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Abstract: Phe-Arg-β-naphthylamide (PAβN) has been characterized as an efflux pump inhibitor (EPI)
acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB
in Eschericha coli. In the present study, in vitro random mutagenesis was used to evolve resistance
to the sensitizing activity of PAβN with the aim of elucidating its mechanism of action. A strain
was obtained that was phenotypically similar to a previously reported mutant from a serial selection
approach that had no efflux-associated mutations. We could confirm that acrB mutations in the new
mutant were unrelated to PAβN resistance. The next-generation sequencing of the two mutants
revealed loss-of-function mutations in lpxM. An engineered lpxM knockout strain showed up to
16-fold decreased PAβN activity with large lipophilic drugs, while its efflux capacity, as well as
the efficacy of other EPIs, remained unchanged. LpxM is responsible for the last acylation step in
lipopolysaccharide (LPS) synthesis, and lpxM deficiency has been shown to result in penta-acylated
instead of hexa-acylated lipid A. Modeling the two lipid A types revealed steric conformational
changes due to underacylation. The findings provide evidence of a target site of PAβN in the LPS
layer, and prove membrane activity contributing to its drug-sensitizing potency.

Keywords: PAβN; efflux pump inhibitor; random mutagenesis; lpxM (msbB); penta-acylated lipid
A; permeabilizer

1. Introduction

Rapidly increasing rates of multidrug resistance (MDR) in aerobic and obligate anaerobic bacterial
pathogens accompanied by the stagnating development of new antibiotics is one of the major public
health challenges today. Alternative treatment options are urgently needed, and this may include the
use of adjuvants sensitizing bacteria to antimicrobial drugs. With respect to Gram-negative bacteria,
which are characterized by intrinsic resistance mechanisms due to an outer membrane (OM) barrier and
MDR efflux pumps, drug potentiating agents, such as permeabilizers [1] and efflux pump inhibitors
(EPIs) [2], offer a promising approach. The latter should be able to target resistance nodulation cell
division (RND)-type transporters, which constitute the major MDR efflux systems in Gram-negatives.
Examples are AcrAB-TolC from Escherichia coli and MexAB-OprM from Pseudomonas aeruginosa, with AcrB
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and MexB being the pumping components of these complexes. Most RND-type efflux pumps are
characterized by an extremely broad substrate spectrum [3], and their role in the MDR of Gram-negative
pathogens has been well demonstrated [4]. Agents from several chemical substance classes have
been described as inhibitors of RND-type transporters [5], but none of them, to our knowledge,
has reached clinical applicability so far. However, studying the mechanism(s) of action of these
model EPIs could provide prospects regarding the design of new molecules. Such a model EPI is
Phe-Arg-β-naphthylamide (PAβN), which is a cationic dipeptide with a naphthyl moiety and one of the
first compounds reported to inhibit RND-type efflux pumps [6]. Frequently, it has been used to evaluate
the efflux phenotype of Gram-negatives [7,8] and the putative substrate nature of drugs regarding
RND-type transport [9]. However, from the first report of the compound, there have been indications
that PAβN is not a pure EPI, and an additional mode of action by a membrane-permeabilizing activity
was postulated [6,10–13]. Exploring the mode of action of PAβN was additionally complicated by the
fact that the EPI itself is effluxed by RND transporters [6,14]. So far, insights of how PAβN works
have predominantly come from functional studies assessing the impact on drug susceptibility and the
uptake of compounds [6,10–12], from co-crystallization experiments with AcrB [15] and computational
approaches [16,17]. Since the results predominantly suggested target sites of PAβN in the distal substrate
binding pocket of AcrB, a competitive mechanism of action could be expected. However, pronounced
effects of the EPI in particular with macrolides and rifamycins, which both reveal binding specificities in
the proximal substrate binding pocket [18–20], still remained unexplained.

Recently, we reported another approach to elucidate the mechanism of action of model EPIs.
By using in vitro random mutagenesis, which is also designated as directed evolution, we were able to
identify target sites of 1-(1-napthyl-methyl)-piperazine (NMP) in AcrB [21]. Within the scope of that
earlier study, we had obtained a mutant derived from a serial selection procedure (also referred to as
in vivo mutagenesis) revealing resistance to the drug-sensitizing activity of PAβN (“PAβN-resistance”),
but without any efflux-associated mutations, and with unknown reason for the observed phenotype.
Here, we describe the generation of another PAβN-resistant mutant and the proof of an efflux-unrelated
target of PAβN.

2. Results and Discussion

2.1. PAβN-Resistant Mutants from Random Mutagenesis Revealed Loss-of-Function Mutations in LpxM

Previously reported PAβN-resistant mutant C5/1/17 had been derived from the sequential
selection of E. coli 3-AG100 with increasing concentrations of clarithromycin (CLR) in the presence
of PAβN [21]. Another method that was used in the same study, an in vitro random mutagenesis
procedure directly targeting acrB by an error-prone PCR method, had failed to generate resistance
to the drug-sensitizing action of the EPI. The approach had been applied to the gene regions
encoding the periplasmic domain of AcrB, which is responsible for substrate recognition in RND-type
transporters [22]. Since it could not be excluded that PAβN acts in an allosteric manner, we now
extended in vitro random mutagenesis to the whole of AcrB. From this directed evolution approach,
4 × 105 mutants were obtained and subsequently selected using a CLR–PAβN combination that
inhibits the growth of the parental E. coli strain 3-AG100. Several macrolides including CLR are
confirmed substrates of AcrB [23] with pronounced susceptibility to the action of PAβN (Figure 1a,
Table S1). PAβN was used at 25 mg/L, which is a concentration that has been demonstrated to exhibit
high sensitizing potency while staying below the intrinsic MIC (minimum inhibitory concentration)
in acrB-deficient E. coli mutants [24]. A single mutant, CP1, revealing stable resistance to the activity
of PAβN with several drugs was achieved from the directed evolution procedure. As already seen
with mutant C5/1/17, synergism in CP1 was decreased up to 16-fold with macrolides, rifamycins, and
novobiocin (Figure 1a, Table S1). Again, a significant decline in PAβN efficacy was predominantly
limited to large lipophilic drugs with MW (molecular weight) >600. In contrast, marginal or no
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decreases in PAβN activity were detected with smaller and/or more hydrophilic agents (Figure 1a,
Table S1).

Figure 1. Phe-Arg-β-naphthylamide (PAβN)-resistant mutants versus parental E. coli 3-AG100
(a) PAβN efficacies with drugs shown as ratios of minimum inhibitory concentrations (MICs) without
and with 25 mg/L PAβN; LVX, levofloxacin; TET, tetracycline; OXA, oxacillin; LZD, linezolid; CHL,
chloramphenicol; RIF, rifampin; RIX, rifaximin; CLR, clarithromycin; ERY, erythromycin; AZM,
azithromycin; NOV, novobiocin. Statistical significance determined for RIF, RIX, CLR, ERY, AZM,
and NOV (mutants vs. parent 3-AG100), p-values ≤ 0.001 (n = 4); MICs are shown in Table S1.
(b) Nucleotide region 1–50 and 161–210 of gene lpxM (reference sequence E. coli K-12, RefSeq
NC_000913.3).

In contrast to mutant C5/1/17 and as could be expected due to the error-prone PCR method
applied, acrB from mutant CP1 harbored four single-nucleotide mutations encoding amino acid
alterations V129I, L270V, T495S, and A873V. Surprisingly, their chromosomal reconstruction in parental
strain 3-AG100 did not result in any PAβN-resistance (3-AG100acrBCP1, Table S1). Next, we substituted
mutated acrB in mutant CP1 by wild-type acrB, and found the PAβN resistance phenotype maintained
(CP1acrBWT, Table S1).

Even though directed evolution approaches were used, mutations outside the targeted gene
region cannot be completely excluded. Thus, we also sequenced acrA and tolC encoding the accessory
proteins of AcrB. However, as with PAβN-resistant mutant C5/1/17, no mutations were detected.

Consequently, next-generation sequencing (NGS) was performed. Whole genome variant analysis
revealed only one alteration shared by both mutants, C5/1/17 and CP1, in comparison to their parent
3-AG100, which was the loss-of-function of lpxM (msbB) by a frameshift and an early stop codon,
respectively (Figure 1b). LpxM encodes an acyltransferase that is responsible for the last step in
lipid A synthesis: the attachment of a secondarily bound myristic acid residue. Somerville et al.
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have demonstrated that the lipopolysaccharide (LPS) fatty acid pattern from lpxM-deficient E. coli
mutants was lacking myristate, suggesting the occurrence of predominantly penta-acylated instead of
hexa-acylated lipid A [25].

2.2. Proved Impact on PAβN Efficacy from an LpxM Knockout Mutant

To evaluate the impact of lpxM deficiency, we knocked out lpxM in parental strain 3-AG100.
Similar to our findings with C5/1/17 and CP1, the ∆lpxM mutant revealed significantly decreased
synergistic activity of PAβN with large lipophilic drugs, whereas only marginal effects were seen
with smaller and/or more hydrophilic compounds (Figure 2, Table S2). Since Mg2+ ions are known to
contribute to OM integrity substantially [26], and it was speculated that they might be displaced by
PAβN due to its two positive charges under physiological conditions [6], we compared susceptibilities
in LB (Luria/Miller broth) and in cation-adjusted medium containing higher and well-defined Ca2+

and Mg2+ concentrations. However, we could not detect any relevant impact of cation concentrations
on changes in PAβN efficacy (Tables S1 and S2). Nevertheless, to avoid effects due to unphysiologically
low cation availability, further assays with the aim to characterize mutant ∆lpxM were conducted in
the presence of mM of MgCl2, and with cultures from cation-adjusted medium.

Figure 2. PAβN activity in mutant ∆lpxM in comparison to its parent 3-AG100. (a) Ratios of MICs without
and with 25 mg/L of PAβN; Statistical significance (∆lpxM mutant vs. parent 3-AG100), p-values < 0.0001
for RIF, RIX, CLR, ERY, AZM, and NOV; other p-values < 0.01, except for LVX (p-value 0.02), and for
OXA and CHL (p-value > 0.1; n ≥ 6). (b) Heat map depicting decreases in MIC (MIC3-AG100/MIC∆lpxM)
and in PAβN activity ((MIC3-AG100/MIC3-AG100+PAβN)/(MIC∆lpxM/MIC∆lpxM+PAβN)), color scale of the
heat map represents x-fold changes; molecular weights and computed partition coefficients XlogP3 of
drugs from PubChem [27]. LVX, levofloxacin; MXF moxifloxacin; TET, tetracycline; MIN, minocycline;
TGC, tigecycline; CHL, chloramphenicol; LZD, linezolid; OXA, oxacillin; CXM, cefuroxime; RIF, rifampin;
RIX, rifaximin; CLR, clarithromycin; ERY, erythromycin; AZM, azithromycin; JOS, josamycin; NOV,
novobiocin; VAN, vancomycin; GEN, gentamicin. MICs are provided in Tables S1 and S2.

In contrast to small and rather hydrophilic drugs (considered to use predominantly porins to
permeate into the bacterial cell), large and/or more hydrophobic compounds are thought to pass the



Molecules 2019, 24, 470 5 of 12

OM bilayer by lipid-mediated pathways, meaning passive diffusion or self-promoted uptake [26,28].
It was also suggested that some agents, such as tetracyclines and quinolones, use both porin as well as
lipid-mediated pathways [28]. This could explain the different effects on the PAβN activity that were
detected with several of these antibiotics (Figure 2, Table S2).

PAβN efficacy changes could simply be due to alterations in susceptibilities to the respective
synergistic drug. However, no correlations could be found when comparing these parameters (Figure 2b).
In accordance with earlier reports of lpxM-deficient E. coli mutants [25,29–33], the susceptibilities to
most drugs were only marginally increased or unchanged with few exceptions. The fourfold decreases
in the MICs of novobiocin and vancomycin (Figure 2b, Table S2) indicated a higher OM permeability
for these compounds. This might rather enhance the effectiveness of PAβN, but it was significantly
decreased with novobiocin. Notably, resistance to the more hydrophilic and extremely large vancomycin
was neither reducible by PAβN in wild-type E. coli 3-AG100 nor in the more susceptible ∆lpxM mutant
(Figure 2b, Table S2).

2.3. Hexa-Acylated Lipid A Structure from Wild-Type E. coli versus Penta-acylated from LpxM Mutants

Upon our request, the group of Wonpil Im has added the penta-acylated structure as a variant from
the hexa-acylated LPS of E. coli K-12 to the CHARMM-GUI LPS Modeler platform [34]. Major structural
changes were manifested by a significantly increased distance between the two intramolecular
phosphates (Figure 3), which are supposed to play a major role in cross-linking the LPS molecules
via divalent cations [10,26]. However, as already mentioned, we found a negligible impact of cation
concentrations on PAβN efficacy changes in the lpxM mutant. Furthermore, a study with E. coli
mutants harboring dephosphorylated lipid A revealed maintained OM integrity despite decreased
cationic stabilization options [35]. In contrast to the intramolecular lipid A phosphates, the remaining
fatty acid chains have moved closer together in the penta-acylated lipid A structure (Figure 3). It could
be speculated that their tighter package cause altered incorporation options between adjacent LPS
molecules. This might be the case for phospholipids from the inner OM leaflet, as well as for
intercalating compounds from the exterior. It could also be expected that structural changes in
lipid A affect the steric configuration of further LPS regions, in particular the inner core, which due to
phosphates and acidic sugars could be a putative target for cationic agents such as PAβN.

Figure 3. Structures of hexa-acylated and penta-acylated lipid A depicted as yellow and green sticks,
respectively (red: oxygen, blue: nitrogen). Phosphates are shown as orange spheres, and distance
measurements are shown as dashed lines. The green arrow indicates the myristic acid residue of
hexa-acylated lipid A, and the green bar indicates its binding site in lipid A.

2.4. Further Characterization of Mutant ∆lpxM

2.4.1. The Activity of other EPIs

We also examined whether the drug-sensitizing efficacies of other EPIs were affected by lpxM
deficiency. In contrast to PAβN, NMP, an arylpiperazine [36], and MBX2319, a pyranopyridine
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compound [37], revealed no or only subtle alteration (≤twofold, Table S2) suggesting another mode of
action and/or no membrane effects of these compounds.

2.4.2. The Activity of PMBN

Polymyxin B nonapeptide (PMBN) is a large cyclic cationic peptide that is known to permeabilize the
OM [1,38] by targeting the negatively charged LPS layer [28]. In contrast to PAβN, the drug-sensitizing
activity of PMBN was found to be increased in the ∆lpxM mutant. With most of the drugs that were
tested, a two- to fourfold elevated potentiating efficacy was detected, and the susceptibility to PMBN
itself was enhanced by eightfold (Table S2). Hence, different OM-compromising mechanisms of PAβN
and PMBN appeared likely.

2.4.3. Intracellular Dye Accumulation

To explore the functional impact of lpxM deficiency further, we carried out dye accumulation
assays. In particular, the effects that could contribute to the decreased drug-sensitizing activity of PAβN
were of interest. These included: (i) altered drug efflux capacity (ii), decreased intracellular PAβN
availability, and (iii) the impaired influx of other compounds. Referring to (i), monitoring the Nile red
efflux revealed similar functioning of the efflux transporters from the parental strain and mutant lpxM
with efflux half-times of 28.3 s (±2.4, n = 3) and 26.3 s (±1.9, n = 3), respectively, whereas that of an
efflux-deficient ∆acrB mutant was 206.7 (±6.2, n = 3). Notably, PAβN did not show any significant
alteration in its efflux inhibitory action with this relatively small lipophilic compound (Figure 4a).
Concerning (ii), the intracellular accumulation of the PAβN degradation product β-naphthylamine
was slightly increased in the lpxM mutant, demonstrating an unimpaired influx of the EPI (Figure 4b).
Disproving issue (iii) was that drug susceptibilities were not decreased (Figure 2b, Table S2), and dye
uptake was almost unchanged (Figure 4c, Table 1).

Figure 4. Cont.
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Figure 4. The kinetics of intracellular dye accumulation in mutant ∆lpxM, parental E. coli 3-AG100, and
an efflux-deficient ∆acrB derivative from 3-AG100. RFU, relative fluorescence units; error bars indicate
± standard deviation (SD) from the mean. (a) Real-time efflux of Nile red. The arrow indicates the
initiation of efflux by the addition of glucose to de-energized cells; (b) β-naphthylamine accumulation
(degradation product of PAβN). Statistical significance (mutants vs. 3-AG100 at 45 min), p-values < 0.0001
(n = 8); (c), Resazurin accumulation, determined by measurement of the intracellular degradation product
resorufin. Statistical significance (3-AG100 with PAβN vs. ∆lpxM with PAβN), p-value < 0.0001 (n = 7).

Table 1. Intracellular dye accumulation in the absence and presence of PAβN and polymyxin B
nonapeptide (PMBN).

% Dye Accumulation (Relative to ∆acrB Mutant without Adjuvants) 1

3-AG100 ∆lpxM ∆acrB

Dye +PAβN +PMBN +PAβN +PMBN +PAβN +PMBN

Resazurin 33.4
(±2)

208.4
(±11)

106.8
(±15)

33.1
(±1)

139.6
(±18)

78.1
(±9)

100
(±9)

209.7
(±4)

226.1
(±4)

Hoechst 43.1
(±6)

44.5
(±7)

44.4
(±1)

47.2
(±12)

47.6
(±11)

45.3
(±9)

100
(±11)

108.6
(±8)

108.3
(±3)

Berberine 31.5
(±7)

32.6
(±8)

18.7
(±0)

22.2
(±1)

22.3
(±1)

19.6
(±1)

100
(±14)

117.8
(±14)

90.9
(±1)

1 PAβN used at 25 mg/L, PMBN used at 10 mg/L. Values determined after 30 min of accumulation; SD of the
mean given in parenthesis. Statistical significance proved for resazurin accumulation in the presence of PAβN and
of PMBN vs. the absence of adjuvants in all strains, and for berberine accumulation with mutant ∆acrB (in the
presence of PAβN vs. accumulation without adjuvants); p-values < 0.01; n = 7, assays with PMBN, n ≥ 2.

Resazurin was the only dye revealing a compromised efficacy of PAβN in mutant ∆lpxM
(Figure 4c, Table 1), which is a finding similar to that with large lipophilic drugs. The potency of
PAβN to increase the accumulation of resorufin (intracellular degradation product of resazurin) had
previously been shown not only for wild-type E. coli, but even for efflux-deficient strains, suggesting
a permeabilizing activity in addition to efflux inhibition [13]. Since the uptake of resazurin, which is
a relatively small and more hydrophilic agent, was also significantly enhanced by PMBN (Table 1),
an uptake pathway similar to that of large lipophilic drugs appeared likely. Further physicochemical
properties, such as the polarity or stiffness of the molecular structure, supposedly determine the influx
pathway, too. In contrast to resazurin, Hoechst and berberine accumulation was not increased, neither
by PMBN and nor by PAβN in E. coli 3-AG100 and mutant ∆lpxM (Table 1).
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3. Materials and Methods

3.1. Bacterial Strains, Growth Conditions, and Chemicals

The E. coli strains and mutants that were used and generated in this study are listed in Table 2.
Bacteria were grown at 37 ◦C overnight using cation-adjusted Müller Hinton (MH) (BBLTM Müller
Hinton II, Becton Dickinson, Heidelberg, Germany) or Luria/Miller broth (LB) (Roth, Karlsruhe,
Germany) as indicated. Chemicals were purchased from Sigma (Taufkirchen, Germany), NMP was
purchased from Chess (Mannheim, Germany), and MBX2139 was a kind gift from Thimothy J. Opperman
(Microbiotix, Worcester, MA, USA).

Table 2. Strains and mutants used and engineered in the present study.

E. coli Strains and Mutants Description Source

3-AG100 E. coli K-12 AG100 derivative; overexpression of acrB. Kern et al., 2000 [39]
C5/1/17 PAβN-resistant serial selection mutant from 3-AG100. Schuster et al., 2014 [21]

CP1 PAβN-resistant in vitro random mutagenesis mutant from
3-AG100. This study

3-AG100acrBCP1 Site-directed mutagenesis mutant from 3-AG100. This study
CP1acrBWT PAβN-resistant site-directed mutagenesis mutant from CP1. This study

∆lpxM 1 PAβN-resistant lpxM knockout mutant from 3-AG100. This study
∆acrB 2 Efflux-deficient acrB knockout mutant from 3-AG100. Schuster et al., 2014 [21]

1 Insertion of a PGK-gb2-neo cassette in lpxM; 2 acrB replaced by an rpsL-neo-cassette.

3.2. Susceptibility Testing

The MICs of drugs were determined from freshly grown overnight cultures by a standard twofold
broth microdilution assay using 96-well custom plates (Merlin, Bornheim-Hersel, Germany) and inoculums
of 5 × 105 CFU/mL. Assays were performed in the absence and presence of the following adjuvants:
PAβN, NMP, MBX2139, and PMBN at concentrations of 25 mg/L, 100 mg/L, 25 µM, and 10 mg/L,
respectively. Approaches with 96-well twofold serial dilutions were also used to determine the MICs of
adjuvants and dyes. MICs were determined by visual evaluation in comparison to growth-control wells.

3.3. In Vitro Random Mutagenesis (Directed Evolution)

Chromosome-based in vitro random mutagenesis was performed according to a procedure
published previously [21]. Briefly, error-prone PCR products were achieved by amplifying acrB
with the Mutazym II® polymerase from the GeneMorph II®, Random Mutagenesis Kit (Stratagene,
La Jolla, CA, USA). Subsequently, chromosomal wild-type acrB of E. coli 3-AG100 was substituted by
the mutated PCR products using a homologous recombination method (RED/ET® Counter-Selection
BAC Modification Kit, Gene Bridges, Heidelberg, Germany). Resulting mutants were subjected to
selection with 16 mg/L CLR in the presence of 25 mg/L PAβN. Screening for stable PAβN-resistance
was done by drug susceptibility assays without and with PAβN.

3.4. Sequencing

Whole genome sequencing was conducted according to a protocol published earlier [40]. Raw
sequencing data from mutants C5/1/17 and CP1 and from their parent 3-AG100 were deposited in ENA
(European Nucleotide Archive) under sample accession number PRJEB30347. Variants were detected
using the CLC Genomics Workbench v 8.0.2 (Qiagen, CLC bio, Aarhus, Denmark) by comparing with
the NCBI (National Center for Biotechnology Information) reference sequence (RefSeq) NC_000913.3
from E. coli K-12 substr. MG1655 (accession: PRJNA57779).

Findings were confirmed by Sanger sequencing of purified PCR products (primer given in
Table S3) carried out from Microsynth SEQLAB (Göttingen, Germany).
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3.5. Site-Directed Reconstructions

Site-directed reconstructions of acrB from mutant CP1 (acrBCP1) within strain 3-AG100 and
vice versa of wild-type acrB (acrBwt) within CP1 were performed using the Counter-Selection BAC
Modification Kit (Gene Bridges, Heidelberg) according to the manufacturer’s instructions. Briefly,
acrB from the parental strain was replaced by an rpsL-neo cassette that was subsequently substituted
by the PCR products of the respective acrB variant. PCR products for homologous recombination
procedures were amplified using a proofreading enzyme (Q5 Hot Start High Fidelity DNA Polymerase,
New England BioLabs, Frankfurt, Germany), The used oligonucleotides are shown in Table S3.

3.6. Generation of Knockout Mutants

The chromosomal lpxM gene knockout mutant was generated using the “Quick & Easy E. coli Gene
Deletion” kit (Gene Bridges, Heidelberg, Germany), as indicated within the manual (oligonucleotides
given in Table S3).

3.7. Intracellular Dye Accumulation Assays

All of the dye accumulation assays were conducted in the presence of 1 mM of MgCl2, and
fluorescence measurements were carried out using the fluorescence plate reader Tecan infinite M200Pro
(Männedorf, Switzerland). When assays were carried out in the presence of adjuvants, PAβN and
PMBN were added at concentrations of 25 mg/L and 10 mg/L, respectively.

Nile red efflux assays were performed according to a protocol published earlier [19]. Briefly, cells
grown in cation-adjusted MH were deenergized with 10 µM of carbonyl cyanide 3-chlorophenylhydrazone
(CCCP) and loaded with Nile red (10 µM, two hours). Efflux in washed cells was started by the addition
of glucose to a final concentration of 1 mM. Fluorescence was measured at excitation and emission
wavelengths of 544 nm and 650 nm, respectively.

The intracellular accumulation of PAβN was estimated by fluorescence measurement of the
intracellular degradation product β-naphthylamine. Bacteria from an overnight grown cation-adjusted
MH agar plate were resuspended in phosphate-buffered saline (PBS) with 0.4% D-glucose to an OD600

of 1. PAβN was added to a final concentration of 200 µM, and the fluorescence was measured at
excitation and emission wavelengths of 320 nm and 460 nm, respectively.

Resazurin accumulation was determined by measuring the intracellular degradation product
resorufin, as described previously [13]

Hoechst 33342 and berberine uptake experiments were carried out as described for PAβN
accumulation. Final dye concentrations used were 2.5 µM for Hoechst and 30 mg/L for berberine.
The fluorescence of accumulated Hoechst was monitored at excitation and emission wavelengths of
350 nm and 461 nm, respectively (berberine, 355 nm and 517 nm).

3.8. LPS Modeling and Visualization

LPS structures were modeled using the LPS Modeler provided by the CHARMM platform
(http://www.charmm-gui.org) [34] with LPS from E. coli K-12, lipid A type 1, and E. coli K-12 lipid
A type 3. Visualization and distance measurements were performed using the PyMOL Molecular
Graphics System, Version 2.0 Schrödinger, LLC.

3.9. Statistical Analysis

SD values were calculated from the mean of n experiments (n ≥ 3, if not otherwise indicated;
n > 3 if the SD calculated from three replicates was >10%). Statistical significance of differences was
analyzed by a two-tailed t-tests using the software GraphPad Prism version 7.05 (p-values < 0.05
represent significance).

http://www.charmm-gui.org
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4. Conclusions

For the first time, the molecular basis of an OM target of PAβN was identified. The study revealed
that lpxM deficiency, that was known to cause penta-acylated lipid A, was able to substantially decrease
the sensitizing activity of PAβN with large lipophilic drugs, which are suggested to use a lipid pathway
to access the bacterial cell. Our results provide the basis for further research, particularly with respect to
the development of OM permeabilizers, and identify PAβN as a perfect template for the design of drug
sensitizers with a dual mode of action but as an inadequate tool for the evaluation of efflux phenomena.

Supplementary Materials: The following are available online. Table S1: Susceptibilities of parental E. coli 3-AG100
and of random mutagenesis and reconstructed mutants in the absence and presence of PAβN tested in LB medium,
Table S2: Susceptibilities of parental E. coli 3-AG100 and of mutant ∆lpxM in the absence and presence of EPIs and
PMBN tested in cation-adjusted MH medium, Table S3: Oligonucleotides used in this study.
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