



1 Supplementary Information

## Removal of CuO Nanoparticles from water by 2

Conventional Treatment C/F/S: Effects of pH and 3

### Natural Organic Matter 4

5 Rizwan Khan<sup>1</sup>, Muhammad Ali Inam<sup>1</sup>, Du Ri Park<sup>1</sup>, Sarfaraz Khan<sup>2</sup>, Muhammad Akram<sup>3</sup> and Ick 6 Tae Yeom<sup>1,\*</sup>

- 7 <sup>1</sup> Graduate School of Water Resources, Sungkyunkwan University (SKKU) 2066, Suwon 16419, Korea; 8 rizwankhan@skku.edu (R.K.); aliinam@skku.edu (M.A.I.); enfl8709@skku.edu (D.R.P.)
- 9 2 Key Laboratory of the Three Gorges Reservoir Region Eco-Environment, State Ministry of Education, 10 Chongqing University, Chongqing 400045, China; Sfk.jadoon@yahoo.com (S.K.)
- 11 3 Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental 12 Science and Engineering, Shandong University, Qingdao 266200, China; 13 m.akramsathio@mail.sdu.edu.cn (M.A.)
- 14 \* Correspondence: yeom@skku.edu; Tel.: +82-31-299-6699
- 15 Received: date; Accepted: date; Published: date

# 16

### 17 2. Materials and Methods

18 19 The removal efficiency of CuO NPs was determined according to the following equation. 20  $\alpha = \frac{T_i - T_f}{T_i}$ 21 22 23 Where  $\alpha$  is the removal efficiency;  $T_i$  and  $T_f$  is the initial and final turbidity of solution (NTU). 24

#### 25 3. Results and Discussions

26

Table S1. Physicochemical properties of CuO NPs used in the current study.

27

| Parameter                                | Unit                             | Value         |  |
|------------------------------------------|----------------------------------|---------------|--|
| Density                                  | g/cm <sup>3</sup>                | 6.372         |  |
| Vendor-reported size                     | nm                               | <50           |  |
| TEM particle size measured (n=20)        | particle size measured (n=20) nm |               |  |
| DLS HDD measured in DI water (n=10)      | nm                               | 281±27        |  |
| BET specific surface area measured (n=3) | m²/g                             | $29\pm3$      |  |
| pH <sub>iep</sub>                        | -                                | 8.6           |  |
| Zeta potential in DI water $(pH = 7)$    | (mV)                             | $+21.3\pm1.6$ |  |
| Purity by ICP-MS                         | wt %                             | 98.81         |  |
| Moisture content by TGA                  | wt %                             | 1.15          |  |

28 29

30

31

32



**Figure S1. (A)** Effects of sonication time (5-30 min) and power (100-600 W) on the dispersion stability of CuO NPs stock (100 mg/L) in DI water; **(B)** Size distribution by the intensity of CuO NPs in DI water after 30 min sonication with ultrasonic power of 400 W;



**Figure S2. (A)** Removal efficiency of CuO NPs (10 mg/L) under control condition at various pH values; **(B)** speciation of Fe(III) as a function of solution pH.

|                | 7.0                                          |                                                                                                                                                                        |                                                                                                                                                                                               | 7.0                                                                                                                                              |                                                                                                                                                                                        |
|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | HA                                           |                                                                                                                                                                        |                                                                                                                                                                                               | SA                                                                                                                                               |                                                                                                                                                                                        |
|                |                                              |                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                        |
| 0              | 10                                           | 20                                                                                                                                                                     | 0                                                                                                                                                                                             | 10                                                                                                                                               | 20                                                                                                                                                                                     |
|                |                                              |                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                                                        |
| $6.90\pm$      | $6.82\pm$                                    | $6.61\pm$                                                                                                                                                              | $6.90\pm$                                                                                                                                                                                     | $6.93\pm$                                                                                                                                        | $8.26\pm$                                                                                                                                                                              |
| 0.10           | 0.05                                         | 0.08                                                                                                                                                                   | 0.10                                                                                                                                                                                          | 0.07                                                                                                                                             | 0.08                                                                                                                                                                                   |
| 0.701±<br>0.01 | 0.912±<br>0.01                               | $\begin{array}{c} 1.787 \pm \\ 0.02 \end{array}$                                                                                                                       | 0.701±<br>0.013                                                                                                                                                                               | 0.819±<br>0.02                                                                                                                                   | $1.140 \pm 0.01$                                                                                                                                                                       |
|                | $0 \\ 6.90 \pm \\ 0.10 \\ 0.701 \pm \\ 0.01$ | $\begin{array}{c c} & \textbf{7.0} \\ & \textbf{HA} \\ 0 & 10 \\ \hline 6.90 \pm & 6.82 \pm \\ 0.10 & 0.05 \\ \hline 0.701 \pm & 0.912 \pm \\ 0.01 & 0.01 \end{array}$ | 7.0           HA           0         10         20 $6.90 \pm$ $6.82 \pm$ $6.61 \pm$ 0.10         0.05         0.08           0.701 \pm $0.912 \pm$ $1.787 \pm$ 0.01         0.01         0.02 | 7.0HA010200 $6.90 \pm$ $6.82 \pm$ $6.61 \pm$ $6.90 \pm$ $0.10$ 0.050.080.10 $0.701 \pm$ $0.912 \pm$ $1.787 \pm$ $0.701 \pm$ $0.01$ 0.010.020.013 | 7.07.0HASA01020010 $6.90 \pm$ $6.82 \pm$ $6.61 \pm$ $6.90 \pm$ $6.93 \pm$ $0.10$ 0.050.080.100.07 $0.701 \pm$ $0.912 \pm$ $1.787 \pm$ $0.701 \pm$ $0.819 \pm$ $0.01$ 0.010.020.0130.02 |

Table.S2. Dissolution of CuO NPs and the change of suspension pH