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Abstract: The characterization of the structure of nitronic esters and their rearrangement into
nitronorbornene reactions has been analyzed within the Molecular Electron Density Theory
(MEDT) using Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) computational
level. Quantum-chemical calculations indicate that this rearrangement takes place according to
a one-step mechanism. The sequential bonding changes received from the Bonding Evolution Theory
(BET) analysis of the rearrangement of internal nitronic ester to nitronorbornene allowed us to
distinguish seven different phases. This fact clearly contradicts the formerly-proposed concerted
pericyclic mechanism.

Keywords: molecular electron density theory; bonding evolution theory; electron localization
function; molecular mechanism; Diels–Alder reaction; nitro compounds

1. Introduction

The Diels–Alder reaction (DA) of nitroalkenes to conjugated dienes is a powerful tool for
the synthesis of nitrocarboxylic systems, which can be used as precursors for the synthesis of
pharmaceuticals and biomaterials [1–3]. However, in some cases, the DA processes can compete
with the Hetero-Diels–Alder (HDA) reaction, in which case, it is therefore possible that some of the
electrons involved in the reaction come from the bond of the nitro group [4–6]. According to the
literature, the HDA adduct can be recast into a DA product. It is assumed that this rearrangement
of the carboxylic skeleton is analogous to the Claisen rearrangement [7,8] and can be interpreted
as [3.3]-sigmatropic shift [9]. In the literature, we find many experimental conformances of these
processes. Wade and co-workers proved that the rearrangement of O-allyl nitronic esters (nitronates)
obtained in the E-2-phenylnitroethylene and 1,3-cyclohexadiene reaction undergo conversion to the
DA product, the γ,δ-unsaturated nitro compound, with high efficiency [10,11]. The necessary nitronic
ester precursors are readily obtained by HDA cycloaddition reactions of nitroalkenes with appropriate
dienes [10–12].

The internal nitronic ester rearrangement has been the subject of several theoretical
investigations [13–18]. There is a view that the rearrangement of nitronic esters progresses according
to a six-membered transition state, and this is considered as a “pericyclic” process [19,20]. Domingo
generally negated the term “pericyclic process” for the majority of the defined reactions [21]. Therefore,
the mechanistic aspects of this rearrangement necessarily require deep re-examination.

This paper is a continuation of a comprehensive mechanistic study of the reaction mechanism
using the Molecular Electron Density Theory (MEDT) [22,23]. This theory, proposed by Domingo
in 2016 [24], in which it is established that changes in electron-density, and not molecular orbital
interactions, are responsible for reactivity in organic chemistry, uses quantum chemical tools such
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as the conceptual Density Functional Theory (DFT) [25,26] reactivity indicator and the topological
Electron Localization Function (ELF) [27] analysis of the changes in the molecular electron-density
along the reaction path, in order to study organic reactions. Thus, MEDT is an insightful reactivity
model in the study of organic reactions, has been applied in many recent theoretical studies and has
allowed the performance of many processes in a different light [28–37].

In order to understand the rearrangement, an MEDT study [22,23] of the transformation of 1
as a model nitronic ester into nitronorbornene 2 (Scheme 1) was carried out at the B3LYP/6-31G(d)
computational level, in which a combination of: (i) ELF topological analysis and a Natural Population
Analysis (NPA) of the HDA cycloadduct 1 was performed in order to characterize its electronic
structure, (ii) Bonding Evolution Theory (BET) [38] and Noncovalent Interactions (NCIs) study of the
transformation of HDA cycloadduct 1 to DA cycloadduct 2, and (iii) MEDT study of the rearrangement.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 12 

 

Electron Localization Function (ELF) [27] analysis of the changes in the molecular electron-density 
along the reaction path, in order to study organic reactions. Thus, MEDT is an insightful reactivity 
model in the study of organic reactions, has been applied in many recent theoretical studies and has 
allowed the performance of many processes in a different light [28–37].  

In order to understand the rearrangement, an MEDT study [22,23] of the transformation of 1 as 
a model nitronic ester into nitronorbornene 2 (Scheme 1) was carried out at the B3LYP/6-31G(d) 
computational level, in which a combination of: (i) ELF topological analysis and a Natural Population 
Analysis (NPA) of the HDA cycloadduct 1 was performed in order to characterize its electronic 
structure, (ii) Bonding Evolution Theory (BET) [38] and Noncovalent Interactions (NCIs) study of the 
transformation of HDA cycloadduct 1 to DA cycloadduct 2, and (iii) MEDT study of  
the rearrangement.  

 
Scheme 1. General scheme of the rearrangement of internal nitronic ester 1 into nitronorbornene 2. 
B3LYP/6-31G(d) relative energy with respect to 1 is given in kcal·mol-1. 

2. Results and Discussion 

The present MEDT study has been divided into three sections: (i) in Section 2.1. is the ELF and 
NPA characterization of the structure of internal nitronic ester 1; (ii) in Section 2.2, the BET and NCIs 
study of the rearrangement nitronic ester 1 into nitronorbornene 2 are performed; and finally, (iii) in 
Section 2.3., an MEDT study of the rearrangement is conducted. 

2.1. ELF and NPA Characterization of the Structure of Internal Nitronic Ester 1 

At the beginning, I decided to investigate the electronic structure of nitronic ester 1. For this 
purpose, topological analysis of the ELF and NPA of the 1 was performed. ELF localization domains 
and their attractors’ positions, together with the most representative valence basin populations, and 
the proposed Lewis structure with natural atomic changes are shown in Figure 1.  

 
Figure 1. (a) ELF localization domains of 1, represented at an isosurface value of the Electron 
Localization Function (ELF) = 0.75; (b) ELF basin attractor positions, together with the most 
representative valence basin populations; (c) Lewis-like structure of 1 together with the natural atomic 
charges, obtained through an Natural Population Analysis (NPA). Negative charges are colored in 
red, and positive charges are colored in blue. ELF valence basin population and natural atomic 
charges are given in average number of electrons, e. 

Scheme 1. General scheme of the rearrangement of internal nitronic ester 1 into nitronorbornene 2.
B3LYP/6-31G(d) relative energy with respect to 1 is given in kcal·mol−1.

2. Results and Discussion

The present MEDT study has been divided into three sections: (i) in Section 2.1. is the ELF and
NPA characterization of the structure of internal nitronic ester 1; (ii) in Section 2.2, the BET and NCIs
study of the rearrangement nitronic ester 1 into nitronorbornene 2 are performed; and finally, (iii) in
Section 2.3, an MEDT study of the rearrangement is conducted.

2.1. ELF and NPA Characterization of the Structure of Internal Nitronic Ester 1

At the beginning, I decided to investigate the electronic structure of nitronic ester 1. For this
purpose, topological analysis of the ELF and NPA of the 1 was performed. ELF localization domains
and their attractors’ positions, together with the most representative valence basin populations, and
the proposed Lewis structure with natural atomic changes are shown in Figure 1.
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Figure 1. (a) ELF localization domains of 1, represented at an isosurface value of the Electron
Localization Function (ELF) = 0.75; (b) ELF basin attractor positions, together with the most
representative valence basin populations; (c) Lewis-like structure of 1 together with the natural atomic
charges, obtained through an Natural Population Analysis (NPA). Negative charges are colored in red,
and positive charges are colored in blue. ELF valence basin population and natural atomic charges are
given in average number of electrons, e.
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Topological analysis ELF of 1 showed the presence of four monosynaptic basins, two derived
from C7-V(C7) and V’(C7), integrating a total electron density of 0.95e and two of O9-V(O9) and
V’(O9) integrating 2.56e and 2.68. We also noted the presence of six disynaptic basins, V(C1, C2),
V(C2, C3), V’(C2, C3), V(C3, O4), V(C7, N8), and V(O9, C1) integrating 2.03e, 1.85e, 1.86e, 1.44e, 3.89e,
and 1.19e, respectively (Figure 1). In accordance with ELF analysis, monosynaptic basins are associated
with non-bonding regions; in turn, disynaptic basins are related to bonding regions [39]. Therefore,
within the Lewis bonding model [40], the monosynaptic basins V(O9), V’(O9), V(C7), and V’(C7) can
be associated with O9 and C7 lone pairs, the V(C1, C2); V(C3, O4), V(C7, N8), and V(O9, C1) disynaptic
basins are related to C-C, C-O, and C-N single bonds; and the V(C2, C3) and V’(C2, C3) disynaptic
basins are connected with the double bond between atoms C2 and C3.

The natural atomic charges, obtained through the NPA [38,41], are given in Figure 1. NPA of 1
indicated that, while the O4 and O9 oxygen and C6 carbon atoms gather the highest negative charges,
−0.54e, −0.43e, −0.53e, respectively, the C2 carbon is almost half as negative charged, −0.37e. On the
other hand, while the nitrogen N8 presents a relatively high positive charge, 0.33e, the C1 carbon is
positively charged by 0.23e, and insignificant positive charges are observed in carbon atoms C5 and
C7, 0.07e and 0.09e, respectively. Thus, while the O4, O9, C6, and C2 atoms gather negative charges,
the N8, C1, C5, and C7 atoms are positively charged. Considering the Lewis-like structure of 1, neither
the O4 and O9 oxygens, nor the C2 or C6 carbons would ever somehow gather negative charges.
Note that the charge distribution obtained through the NPA analysis is not the consequence of the
resonance Lewis structure, but rather the consequence of asymmetric electron density delocalization
within a molecule resulting from the presence of different nuclei in the molecule.

2.2. BET and NCIs Study of the Transformation Nitronic Ester 1 into Nitronorbornene 2

The geometries of the transition state (TS) and stationary points and Cartesian coordinates
from the B3LYP/6-31G(d) calculations for the structures of rearrangement are given in the
Supplementary Materials (Tables S4 and S5). The BET study of the transformation of the nitronic ester
1 into 5-chloro-5-nitro-7-oxo-bicyclo [2.2.1]-hept-2-ene 2 indicates that this reaction is topologically
characterized by seven different phases. The population of the most significant valence basins of the
selected points of the intrinsic reaction coordinate (IRC), Pi, defining the different topological phases,
is included in Table 1. The attractor positions of the ELF for the relevant points along the IRC are
shown in Figure 2. The basin-population changes along the reaction path are graphically represented
in Figure 3.

Phase I, 1.53 Å ≤ d(O9-C1) < 1.84 Å and 3.23 Å ≥ d(C7-C3) > 3.19 Å, begins at P0, which
is the discontinuous point of the IRC from TS towards the isolated nitronic ester 1. The ELF
topological analysis of P0 divulges slight changes in ELF valence basin electron populations of 1
(see Table 1 and Figure 2). The population of V(O9, C1), V(C2,C3), and V’(C2,C3) disynaptic basins
progressively decreases, in contrast with that of the V(C1,C2), which incrementally increases. At this
point, in addition, the population of V(O9, C1) reaches the minimum integrating 1.05e. The global
electron density transfer (GEDT) value is 0.31[e].

At P1, Phase II begins, 1.84 Å ≤ d(O9-C1) < 1.93 Å and 3.19 Å ≥ d(C7-C3) > 3.17 Å, which is
described by a cusp C† catastrophe. At this point, the first significant changes along the reaction
patch take place; the V(O9, C1) disynaptic basin disappears; and a new V(C1) monosynaptic basin is
created integrating 0.11e. We also observed, that the population of V’(C2, C3) reaches the minimum
integrating 1.71e. We notice at this point that the GEDT value increases to 0.32[e]. With the changes
taking place along this phase, one disynaptic basin V(O9, C1) disappears, with a demand energy cost
of 3.6 kcal·mol−1 (see Table 1).

Phase III, 1.93 Å ≤ d(O9-C1) < 2.64 Å and 3.17 Å ≥ d(C7-C3) > 2.75 Å, starts at P2. This point
is characterized by a cusp C† catastrophe. In this phase, we observe the next important topological
change along the IRC. While the two V(C2, C3) and V’(C2, C3) disynaptic basins have merged into
a new V(C2,C3) disynaptic basin integrating 3.41e, the GEDT is increased to 0.32[e].
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At Phase IV, 2.64 Å ≤ d(O9-C1) < 2.93 Å and 2.75 Å ≥ d(C7-C3) > 2.31 Å, which begins
at TS, the next significant topological change along the reaction path takes place. At this phase,
established by a fold F catastrophe, the V(C1) monosynaptic basin disappears, and the V(O4) and V’(O4)
monosynaptic basins merge into a new V(O4) monosynaptic basins integrating 4.48e. The transition
state TS of this rearrangement is found in this phase, d(O9-C1) = 2.641Å and d(C7-C3) = 2.745Å
(Table 1, Figure 3). The GEDT value reaches the maximum value and is equal to 0.34[e] (Table 1).

Along Phases III–IV, V’(C2, C3), the disynaptic basin disappears, and two monosynaptic basins
merge into a new V(O4) monosynaptic basin. These changes are related to a high energy cost of
13.7 kcal·mol−1 (Table 1).

At P3 begins Phase V, 2.93 Å ≤ d(O9-C1) < 2.78 Å and 2.31 Å ≥ d(C7-C3) > 2.27 Å. This point is
characterized by fold F catastrophe, in which the V(O4) monosynaptic basin divides again into two
V(O4) and V’(O4) monosynaptic basins. In this phase, we observed the decrease the GEDT value to
0.24[e].

Phase VI, 2.78 Å ≤ d(O9-C1) < 2.81 Å and 2.27 Å ≥ d(C7-C3) > 2.05 Å, characterized by a cusp C†

catastrophe, starts at P4. At this point, the next most relevant topological change along the reaction
patch occurs; the V(C1, C2) disynaptic basin reaches 3.18e and splits into two new V(C1,C2) and
V’(C1,C2) disynaptic basins integrating 1.55e and 1.66, respectively. In this phase, we observed the
formation of a double bond between atoms C1 and C2. We notice at this point a decrease in the value
of GEDT to 0.17[e].

Along Phases V–VI, we observed the creation of the V’(C1, C2) disynaptic basin, and the energy
of this change was 6.8 kcal·mol−1 (Table 1).

Finally, the last Phase VII, 2.81 Å ≤ d(O9-C1) < 3.70 Å and 2.05 Å ≥ d(C7-C3) > 1.57 Å, is located
between points P5 and 2. Here, characterized by cusp C† catastrophe, a new V(C7, C3) disynaptic basin
integrating 1.74e is created from the two V(3) and V(C7) monosynaptic basins (Table 1). This change
can be related to the formation of the C7-C3 bond in nitronorbornene 2. The GEDT value is 0.12[e].

Table 1. ELF valence basin populations, distances of the breaking and forming bonds, and relative a

electronic energies of the IRC points, P0–P5, defining the eight phases characterizing the rearrangement
of the nitronic ester 1 to 5-chloro-5-nitro-7-oxo-bicyclo[2.2.1]-hept-2-ene 2. The stationary points 1, TS,
and 2 are also included. Distances are given in angstroms, Å, electron populations in average number
of electrons, e, relative energies in kcal·mol−1, and GEDT values in average number of electrons, [e].

Points 1 P0 P1 P2 TS P3 P4 P5 2

Catastrophes C† C† F F C† C†

Phases I II III IV V VI VII

d(O9-C1) 1.459 1.533 1.844 1.929 2.641 2.930 2.776 2.814 3.700
d(C7-C3) 3.472 3.276 3.189 3.170 2.745 2.305 2.266 2.049 1.573

∆E a −4.8 0.0 3.6 9.4 13.7 10.7 6.8 2.1 1.0

GEDT 0.31 0.31 0.32 0.32 0.34 0.24 0.17 0.14 0.12

V(C1, C2) 2.03 2.04 2.27 2.35 2.96 3.18 1.55 1.63 1.79
V(C2, C3) 1.85 1.83 1.78 3.41 2.92 2.45 2.42 2.25 2.02

V(O4) 2.38 2.48 2.70 2.86 4.48 2.82 2.78 2.62 2.53
V’(O4) 2.43 2.37 2.12 1.94 1.86 1.91 2.20 2.51
V(O9) 2.56 2.68 3.14 3.04 3.02 2.85 2.85 2.87 2.84
V’(O9) 2.68 2.77 3.00 2.99 2.88 2.98 2.97 2.88 2.83

V(O9, C1) 1.19 1.05
V(C7) 0.50 0.62 0.62 0.65 0.83 1.11 1.13

V’(C2, C3) 1.86 1.85 1.71
V’(C7) 0.45 0.40 0.41 0.45

V’(C1, C2) 1.66 1.70 1.71
V(C7, C3) 1.74 2.02

V(C3) 0.34 0.36
V(C1) 0.11 0.15

a Relative to the first point of the IRC, P0.
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Figure 3. Graphical representation of the basin population changes during the rearrangement of
nitronic ester 1 into nitronorbornene 2. Point dotted curves in grey represent the sum of disynaptic
basins describing a bond region or monosynaptic basins describing lone pairs.

The geometries of TS with ELF localization domains and attractor positions in this one-step
rearrangement process of nitronic ester 1 into the final product are given in Figure 4. It turned out
that TS has a six-membered structure (Figure 4). In this transition state, the O9-C1 bond is broken,
and a new σ-bond between atoms C3-C7 is formed. TS have a polar character, which is confirmed by
the GEDT value and dipole moment, which is equal 6.08 D (Table 1).

Finally, an analysis of the NCIs at TS was performed. As can be seen in Figure 4, depending on
their electrostatic nature, NCIs can be either attractive or repulsive interactions. In TS structure of the
rearrangement of nitronic ester 1 into nitronorbornene 2, the weak interactions are mainly repulsive,
but the attractive ones may be stronger quantitatively. The weak attractive interactions are between
the O-C, C-C, and O-H atoms.
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Figure 4. ELF localization domains, represented at isosurface values of ELF = 0.75, together with their
attractor positions and analysis of Noncovalent Interactions (NCIs) for the transition state TS of the
rearrangement of nitronic ester 1 into nitronorbornene 2.

2.3. MEDT Study of the Rearrangement of Internal Nitronic Ester 1 into Nitronorbornene 2

In this section, the MEDT study of the rearrangement nitronic ester 1 into nitronorbornene 2 is
presented, and the bonding changes arising from the BET study and their associated energy changes
along the shift of 1 are summarized and described in a chemical fashion.

It should be mentioned that DFT study using different M06-2X functionals present the same
mechanism of the rearrangement of internal nitronic ester 1 into nitronorbornene 2. However, these
calculations suggest slightly lower relative energy. The complete thermodynamic parameters and
relative energies for this rearrangement provided in different functionals and different basic sets are
provided in the Supplementary Materials (Tables S1–S3). Thereafter, I also analyze the influence of
solvent polarity on the reaction kinetics of this rearrangement of 1 into 2. In the presence of polar
reaction medium, the relative energy is slightly lower (Supplementary Materials, Tables S3 and S4).
Thus, regardless of the polarity of the medium, the reaction proceeds as a one-step mechanism.

The sequential bonding changes received from the BET analysis of the rearrangement of nitronic
ester 1 are shown in Table 2, together with a simplified representation of the molecular mechanism
by ELF-based Lewis-like structures. From the MEDT analysis of this rearrangement, some appealing
conclusions can be drawn: (i) the molecular mechanism of the rearrangement of nitronic ester 1 into
final product 2 can be topologically characterized by seven different phases, which have been grouped
into four groups, A–D, and linked to significant chemical events (see Table 2); according to this fact,
we can evidently exclude the pericyclic mechanism [42]; (ii) Group A, containing Phase I and Phase II,
is associated with the rupture of the O9-C1 bond of nitronic ester 1; (iii) Group B comprises Phases
III and IV, in which we observed the breaking of the double bond between atoms C2-C3; in this
group, we find the transition state TS of this rearrangement; the activation energy with this reaction,
18.5 kcal·mol−1, can mainly be connected with the rupture of the O9-C1 and C2-C3 bonds of nitronic
ester 1; (iv) Group C containing Phase V is mainly associated with the formation of the C1-C2 double
bond; (v) the last Group D contains Phases VI and VII in which we observed the formation of a σ-bond
between atoms C3 and C7 in nitronorbornene molecule 2.
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Table 2. Sequential bonding changes along the rearrangement of the 1 into 2, showing the equivalence
between the topological characterization of the different phases and the chemical processes occurring
along them. Distances are given in angstroms, Å, GEDT values in the average number of electrons, [e],
and relative energies in kcal·mol−1.
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3. Computational Methods

Calculations were performed using the Prometheus computer cluster at the CYFRONET regional
computer center in Cracow. All calculations were carried out with the GAUSSIAN 16 package [43].
DFT calculations were performed using the B3LYP [44,45] and M06-2X [46] functionals together with
the 6-31G(d), 6-311+G(d), and 6-31G(d,p) basis sets [47]. The stationary points were characterized by
frequency calculations in order to verify the number of imaginary frequencies (zero for local minima
and one for TSs). The IRC [48] paths, computed using the second order González–Schlegel integration
method [41,49], were traced in order to obtain the energy profiles connecting TS to the two associated
minima of the proposed mechanism. The solvent effects of diethyl ether and nitromethane in the
optimizations were taken into account using the Polarizable Continuum Model (PCM) as developed by
Tomasi’s group [50–52] in the framework of the Self-Consistent Reaction Field (SCRF) [53,54]. Values of
enthalpies, entropies, and free energies in all calculations were calculated with the standard statistical
thermodynamics at 25 ◦C and 1 atm [47]. Noncovalent Interactions (NCIs) were computed using the
methodology previously described [55,56].

The GEDT [21] was computed by the sum of the natural atomic charges (q), obtained by a Natural
Population Analysis (NPA) [57,58], of the atoms belonging to each framework (f) at the TSs; i.e., GEDT
(f) = ∑qεf q. The sign indicates the direction of the electron density flux in such a manner that positive
values mean a flux from the considered framework to the other one.

The topological analyses of the Electron Localization Function (ELF) were performed with the
TopMod [38] program using the corresponding B3LYP/6-31G(d) monodeterminantal wavefunctions.
ELF calculations were computed over a grid spacing of 0.1 a.u. for each structure, and ELF localization
domains were obtained for an ELF value of 0.75. For the Bonding Evolution Theory (BET) [59] studies,
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the corresponding reaction paths were followed by performing the topological analysis of the ELF for
at least 167 nuclear configurations along the IRC paths.

4. Conclusions

The characterization of the structure of nitronic ester 1 and its rearrangement into nitronorbornene
2 has been studied within MEDT using DFT calculations at the B3LYP/6-31G(d) computational level.
This rearrangement takes place according to a one-step mechanism. According to the BET analysis,
the reaction begins by the asynchronous rupture of the O9-C1 bond. In turn, the synchronous rupture
of the C2-C3 double bond comes later. These changes are responsible for an energy cost 18.5 kcal·mol−1.
Then, we observed the formation of the double bond between atoms C1 and C2. The formation of the
bond between atoms C7-C3, in molecule 2, takes place in the last step of the rearrangement. The BET
analysis allowed the distinction between the seven different phases in the process of the rearrangement
of 1 into 2, which clearly excludes the pericyclic mechanism, and this rearrangement can be considered
as a non-concerted one-step pseudocyclic reaction [30].

Supplementary Materials: Table S1: B3LYP thermodynamic parameters and relative energies for the rearrangement
of internal nitronic ester 1 to nitronorbornene 2; Table S2: M06-2X thermodynamic parameters and relative energies
for the rearrangement of internal nitronic ester 1 to nitronorbornene 2; Table S3: B3LYP/6-31G(d) thermodynamic
parameters and relative energies for the rearrangement of internal nitronic ester 1 to nitronorbornene 2 in
simulated presence of polar reaction medium; Table S4: B3LYP/6-31G(d) key parameters for the stationary points
involved in the rearrangement of 1 into 2 in different reaction medium; Table S5: Cartesian coordinates from the
B3LYP/6-31G(d) calculations for the structures of rearrangement of internal nitronic ester 1 to nitronorbornene 2.
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