Supplementary Materials

Simultaneous Quantification of L-arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach

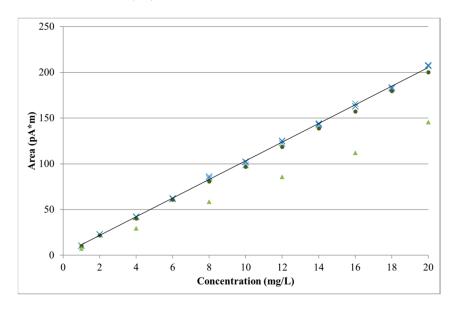
Mireille Ginésy 1, Josefine Enman 1,*, Daniela Rusanova-Naydenova 1, and Ulrika Rova 1

Table 1. Evaluation of HPAEC-IPAD specificity based on comparing retention times in water (n = 3).

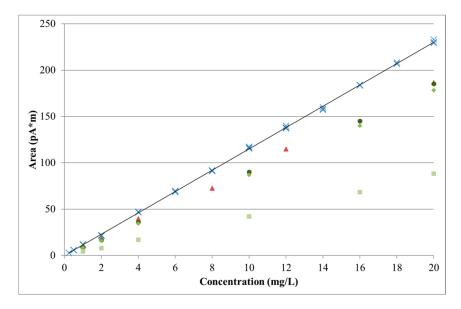
Glucose		,	Xylose		Arginine	
Conc.	Ret. time (min)	Conc.	Ret. time (min)	Conc.	Ret. time (min)	
(mg/L)	Mean ± Std	(mg/L)	Mean ± Std	(µmol/L)	Mean ± Std	
0.125	7.23 ± 0.02	0.125	7.50 ± 0.02	0.50	2.26 ± 0.01	
0.25	7.28 ± 0.02	0.25	7.62 ± 0.04	0.75	2.26 ± na	
0.50	7.28 ± 0.02	0.50	7.62 ± 0.02	1.0	2.26 ± 0.01	
1.00	7.29 ± 0.02	1.00	7.61 ± 0.02	1.5	2.26 ± na	
2.00	7.28 ± 0.01	2.00	7.61 ± 0.02	3.0	2.26 ± na	
4.00	7.29 ± 0.03	4.00	7.61 ± 0.02	5.0	$2.26 \pm na$	
6.00	7.29 ± 0.02	6.00	7.61 ± na	7.5	2.26 ± 0.01	
8.00	7.29 ± 0.02	8.00	7.62 ± 0.02	10	$2.26 \pm na$	
10.00	7.28 ± 0.03	10.00	7.61 ± 0.02	15	2.26 ± 0.01	
12.00	7.27 ± 0.02	12.00	7.61 ± 0.02	30	2.25 ± 0.01	
14.00	7.27 ± 0.02	14.00	7.58 ± 0.03	45	2.26 ± 0.01	
16.00	7.28 ± 0.03	16.00	7.58 ± 0.02	60	2.26 ± 0.01	
18.00	7.27 ± 0.02	18.00	7.57 ± 0.01	75	2.28 ± 0.01	
20.00	7.21 ± 0.02	20.00	7.56 ± 0.01	90	2.29 ± 0.01	
Mean ± Std	7.27 ± 0.02	Mean ± Std	7.60 ± 0.03	Mean ± Std	2.26 ± 0.03	
%RSD	0.34	%RSD	0.41	%RSD	0.21	

na, not applicable: standard deviation (std) < 0.01.

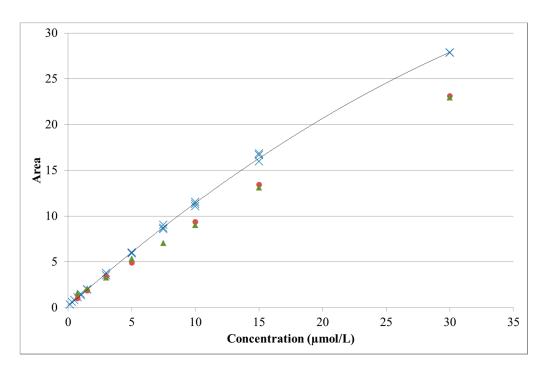
Table S1. Evaluation of RP-UHPLC-CAD specificity based on comparing retention times in water (n = 3).

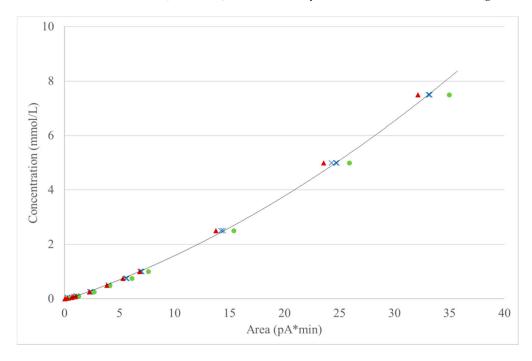

Glucose		Xylose		Arginine	
Conc.	Ret. time (min)	Conc.	Ret. time (min)	Conc.	Ret. time (min)
(mg/L)	Mean ± std	(mg/L)	Mean ± std	(µmol/L)	Mean ± std
1.5625×10^{-3}	2.17 ± na	1.5625×10^{-3}	2.21 ± na	0.025	11.05 ± 0.01
3.125×10^{-3}	$2.17 \pm na$	3.125×10^{-3}	2.21 ± na	0.05	11.06 ± 0.01
6.25×10^{-3}	$2.17 \pm na$	6.25×10^{-3}	2.21 ± 0.01	0.075	11.06 ± 0.01
0.0125	$2.17 \pm na$	0.0125	$2.22 \pm na$	0.10	$11.05 \pm na$
0.025	$2.17 \pm na$	0.025	2.21 ± na	0.25	$11.04 \pm na$
0.05	$2.17 \pm na$	0.05	2.22 ± 0.01	0.50	$11.03 \pm na$
0.075	$2.18 \pm na$	0.075	2.22 ± 0.01	0.75	$11.02 \pm na$
0.1	$2.18 \pm na$	0.1	2.22 ± 0.01	1.0	11.01 ± 0.01
0.2	$2.17 \pm na$	0.2	$2.21 \pm na$	2.5	10.97 ± 0.01
0.4	$2.18 \pm na$	0.4	$2.22 \pm na$	5.0	$10.91 \pm na$

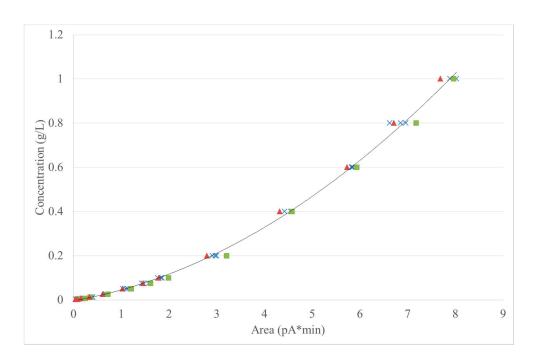
¹Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; mireille.ginesy@gmail.com, josefine.enman@ltu.se, droussanova@hotmail.com, ulrika.rova@ltu.se

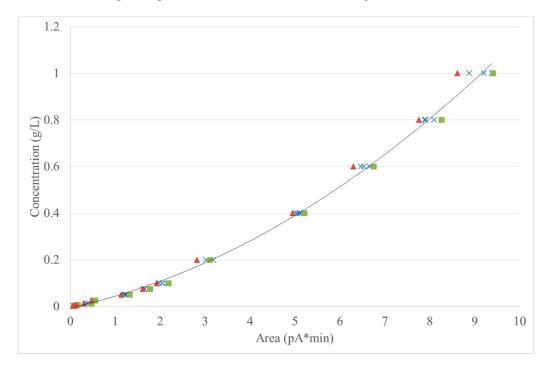

^{*} Correspondence: josefine.enman@ltu.se; Tel +46- 920-49 12 67

0.6	$2.18 \pm na$	0.6	$2.22 \pm na$	7.5	10.87 ± 0.01	
0.8	$2.17 \pm na$	0.8	2.21 ± 0.01	10.0	$10.84 \pm na$	
1.0	$2.17 \pm na$	1.0	2.22 ± 0.01	12.5	$10.80 \pm na$	
Mean ± std	2.17 ± na	Mean ± std	2.22 ± na	Mean ± std	10.97 ± 0.09	
%RSD	0.14	%RSD	0.15	%RSD	0.84	


na, not applicable: standard deviation (std) < 0.01


Figure S1. Calibration curve for glucose, and the effect of time and electrodes on the response using HPAEC-IPAD. Triplicates of standards analyzed within 24 h using the same new electrode (blue crosses) with the corresponding linear fitting curve (solid line); standards analyzed with another electrode: new (dark green circles) and after 43 h (green triangles) of continuous use.


Figure S2. Calibration curve for xylose, and the effect of time and electrodes on the response using HPAEC-IPAD. Triplicates of standards analyzed within 24 h using the same new electrode (blue crosses) with the corresponding linear fitting curve (solid line); standards analyzed with another new electrode (red triangles); standards analyzed with a third electrode: new (dark green circles), after 14 h (green tilted squares), and after 35 h (light green squares) of continuous use.


Figure S3. Calibration curve for arginine using HPAEC-IPAD. Triplicates of standards analyzed within 24 h using the same new electrode (blue crosses) with the corresponding quadratic fitting curve (solid line); standards analyzed with another new electrode (red circles); standards analyzed with a third new electrode (green triangles).

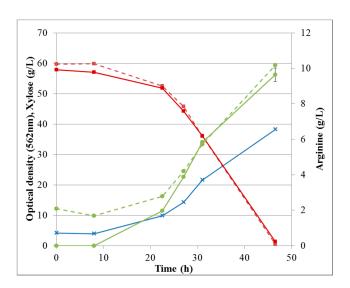

Figure S4. Calibration curve for arginine using RP-UHPLC-CAD. Triplicate standards analyzed within 24 h (blue crosses) with the corresponding quadratic fitting curve (solid line); standards analyzed one month later (green circles) and five months later (red triangles).

Figure S5. Calibration curve for glucose and effect of time on the response using RP-UHPLC-CAD. Triplicate standards analyzed within 24 h (blue crosses) with the corresponding quadratic fitting curve (solid line); standards analyzed one month later (green squares) and five months later (red triangles).

Figure S6. Calibration curve for xylose and effect of time on the response using RP-UHPLC-CAD. Triplicate standards analyzed within 24 h (blue crosses) with the corresponding quadratic fitting curve (solid line); standards analyzed one month later (red triangles) and five months later (green squares).

Figure S7. Fermentation profile: cell growth, xylose consumption, and arginine production in CSL. Optical density (blue crosses), xylose (red squares), and arginine (green circles) were determined using RP-UHPLC-CAD (solid lines) and HPAEC-IPAD (dashed lines). Standard deviations are omitted for clarity.