authors report that there are no conflicts of interest.

References

1. Al-Kirshi, R.A.; Alimon, A.; Zulkifli, I.; Atefeh, S.; Zahari, M.W.; Ivan, M. Nutrient digestibility of mulberry
leaves (Morus Alba). Ital. J. Anim. Sci. 2013, 12, 381–388. [CrossRef]

2. Panja, P. The effects of dietary mulberry leaves (Morus alba L.) on chicken performance, carcass, egg quality
and cholesterol content of meat and egg. Walailak J. Sci. Technol. 2013, 10, 121–129.

http://www.libpls.net/
http://dx.doi.org/10.4081/ijas.2013.e36


Molecules 2019, 24, 4439 12 of 13

3. Huyen, N.T.; Wanapat, M.; Navanukraw, C. Effect of mulberry leaf pellet (MUP) supplementation on rumen
fermentation and nutrient digestibility in beef cattle fed on rice straw-based diets. Anim. Feed Sci. Technol.
2012, 175, 8–15. [CrossRef]

4. Hiromitsu, N.; Shinji, O.; Eriko, K.; Sukunya, C.; Midori, T.; Hajime, K.; Rensuke, K. Effect of environmental
conditions on the α-glucosidase inhibitory activity of mulberry leaves. J. Agric. Chem. Soc. Jpn. 2011, 75,
2293–2296.

5. Islam, M.; Siddiqui, M.N.; Khatun, A.; Siddiky, M.; Rahman, M.; Bostami, A.; Selim, A. Dietary effect of
mulberry leaf (Morus alba) meal on growth performance and serum cholesterol level of broiler chickens.
SAARC J. Agric. 2014, 12, 79–89. [CrossRef]

6. Zhu, Z.; Jiang, J.J.; Jie, Y.U.; Mao, X.B.; Bing, Y.U.; Chen, D.W. Effect of dietary supplementation with mulberry
(Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs.
J. Integr. Agric. 2019, 18, 147–155.

7. Naranjo, A.A.; García, J.A.; Esperance, M. Partial or total replacement of commercial concentrate with
on-farm-grown mulberry forage: Effects on lamb growth and feeding costs. Trop. Anim. Health Prod. 2017,
49, 537–546. [CrossRef]

8. Dasappa, D.; Ramaswamy, S. Efficacy of cyanobacterial biofertilizer (CBB) on leaf yield and quality of
mulberry and its impact on silkworm cocoon characters. Int. J. Ind. Entomol. 2006, 13, 15–22.

9. Li-chan, E.C.Y.; Griffiths, P.R.; Chalmers, J.M. Applications of Vibrational Spectroscopy in Food Science: Volume I:
Instrumentation and Fundamental Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010.

10. Osborne, B.G.; Kays, S.E.; Barton, F.E.; Cozzolino, D.; Cattaneo, T.M.P. Near-Infrared Spectroscopy in Food
Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2006.

11. Zhang, Y.; Dong, Y.; Xiang, B.; Xu, J. Feasibility research on rapid detection of prochloraz in green tea soft
drink by near-infrared spectroscopy. Food Anal. Method 2015, 8, 343–351. [CrossRef]

12. Toledo-Martín, E.; García-García, M.; Font, R.; Moreno-Rojas, J.; Salinas-Navarro, M.; Gómez, P.; del
Río-Celestino, M. Quantification of total phenolic and carotenoid content in blackberries (Rubus Fructicosus L.)
using near infrared spectroscopy (NIRS) and multivariate analysis. Molecules 2018, 23, 3191. [CrossRef]

13. Yang, Z.; Nie, G.; Pan, L.; Zhang, Y.; Huang, L.; Ma, X.; Zhang, X. Development and validation of near-infrared
spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ 2017, 5, e3867.
[CrossRef]

14. Yan, H.; Han, B.X.; Wu, Q.Y.; Jiang, M.Z.; Gui, Z.Z. Rapid detection of Rosa laevigata polysaccharide content
by near-infrared spectroscopy. Spectrochim. Acta Part A 2011, 79, 179–184. [CrossRef]

15. Yan, H.; Siesler, H.W. Quantitative analysis of a pharmaceutical formulation: Performance comparison of
different handheld near-infrared spectrometers. J. Pharm. Biomed. Anal. 2018, 160, 179–186. [CrossRef]

16. Swart, E.; Brand, T.; Engelbrecht, J. The use of near infrared spectroscopy (NIRS) to predict the chemical
composition of feed samples used in ostrich total mixed rations. S. Afr. J. Anim. Sci. 2012, 42, 550–554.
[CrossRef]

17. Tahir, M.; Shim, M.Y.; Ward, N.E.; Westerhaus, M.O.; Pesti, G.M. Evaluation of near-infrared reflectance
spectroscopy (NIRS) techniques for total and phytate phosphorus of common poultry feed ingredients. Poult.
Sci. 2012, 91, 2540–2547. [CrossRef]

18. Cozzolino, D.; Labandera, M. Determination of dry matter and crude protein contents of undried forages by
near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2002, 82, 380–384. [CrossRef]

19. Neves, M.D.G.; Poppi, R.J.; Siesler, H.W. Rapid Determination of nutritional parameters of pasta/sauce
blends by handheld near-infrared spectroscopy. Molecules 2019, 24, 2029. [CrossRef]

20. Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling
method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [CrossRef]

21. Li, X.; Sun, C.; Luo, L.; He, Y. Determination of tea polyphenols content by infrared spectroscopy coupled
with iPLS and random frog techniques. Comput. Electron. Agric. 2015, 112, 28–35. [CrossRef]

22. Ni, C.; Zhang, Y.; Wang, D. Moisture content quantization of masson pine seedling leaf based on stacked
autoencoder with near-infrared spectroscopy. J. Electr. Comput. Eng. 2018, 2018, 8696202. [CrossRef]

23. Quentin, A.; Rodemann, T.; Doutreleau, M.; Moreau, M.; Davies, N. Application of near-infrared spectroscopy
for estimation of non-structural carbohydrates in foliar samples of Eucalyptus globulus Labilladière. Tree
Physiol. 2017, 37, 131–141.

http://dx.doi.org/10.1016/j.anifeedsci.2012.03.020
http://dx.doi.org/10.3329/sja.v12i2.21920
http://dx.doi.org/10.1007/s11250-017-1225-8
http://dx.doi.org/10.1007/s12161-014-9895-6
http://dx.doi.org/10.3390/molecules23123191
http://dx.doi.org/10.7717/peerj.3867
http://dx.doi.org/10.1016/j.saa.2011.02.032
http://dx.doi.org/10.1016/j.jpba.2018.07.048
http://dx.doi.org/10.4314/sajas.v42i5.22
http://dx.doi.org/10.3382/ps.2012-02211
http://dx.doi.org/10.1002/jsfa.1050
http://dx.doi.org/10.3390/molecules24112029
http://dx.doi.org/10.1016/j.aca.2009.06.046
http://dx.doi.org/10.1016/j.compag.2015.01.005
http://dx.doi.org/10.1155/2018/8696202


Molecules 2019, 24, 4439 13 of 13

24. Granados-Chinchilla, F.; Rodríguez, C. Bioavailability of in-feed tetracyclines is influenced to a greater extent
by crude protein rather than calcium. Anim. Feed Sci. Technol. 2014, 198, 323–332. [CrossRef]

25. Ibrahim, M.H.; Jaafar, H.Z.; Karimi, E.; Ghasemzadeh, A. Impact of organic and inorganic fertilizers
application on the phytochemical and antioxidant activity of kacip fatimah (Labisia pumila Benth). Molecules
2013, 18, 10973–10988. [CrossRef] [PubMed]

26. Yun, Y.H.; Liang, Y.Z.; Xie, G.X.; Li, H.D.; Cao, D.S.; Xu, Q.S. A perspective demonstration on the importance
of variable selection in inverse calibration for complex analytical systems. Analyst 2013, 138, 6412–6421.
[CrossRef] [PubMed]

27. Rady, A.M.; Guyer, D.E. Evaluation of sugar content in potatoes using NIR reflectance and wavelength
selection techniques. Postharvest Biol. Technol. 2015, 103, 17–26. [CrossRef]

28. Li, H.D.; Xu, Q.S.; Liang, Y.Z. libPLS: An integrated library for partial least squares regression and linear
discriminant analysis. Chemom. Intell. Lab. Syst. 2018, 176, 34–43. [CrossRef]

29. Yun, Y.H.; Li, H.D.; Wood, L.R.; Fan, W.; Wang, J.J.; Cao, D.S.; Xu, Q.S.; Liang, Y.Z. An efficient method of
wavelength interval selection based on random frog for multivariate spectral calibration. Spectrochim. Acta
Part A 2013, 111, 31–36. [CrossRef]

30. Li, H.D.; Xu, Q.S.; Liang, Y.Z. Random frog: An efficient reversible jump Markov Chain Monte Carlo-like
approach for variable selection with applications to gene selection and disease classification. Anal. Chim.
Acta 2012, 740, 20–26. [CrossRef]

31. Xue, J.; Yang, Q.; Yun, J.; Liu, Y.; Wan, G. Rapid determination of puerarin by near-infrared spectroscopy
during percolation and concentration process of puerariae lobatae radix. Pharmacogn. Mag. 2016, 12, 188–192.

32. Katarzyna, W.O.; Igor, K.; Ewa, S. Evaluation of quality parameters of apple juices using near-infrared
spectroscopy and chemometrics. J. Spectrosc. 2018, 2018, 5191283.

33. Nascimento, P.A.M.; Carvalho, L.C.D.; Júnior, L.C.C.; Pereira, F.M.V. Robust PLS models for soluble solids
content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest
Biol. Technol. 2016, 111, 345–351. [CrossRef]

34. Martinez-Valdivieso, D.; Font, R.; Gomez, P.; Blanco-Diaz, T.; Del Rio-Celestino, M. Determining the mineral
composition in Cucurbita pepo fruit using near infrared reflectance spectroscopy. J. Sci. Food Agric. 2014, 94,
3171–3180. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.anifeedsci.2014.09.027
http://dx.doi.org/10.3390/molecules180910973
http://www.ncbi.nlm.nih.gov/pubmed/24013410
http://dx.doi.org/10.1039/c3an00714f
http://www.ncbi.nlm.nih.gov/pubmed/24003437
http://dx.doi.org/10.1016/j.postharvbio.2015.02.012
http://dx.doi.org/10.1016/j.chemolab.2018.03.003
http://dx.doi.org/10.1016/j.saa.2013.03.083
http://dx.doi.org/10.1016/j.aca.2012.06.031
http://dx.doi.org/10.1016/j.postharvbio.2015.08.006
http://dx.doi.org/10.1002/jsfa.6667
http://www.ncbi.nlm.nih.gov/pubmed/24652716
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Spectral Characteristics 
	Reference Values 
	Spectral Pretreatment 
	Wavelength Optimization 
	Validation for Unknown Samples 

	Conclusions 
	Materials and Methods 
	Mulberry Leaves 
	Methods 
	NIR Spectra Collection 
	Reference Determination 
	Spectra Pretreatment 
	Wavelength Selection 
	PLS Calibration 
	Evaluation Method 
	Validation With Unknown Samples 
	Software 


	References

