Supporting Information

Convenient synthesis of 6,7,12,13-tetrahydro-5*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole derivatives mediated by hypervalent iodine (III) reagent

Lei Peng^{1,2}, Xiaofei Zhang^{1,*} and Chunhao Yang^{1,2,*}

¹ State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; <u>leipeng@simm.ac.cn</u> (L.P.)

² School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

* Correspondence: chyang@simm.ac.cn (C.Y.); xiaofeizhang@simm.ac.cn (X.Z.); Tel.: +86-21-50806600-3512 (C.Y.); +86-21-50806600-3511 (X.Z.)

Contents

General information	S2
General procedure for preparation of the substrates 1	S2
Experiment data for substrates 1	S3
Experiment data for compound 3a	S11
Copies of NMR spectra	S12
Copies of HRMS chromatograms	S53

General

All the chemical reagents were commercial products and used without purification in all cases. TLC was performed on silica gel plates (0.15-0.2 mm thickness, Yantai Huiyou Company, China) and detected with UV light at 254 nM, Column chromatography was carried out on silica gel (200-300 mesh). Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on Varian Mercury-300, Varian Mercury-400, Varian Mercury-500 and/or Varian Mercury-600 spectrometers. NMR experiments were conducted in CD₃OD and DMSO-d₆. Tetramethylsilane (TMS) was used as internal standard. Chemical shifts (δ) are reported in parts per million (ppm). Data are reported as follows: chemical shift, multiplicity (br s = broad singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, m = multiple, s = singlet and t = triplet), coupling constants (Hz). Low-resolution mass spectra (ESI) were obtained using Agilent HPLC-MS (1200-6110). High resolution mass spectra (HRMS) were obtained using Agilent 1290-6545 UHPLC-QTOF. Melting points (mp) were measured by B üchi 510 melting point apparatus without further corrected.

General procedure for preparation of the substrates (both symmetric and asymmetric ones) 1

Ester **5** (3.3 mmol, 1.1 eq) was dissolved in tetrahydrofuran, sodium hydride (3.9 mmol, 1.3 eq) was added slowly at 0 °C, and the mixture was moved to room temperature and stirred for 30 minutes, quaternary ammonium salt **4** (3 mmol, 1 eq) was dissolved in DMF and the solution was added to the reaction mixture, and stirred for 4 h at room temperature. After completion of the reaction, the resulting mixture was poured into water and extracted with ethyl acetate, the organic layer was washed with brine and dried over anhydrous sodium sulfate and concentrated in vacuum. The resulting residue was purified by silica gel chromatography (petroleum ether/ethyl acetate, v/v, 10:1 to 5:1) to afford **6**.

Ethyl R³-substituted-3-(1*H*-indol-3-yl)propanoate **6** (1 mmol, 1 eq) was dissolved in tetrahydrofuran, sodium hydride (1.5 mmol, 1.5 eq) was added slowly at 0 $^{\circ}$ C, and the mixture was

moved to room temperature and stirred for 30 minutes, quaternary ammonium salt 7 (1.5 mmol, 1.5 eq) was dissolved in DMF and the solution was added to the reaction mixture, and stirred for 4 h at room temperature. After completion of the reaction, the resulting mixture was poured into water and extracted with ethyl acetate, The organic layer was washed with brine and dried over anhydrous sodium sulfate and concentrated in vacuum. The resulting residue was purified by silica gel chromatography (petroleum ether/ethyl acetate, v/v, 8:1 to 4:1) to give 1,3-di(1H-indol-3yl)propanes 1.

Experiment data for substrates 1

Diethyl 2,2-bis((1*H*-indol-3-yl)methyl)malonate (1a)

Yellow solid. (Yield of two steps, 82%). mp 120-122 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.97 (s, 2H, NH), 7.41 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.35 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.16 (d, J = 2.4 Hz, 2H, Ar-H), 7.06 (t, J = 7.5 Hz, 2H, Ar-H), 6.95 (t, J = 7.4 Hz, 2H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.34 (s, 4H, C_q-CH₂Ar), 1.00 (t, *J* = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.92 (C=O), 135.73 (C), 127.81 (C), 124.00 (CH), 120.86 (CH), 118.24 (CH), 118.20 (CH), 111.30 (CH), 108.19

(C), 60.62 (OCH₂), 58.67 (C), 28.12 (CH₂), 13.53 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₇N₂O₄ [M + H]⁺: 419.1965, found: 419.1973.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((5-methyl-1H-indol-3-yl)methyl)malonate (1b)

Yellow solid. (Yield of two steps, 84%). mp 132-134 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.97 (d, J = 2.7 Hz, 1H, NH), 10.83 (d, J = 2.6 Hz, 1H, NH), 7.40 (d, J = 7.9 Hz, 1H, Ar-H), 7.36 (d, J = 8.1 Hz, 1H, Ar-H),

7.22 (d, J = 8.2 Hz, 1H, Ar-H), 7.16 (d, J = 2.4 Hz, 1H, Ar-H), 7.14 – 7.09 (m, 2H, Ar-H), 7.06 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H, Ar-H), 6.95 (ddd, *J* = 8.0, 6.9, 1.1 Hz, 1H, Ar-H), 6.87 (dd, *J* = 8.2, 1.6 Hz, 1H, Ar-H), 3.92 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.32 (s, 4H, C_q-CH₂Ar), 2.29 (s, 3H, Ar-CH₃), 1.04 (t, *J* = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.96 (C=O), 135.75 (C), 134.12 (C), 128.05 (C), 127.83 (C), 126.62 (C), 124.10 (CH), 123.85 (CH), 122.47 (CH), 120.90 (CH), 118.26 (CH), 118.22 (CH), 117.86 (CH), 111.30 (CH), 110.97 (CH), 108.27 (C), 107.60 (C), 60.65 (OCH₂), 58.54 (C), 27.96 (CH₂), 21.16 (ArCH₃), 13.57 (CH₃). HRMS (ESI): m/z calcd for C₂₆H₂₉N₂O₄ [M + H]⁺: 433.2122, found: 433.2130.

Diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methyl-1*H*-indol-3-yl)methyl)malonate (1c)

Yellow solid. (Yield of two steps, 87%). mp 119-121 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.97 (s, 1H, NH), 10.81 (s, 1H, NH), 7.41 (d, J = 8.0 Hz, 1H, Ar-H), 7.35 (d, J = 8.1 Hz, 1H, Ar-H), 7.29 (d, J = 8.1 Hz, 1H, Ar-H)

H), 7.15 (d, J = 2.5 Hz, 1H, Ar-H), 7.13 (s, 1H, Ar-H), 7.09 – 7.03 (m, 2H, Ar-H), 6.98 – 6.91 (m, 1H, Ar-H), 6.78 (d, J = 8.0 Hz, 1H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.33 (s, 2H, C_q-CH₂Ar), 3.31 (s, 2H, C_q-CH₂Ar), 2.37 (s, 3H, Ar-CH₃), 1.02 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.93 (C=O), 136.18 (C), 135.73 (C), 129.84 (C), 127.81 (C), 125.82 (C), 124.00 (CH), 123.25 (CH), 120.87 (CH), 120.05 (CH), 118.24 (CH), 118.21 (CH), 117.95 (CH), 111.30 (CH), 111.12 (CH), 108.22 (C), 108.01 (C), 60.61 (OCH₂), 58.64 (C), 28.16 (CH₂), 28.03 (CH₂), 21.32 (ArCH₃), 13.57 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₆H₂₉N₂O₄ [M + H]⁺: 433.2122, found: 433.2134.

Diethyl 2,2-bis((6-methyl-1*H*-indol-3-yl)methyl)malonate (1d)

EtOOC COOEt Yellow solid. (Yield of two steps, 80%). mp 147-149 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.79 (d, J = 2.5 Hz, 2H, NH), 7.28 (d, J = 8.1 Hz, 2H, Ar-H), 7.13 (s, 2H, Ar-H), 7.05 (d, J = 2.4 Hz, 2H, Ar-H), 6.78 (dd, J = 8.2, 1.5 Hz, 2H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.29 (s, 4H, C_q-CH₂Ar), 2.37 (s, 6H, Ar-CH₃), 1.03 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.41 (C=O), 136.66 (C), 130.31 (C), 126.29 (C), 123.72 (CH), 120.52 (CH), 118.42 (CH), 111.59 (CH), 108.51 (C), 61.08 (OCH₂), 59.07 (C), 28.53 (CH₂), 21.81 (ArCH₃), 14.07 (CH₃). HRMS (ESI): *m/z* calcd for C₂₇H₃₁N₂O₄ [M + H]⁺: 447.2278, found: 447.2290.

Diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-fluoro-1*H*-indol-3-yl)methyl)malonate (1e)

Yellow solid. (Yield of two steps, 83%). mp 119-121 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.09 (s, 1H, NH), 10.98 (s, 1H, NH), 7.41 (dd, *J* = 8.1, 4.1 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (d, *J* = 2.3 Hz, 1H, Ar-H), 7.37 – 7.30 (m, 2H, Ar-H), 7.25 (m, 2H, Ar-H)

H), 7.18 (d, J = 2.1 Hz, 1H, Ar-H), 7.14 – 7.08 (m, 1H, Ar-H), 7.06 (t, J = 7.6 Hz, 1H, Ar-H), 6.95 (t, J = 7.5 Hz, 1H, Ar-H), 6.90 (td, J = 9.3, 2.5 Hz, 1H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.33 (s, 2H, C_q-CH₂Ar), 3.29 (s, 2H, C_q-CH₂Ar), 1.00 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR

(125 MHz, DMSO- d_6) δ 170.89 (C=O), 156.69 (d, J = 230.9 Hz, CF), 135.74 (C), 132.39 (C), 128.08 (d, J = 9.7 Hz, C), 127.80 (C), 126.30 (CH), 124.03 (CH), 120.88 (CH), 118.26 (CH), 118.22 (CH), 112.22 (d, J = 9.9 Hz, CH), 111.30 (CH), 108.99 (d, J = 26.2 Hz, CH), 108.55 (d, J = 5.2 Hz, C), 108.12 (C), 102.91 (d, J = 23.1 Hz, CH), 60.65 (OCH₂), 58.70 (C), 28.31 (CH₂), 28.23 (CH₂), 13.50 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₅FN₂NaO₄ [M + Na]⁺: 459.1691, found: 459.1703.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((6-fluoro-1H-indol-3-yl)methyl)malonate (1f)

1H, Ar-H), 7.16 (d, J = 2.4 Hz, 1H, Ar-H), 7.12 (dd, J = 10.1, 2.4 Hz, 1H, Ar-H), 7.05 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H, Ar-H), 6.94 (t, J = 7.5 Hz, 1H, Ar-H), 6.85 – 6.76 (m, 1H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.33 (s, 2H, C_q-CH₂Ar), 3.31 (s, 2H, C_q-CH₂Ar), 1.00 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.87 (C=O), 158.68 (d, J = 234.0 Hz, CF), 135.73 (C), 135.51 (d, J = 12.7 Hz, C), 127.79 (C), 124.66 (CH), 124.63 (d, J = 3.1 Hz, C), 124.04 (CH), 120.87 (CH), 119.24 (d, J = 10.3 Hz, CH), 118.25 (CH), 118.20 (CH), 111.31 (CH), 108.51 (C), 108.11 (C), 106.73 (d, J = 24.4 Hz, CH), 97.18 (d, J = 25.2 Hz, CH), 60.65 (OCH₂), 58.66 (C), 28.21 (CH₂), 28.06 (CH₂), 13.53 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₆FN₂O₄ [M + H]⁺: 437.1871, found: 437.1878.

Diethyl 2,2-bis((6-fluoro-1*H*-indol-3-yl)methyl)malonate (1g)

H), 6.80 (ddd, J = 9.8, 8.7, 2.4 Hz, 2H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.31 (s, 4H, C_q-CH₂Ar), 0.99 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.85 (C=O), 158.71 (d, J = 233.8 Hz, CF), 135.54 (d, J = 12.7 Hz, C), 124.70 (d, J = 3.4 Hz, C), 124.67 (CH), 119.26 (d, J = 10.2 Hz, CH), 108.44 (C), 106.79 (d, J = 24.5 Hz, CH), 97.22 (d, J = 25.3 Hz, CH), 60.72 (OCH₂), 58.65 (C), 28.16 (CH₂), 13.55 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₅F₂N₂O₄ [M + H]⁺: 455.1777, found: 455.1782.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((5-chloro-1H-indol-3-yl)methyl)malonate (1h)

Yellow solid. (Yield of two steps, 82%). mp 122-124 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.18 (s, 1H, NH), 10.99 (s, 1H, NH), 7.43 (d, J = 8.0 Hz, 1H, Ar-H), 7.38 (d, J = 2.0 Hz, 1H, Ar-H), 7.36 (d, J = 8.7 Hz, 1H,

Ar-H), 7.35 (d, J = 8.0 Hz, 1H, Ar-H), 7.27 (d, J = 2.5 Hz, 1H, Ar-H), 7.19 (d, J = 2.4 Hz, 1H, Ar-H), 7.09 – 7.02 (m, 2H, Ar-H), 6.95 (t, J = 7.4 Hz, 1H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.32 (s, 2H, C_q-CH₂Ar), 3.30 (s, 2H, C_q-CH₂Ar), 1.01 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.84 (C=O), 135.75 (C), 134.18 (C), 128.90 (C), 127.78 (C), 126.20 (CH), 124.08 (CH), 123.09 (C), 120.89 (CH), 120.76 (CH), 118.28 (CH), 118.23 (CH), 117.57 (CH), 112.84 (CH), 111.31 (CH), 108.18 (C), 108.05 (C), 60.68 (OCH₂), 58.65 (C), 28.34 (CH₂), 28.06 (CH₂), 13.50 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₆ClN₂O₄ [M + H]⁺: 453.1576, found: 453.1582.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((6-chloro-1H-indol-3-yl)methyl)malonate (1i)

Yellow solid. (Yield of two steps, 80%). mp 129-131 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.11 (s, 1H, NH), 10.98 (s, 1H, NH), 7.44 – 7.37 (m, 3H, Ar-H), 7.35 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.23 (d, *J* = 2.4 Hz, 1H, Ar-H),

7.16 (d, J = 2.4 Hz, 1H, Ar-H), 7.06 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H, Ar-H), 6.99 – 6.91 (m, 2H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.33 (s, 2H, C_q-CH₂Ar), 3.31 (s, 2H, C_q-CH₂Ar), 1.00 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.85 (C=O), 136.08 (C), 135.75 (C), 127.79 (C), 126.64 (C), 125.60 (C), 125.27 (CH), 124.08 (CH), 120.89 (CH), 119.65 (CH), 118.61 (CH), 118.28 (CH), 118.20 (CH), 111.33 (CH), 110.91 (CH), 108.63 (C), 108.07 (C), 60.68 (OCH₂), 58.68 (C), 28.27 (CH₂), 28.03 (CH₂), 13.54 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₆ClN₂O₄ [M + H]⁺: 453.1576, found: 453.1577.

Diethyl 2,2-bis((6-chloro-1*H*-indol-3-yl)methyl)malonate (1j)

Yellow solid. (Yield of two steps, 81%). mp 172-174 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 11.10 (d, J = 2.5 Hz, 2H, NH), 7.42 – 7.37 (m, 4H, Ar-H), 7.21 (d, J = 2.4 Hz, 2H, Ar-H), 6.96 (dd, J = 8.4, 2.0

Hz, 2H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.31 (s, 4H, C_q-CH₂Ar), 0.99 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.78 (C=O), 136.10 (C), 126.63 (C), 125.63 (C), 125.37 (CH), 119.67 (CH), 118.65 (CH), 110.95 (CH), 108.51 (C), 60.75 (OCH₂), 58.67

(C), 28.16 (CH₂), 13.55 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₅H₂₃Cl₂N₂O₄ [M - H]⁻: 485.1040, found: 485.1028.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((5-bromo-1H-indol-3-yl)methyl)malonate (1k)

Yellow solid. (Yield of two steps, 82%). mp 124-126 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.20 (s, 1H, NH), 10.99 (s, 1H, NH), 7.53 (d, *J* = 2.0 Hz, 1H, Ar-H), 7.43 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.35 (d, *J* = 8.2 Hz, 1H,

Ar-H), 7.32 (d, J = 8.6 Hz, 1H, Ar-H), 7.26 (d, J = 2.5 Hz, 1H, Ar-H), 7.20 (d, J = 2.4 Hz, 1H, Ar-H), 7.16 (dd, J = 8.6, 1.9 Hz, 1H, Ar-H), 7.06 (t, J = 7.6 Hz, 1H, Ar-H), 6.96 (t, J = 7.4 Hz, 1H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.32 (s, 2H, C_q-CH₂Ar), 3.30 (s, 2H, C_q-CH₂Ar), 1.02 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.83 (C=O), 135.76 (C), 134.41 (C), 129.59 (C), 127.78 (C), 126.08 (CH), 124.09 (CH), 123.27 (CH), 120.89 (CH), 120.61 (CH), 118.29 (CH), 118.23 (CH), 113.32 (CH), 111.32 (CH), 111.03 (C), 108.08 (C), 108.04 (C), 60.69 (OCH₂), 58.61 (C), 28.33 (CH₂), 28.04 (CH₂), 13.52 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₆BrN₂O₄ [M + H]⁺: 497.1070, found: 497.1072.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((6-bromo-1H-indol-3-yl)methyl)malonate (11)

Yellow solid. (Yield of two steps, 81%). mp 132-134 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 11.10 (s, 1H, NH), 10.95 (s, 1H, NH), 7.53 (d, J = 1.8 Hz, 1H, Ar-H), 7.41 (d, J = 7.4 Hz, 1H, Ar-H), 7.36 (d, J = 2.4 Hz, 1H,

Ar-H), 7.34 (d, J = 2.0 Hz, 1H, Ar-H), 7.21 (d, J = 2.4 Hz, 1H, Ar-H), 7.15 (d, J = 2.4 Hz, 1H, Ar-H), 7.09 – 7.03 (m, 2H, Ar-H), 6.95 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, – CO₂CH₂CH₃), 3.33 (s, 2H, C_q-CH₂Ar), 3.31 (s, 2H, C_q-CH₂Ar), 1.00 (t, J = 7.1 Hz, 6H, – CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.82 (C=O), 136.56 (C), 135.72 (C), 127.76 (C), 126.85 (C), 125.21 (CH), 124.08 (CH), 121.13 (CH), 120.88 (CH), 120.05 (CH), 118.26 (CH), 118.19 (CH), 113.85 (CH), 113.60 (C), 111.31 (CH), 108.62 (C), 108.03 (C), 60.67 (OCH₂), 58.64 (C), 28.23 (CH₂), 27.96 (CH₂), 13.52 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₆BrN₂O₄ [M + H]⁺: 497.1070, found: 497.1077.

Diethyl 2,2-bis((6-bromo-1*H*-indol-3-yl)methyl)malonate (1m)

Yellow solid. (Yield of two steps, 81%). mp 183-185 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.13 (d, J = 2.6 Hz, 2H, NH), 7.53 (d, J = 1.8 Hz, 2H, Ar-H), 7.35 (d, J = 8.5 Hz, 2H, Ar-H), 7.22 (d, J = 2.5 Hz,

2H, Ar-H), 7.07 (dd, J = 8.5, 1.9 Hz, 2H, Ar-H), 3.89 (q, J = 7.1 Hz, 4H, $-CO_2CH_2CH_3$), 3.30 (s, 4H, C_q -CH₂Ar), 0.99 (t, J = 7.1 Hz, 6H, $-CO_2CH_2CH_3$). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.73 (C=O), 136.59 (C), 126.84 (C), 125.28 (CH), 121.16 (CH), 120.05 (CH), 113.88 (CH), 113.63 (C), 108.53 (C), 60.73 (OCH₂), 58.65 (C), 28.14 (CH₂), 13.53 (CH₃). HRMS (ESI): m/z calcd for $C_{25}H_{23}Br_2N_2O_4$ [M - H]⁻: 573.0030, found: 573.0013.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((5-methoxy-1H-indol-3-yl)methyl)malonate (1n)

Yellow solid. (Yield of two steps, 81%). mp 95-97 °C. ¹H NMR (400 MHz, Methanol- d_4) δ 7.42 (d, J = 8.0 Hz, 1H, Ar-H), 7.32 (d, J = 8.1 Hz, 1H, Ar-H), 7.20 (d, J = 8.8 Hz, 1H, Ar-H), 7.11 (s, 1H, Ar-H), 7.08 (ddd, J =

8.1, 7.0, 1.2 Hz, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H, Ar-H), 6.83 (d, J = 2.4 Hz, 1H, Ar-H), 6.71 (dd, J = 8.7, 2.4 Hz, 1H, Ar-H), 3.98 (q, J = 7.2 Hz, 4H, -CO₂CH₂CH₃), 3.57 (s, 3H, -OCH₃), 3.46 (s, 2H, C_q-CH₂Ar), 3.45 (s, 2H, C_q-CH₂Ar), 1.05 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (150 MHz, Methanol- d_4) δ 173.52 (C=O), 154.87 (C), 137.60 (C), 132.78 (C), 129.88 (C), 129.54 (C), 125.43 (CH), 124.37 (CH), 122.37 (CH), 119.59 (CH), 119.50 (CH), 112.77 (CH), 112.70 (CH), 112.09 (CH), 110.41 (C), 110.12 (C), 101.34 (CH), 62.36 (OCH₂), 60.84 (C), 55.98 (OCH₃), 29.79 (CH₂), 29.69 (CH₂), 14.08 (CH₃). HRMS (ESI): m/z calcd for C₂₆H₂₉N₂O₅ [M + H]⁺: 449.2071, found: 449.2082.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((6-methoxy-1H-indol-3-yl)methyl)malonate (10)

Yellow solid. (Yield of two steps, 84%). mp 114-116 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.96 (d, *J* = 2.4 Hz, 1H, NH), 10.76 (s, 1H, NH), 7.40 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.34 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.26 (d, *J* = 8.7

Hz, 1H, Ar-H), 7.14 (d, J = 2.4 Hz, 1H, Ar-H), 7.08 – 7.03 (m, 1H, Ar-H), 7.02 (d, J = 2.3 Hz, 1H, Ar-H), 6.97 – 6.91 (m, 1H, Ar-H), 6.84 (d, J = 2.3 Hz, 1H, Ar-H), 6.60 (dd, J = 8.7, 2.3 Hz, 1H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.75 (s, 3H, -OCH₃), 3.32 (s, 2H, C_q-CH₂Ar), 3.28 (s, 2H, C_q-CH₂Ar), 1.02 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.94 (C=O), 155.39 (C), 136.43 (C), 135.74 (C), 127.82 (C), 124.00 (CH), 122.55 (CH), 122.22 (C),

120.88 (CH), 118.84 (CH), 118.25 (CH), 118.21 (CH), 111.31 (CH), 108.56 (CH), 108.21 (C), 108.18 (C), 94.31 (CH), 60.63 (OCH₂), 58.64 (C), 55.11 (OCH₃), 28.15 (CH₂), 28.02 (CH₂), 13.58 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₆H₂₉N₂O₅ [M + H]⁺: 449.2071, found: 449.2084.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((7-methoxy-1H-indol-3-yl)methyl)malonate (1p)

Yellow solid. (Yield of two steps, 78%). mp 159-161 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.08 (d, *J* = 2.5 Hz, 1H, NH), 10.96 (s, 1H, NH), 7.40 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.34 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.14 (d, *J* = 2.4 Hz, 1H, Ar-H), 7.08 – 7.03 (m, 2H, Ar-H), 7.01 (d, *J* = 8.1 Hz, 1H, Ar-H), 6.97 – 6.91

(m, 1H, Ar-H), 6.87 (t, J = 7.8 Hz, 1H, Ar-H), 6.63 (d, J = 7.6 Hz, 1H, Ar-H), 3.90 (q, J = 7.1 Hz, 4H, -CO₂CH₂CH₃), 3.90 (s, 3H, -OCH₃), 3.32 (s, 2H, C_q-CH₂Ar), 3.31 (s, 2H, C_q-CH₂Ar), 1.01 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.92 (C=O), 146.03 (C), 135.73 (C), 129.38 (C), 127.81 (C), 125.82 (C), 123.98 (CH), 123.48 (CH), 120.88 (CH), 118.84 (CH), 118.26 (CH), 118.19 (CH), 111.31 (CH), 111.13 (CH), 108.76 (C), 108.19 (C), 101.41 (CH), 60.64 (OCH₂), 58.66 (C), 55.03 (OCH₃), 28.29 (CH₂), 28.07 (CH₂), 13.56 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₆H₂₉N₂O₅ [M + H]⁺: 449.2071, found: 449.2082.

Diethyl 2,2-bis((6-methoxy-1*H*-indol-3-yl)methyl)malonate (1q)

EtOOC COOEt Yellow solid. (Yield of two steps, 80%). mp 129-131 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.75 (d, J = 2.5 Hz, 2H, NH), 7.25 (d, J = 8.7 Hz, 2H, Ar-H), 6.60 (dd, J = 8.7, 2.3 Hz, 2H, Ar-H), 7.00 (d, J = 2.4 Hz, 2H, Ar-H), 6.84 (d, J = 2.3 Hz, 2H, Ar-H), 6.60 (dd, J = 8.7, 2.3 Hz, 2H, Ar-H), 3.91 (q, J = 7.0 Hz, 4H, -CO₂CH₂CH₃), 3.74 (s, 6H, -OCH₃), 3.27 (s, 4H, Cq-CH₂Ar), 1.03 (t, J = 7.1 Hz, 6H, -CO₂CH₂CH₃). ¹³C NMR (150 MHz, DMSO- d_6) δ 170.92 (C=O), 155.38 (C), 136.42 (C), 122.53 (CH), 122.21 (C), 118.82 (CH), 108.54 (CH), 108.18 (C), 94.29 (CH), 60.61 (OCH₂), 58.59 (C), 55.10 (OCH₃), 28.03 (CH₂), 13.59 (CH₃). HRMS (ESI): m/z calcd for C₂₇H₃₁N₂O₆ [M + H]⁺: 479.2177, found: 479.2189.

Diethyl 2-((1H-indol-3-yl)methyl)-2-((5-(trifluoromethyl)-1H-indol-3-yl)methyl)malonate (1r)

Yellow solid. (Yield of two steps, 84%). mp 127-129 °C. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.75 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.50 – 7.43 (m, 2H, Ar-H), 7.36 – 7.30 (m, 2H, Ar-H), 7.25 (s, 1H, Ar-H), 7.12 (s, 1H,

Ar-H), 7.08 (t, J = 7.4 Hz, 1H, Ar-H), 6.97 (td, J = 7.4, 7.0, 1.0 Hz, 1H, Ar-H), 3.93 (q, J = 7.2 Hz,

4H, $-CO_2CH_2CH_3$), 3.48 (s, 2H, C_q-CH₂Ar), 3.45 (s, 2H, C_q-CH₂Ar), 1.03 (t, J = 7.1 Hz, 6H, $-CO_2CH_2CH_3$). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.82 (C=O), 137.25 (C), 135.77 (C), 127.76 (C), 127.04 (C), 126.86 (CH), 125.64 (q, J = 271.1 Hz, CF₃), 124.10 (CH), 120.90 (CH), 119.24 (q, J = 30.9 Hz, *C*CF₃), 118.28 (CH), 118.21 (CH), 117.23 (d, J = 3.7 Hz, CH), 115.85 (d, J = 4.6 Hz, CH), 112.13 (CH), 111.32 (CH), 109.50 (C), 107.99 (C), 60.67 (OCH₂), 58.61 (C), 28.37 (CH₂), 27.99 (CH₂), 13.43 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₆H₂₆F₃N₂O₄ [M + H]⁺: 487.1839, found: 487.1842.

Ethyl 2-((1H-indol-3-yl)methyl)-3-(1H-indol-3-yl)-2-(methylsulfonyl)propanoate (1s)

Yellow solid. (Yield of two steps, 78%). mp 194-196 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.00 (d, *J* = 2.6 Hz, 2H, NH), 7.54 (d, *J* = 7.9 Hz, 2H, Ar-H),
7.34 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.14 (d, *J* = 2.5 Hz, 2H, Ar-H), 7.06 (ddd, *J* = 8.1, 6.9, 1.3 Hz, 2H, Ar-H), 6.98 (ddd, *J* = 7.4, 7.0, 1.2 Hz, 2H, Ar-H), 4.02

(q, J = 7.1 Hz, 2H, -CO₂CH₂CH₃), 3.64 (d, J = 15.0 Hz, 2H, C_q-C*H*HAr), 3.47 (d, J = 15.1 Hz, 2H, C_q-CHHAr), 2.80 (s, 3H, - SO₂CH₃), 0.96 (t, J = 7.1 Hz, 3H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.16 (C=O), 135.56 (C), 127.95 (C), 125.29 (CH), 120.91 (CH), 118.66 (CH), 118.46 (CH), 111.33 (CH), 107.06 (C), 75.68 (C), 61.78 (OCH₂), 40.29 (SO₂CH₃), 27.97 (CH₂), 13.29 (CH₃). HRMS (ESI): *m*/*z* calcd for C₂₃H₂₅N₂O₄S [M + H]⁺: 425.1530, found: 425.1541.

Ethyl 2-((1*H*-indol-3-yl)methyl)-2-cyano-3-(1*H*-indol-3-yl)propanoate (1t)

Yellow solid. (Yield of two steps, 85%). mp 100-102 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (s, 2H, NH), 7.58 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.36 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.22 (d, *J* = 2.5 Hz, 2H, Ar-H), 7.08 (ddd, *J* = 8.2, 6.9, 1.2

Hz, 2H, Ar-H), 6.99 (ddd, J = 8.0, 6.9, 1.1 Hz, 2H, Ar-H), 3.89 (q, J = 7.1 Hz, 2H, -CO₂CH₂CH₃), 3.53 (d, J = 14.5 Hz, 2H, C_q-CHHAr), 3.44 (d, J = 14.5 Hz, 2H, C_q-CHHAr), 0.86 (t, J = 7.1 Hz, 3H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 168.84 (C=O), 135.79 (C), 127.19 (C), 124.62 (CH), 121.07 (CH), 120.07 (CN), 118.54 (CH), 118.50 (CH), 111.41 (CH), 107.71 (C), 62.06 (OCH₂), 53.90 (C), 32.87 (CH₂), 13.39 (CH₃). HRMS (ESI): m/z calcd for C₂₃H₂₂N₃O₂ [M + H]⁺: 372.1707, found: 372.1717.

Experiment data for compound 3a

Diethyl 4b,5,7,12,12b,13-hexahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole-6,6-dicarboxylate (3a)

6.75 (td, J = 7.4, 1.0 Hz, 1H, Ar-H), 6.71 (d, J = 7.8 Hz, 1H, Ar-H), 5.14 (d, J = 8.5 Hz, 1H, -NHC*H*), 4.32 – 4.21 (m, 2H, -CO₂CH₂CH₃), 4.00 (q, J = 7.1 Hz, 2H, -CO₂CH₂CH₃), 3.84 (ddd, J = 11.1, 8.9, 1.6 Hz, 1H, -NHCHC*H*), 3.57 (d, J = 15.1 Hz, 1H, Cq-CHHAr), 3.31 – 3.27 (m, 1H, Cq-CHHAr), 2.27 (dd, J = 14.9, 11.4 Hz, 1H, Cq-CHHAr), 2.13 (d, J = 14.8 Hz, 1H, Cq-CHHAr), 1.29 (t, J = 7.1Hz, 3H, -CO₂CH₂CH₃), 1.10 (t, J = 7.1 Hz, 3H, -CO₂CH₂CH₃). ¹³C NMR (125 MHz, Methanol- d_4) δ 173.48 (C=O), 173.04 (C=O), 150.92 (C), 137.21 (C), 136.21 (C), 134.88 (C), 129.41 (C), 128.97 (CH), 125.34 (CH), 121.81 (CH), 120.76 (CH), 119.82 (CH), 119.12 (CH), 111.72 (CH), 111.30 (CH), 106.21 (C), 62.66 (OCH₂), 62.53 (OCH₂), 60.79 (NHCH), 57.84 (C), 41.70 (CH), 36.69 (CH₂), 27.53 (CH₂), 14.51 (CH₃), 14.27 (CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₇N₂O₄ [M + H]⁺: 419.1965, found: 419.1964.

Copies of NMR spectra

Figure S1. ¹H NMR spectrum of diethyl 2,2-bis((1*H*-indol-3-yl)methyl)malonate (1a) in DMSO-d₆

Figure S3. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-methyl-1*H*-indol-3-yl)methyl)malonate (**1b**) in DMSO-*d*₆

Figure S4. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-methyl-1*H*-indol-3-yl)methyl)malonate

Figure S5. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methyl-1*H*-indol-3-yl)methyl)malonate (**1c**) in DMSO-*d*₆

Figure S6. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methyl-1*H*-indol-3-yl)methyl)malonate

Figure S7. ¹H NMR spectrum of diethyl 2,2-bis((6-methyl-1*H*-indol-3-yl)methyl)malonate (1d) in DMSO-d₆

Figure S8. ¹³C NMR spectrum of diethyl 2,2-bis((6-methyl-1H-indol-3-yl)methyl)malonate (1d) in DMSO-d₆

Figure S9. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-fluoro-1*H*-indol-3-yl)methyl)malonate (1e) in DMSO- d_6

Figure S10. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-fluoro-1*H*-indol-3-yl)methyl)malonate

(1e) in DMSO-d₆

Figure S11. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-fluoro-1*H*-indol-3-yl)methyl)malonate (**1f**) in DMSO-*d*₆

Figure S12. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-fluoro-1*H*-indol-3-yl)methyl)malonate

Figure S13. ¹H NMR spectrum of diethyl 2,2-bis((6-fluoro-1*H*-indol-3-yl)methyl)malonate (1g) in DMSO-d₆

Figure S14. ¹³C NMR spectrum of diethyl 2,2-bis((6-fluoro-1*H*-indol-3-yl)methyl)malonate (1g) in DMSO-d₆

Figure S15. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-chloro-1*H*-indol-3-yl)methyl)malonate (**1h**) in DMSO-*d*₆

 $\label{eq:Figure S16. 13} Figure S16. \ ^{13}C \ NMR \ spectrum \ of \ diethyl \ 2-((1H-indol-3-yl)methyl)-2-((5-chloro-1H-indol-3-yl)methyl)malonate$

Figure S17. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-chloro-1*H*-indol-3-yl)methyl)malonate (1i) in DMSO-*d*₆

Figure S18. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-chloro-1*H*-indol-3-yl)methyl)malonate

(1i) in DMSO-d₆

Figure S19. ¹H NMR spectrum of diethyl 2,2-bis((6-chloro-1*H*-indol-3-yl)methyl)malonate (1j) in DMSO-d₆

Figure S20. ¹³C NMR spectrum of diethyl 2,2-bis((6-chloro-1*H*-indol-3-yl)methyl)malonate (1j) in DMSO-d₆

Figure S21. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-bromo-1*H*-indol-3-yl)methyl)malonate (**1k**) in DMSO-*d*₆

Figure S22. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-bromo-1*H*-indol-3-yl)methyl)malonate

Figure S23. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-bromo-1*H*-indol-3-yl)methyl)malonate

(11) in DMSO- d_6

Figure S24. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-bromo-1*H*-indol-3-yl)methyl)malonate

Figure S25. ¹H NMR spectrum of diethyl 2,2-bis((6-bromo-1*H*-indol-3-yl)methyl)malonate (1m) in DMSO-d₆

Figure S26. ¹³C NMR spectrum of diethyl 2,2-bis((6-bromo-1*H*-indol-3-yl)methyl)malonate (1m) in DMSO-d₆

Figure S27. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-methoxy-1*H*-indol-3-

yl)methyl)malonate (**1n**) in Methanol- d_4

Figure S29. ¹H NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methoxy-1*H*-indol-3-yl)methyl)malonate (**10**) in DMSO-*d*₆

Figure S30. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methoxy-1-3-yl)methyl)-2-((6-methoxy-1-3-yl)methyl)-2-((6-methoxy-1-3-

Figure S31. 1 HNMRspectrumofdiethyl $2-((1H-indol-3-yl)methyl)-2-((7-methoxy-1H-indol-3-yl)methyl)methyl)yl)methyl)malonate (1p) in DMSO-<math>d_6$

Figure S32. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((7-methoxy-1*H*-indol-3-

yl)methyl)malonate (1p) in DMSO-d6

Figure S33. ¹H NMR spectrum of diethyl 2,2-bis((6-methoxy-1*H*-indol-3-yl)methyl)malonate (1q) in DMSO-d₆

Figure S34. ¹³C NMR spectrum of diethyl 2,2-bis((6-methoxy-1*H*-indol-3-yl)methyl)malonate (1q) in DMSO-d₆

Figure S35. ¹H NMR spectrum of diethyl $2-((1H-indol-3-yl)methyl)-2-((5-(trifluoromethyl)-1H-indol-3-yl)methyl)malonate (1r) in Methanol-<math>d_4$

Figure S36. ¹³C NMR spectrum of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-(trifluoromethyl)-1*H*-indol-3-

Figure S37. ¹H NMR spectrum of ethyl 2-((1*H*-indol-3-yl)methyl)-3-(1*H*-indol-3-yl)-2-(methylsulfonyl)propanoate (**1s**) in DMSO-*d*₆

Figure S38. ¹³C NMR spectrum of ethyl 2-((1*H*-indol-3-yl)methyl)-3-(1*H*-indol-3-yl)-2-

(methylsulfonyl)propanoate (1s) in DMSO-d₆

Figure S39. ¹H NMR spectrum of ethyl 2-((1*H*-indol-3-yl)methyl)-2-cyano-3-(1*H*-indol-3-yl)propanoate (1t) in DMSO- d_6

Figure S40. ¹³C NMR spectrum of ethyl 2-((1*H*-indol-3-yl)methyl)-2-cyano-3-(1*H*-indol-3-yl)propanoate (1t) in

DMSO-d₆

Figure S41. ¹H NMR spectrum of diethyl 5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b]diindole-6,6-dicarboxylate (**2a**) in DMSO- d_6

Figure S42. ¹³C NMR spectrum of diethyl 5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole-6,6dicarboxylate (**2a**) in DMSO- d_6

Figure S43. ¹H NMR spectrum of diethyl 3-methyl-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole-6,6-

dicarboxylate (2b) in Methanol- d_4

Figure S44. ¹³C NMR spectrum of diethyl 3-methyl-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-6,6-

dicarboxylate (**2b**) in Methanol-*d*₄

Figure S45. ¹H NMR spectrum of diethyl 2-methyl-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2c**) in Methanol-*d*₄

Figure S46. ¹³C NMR spectrum of diethyl 2-methyl-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-

dicarboxylate (2c) in Methanol-d4

Figure S47. ¹H NMR spectrum of diethyl 2,10-dimethyl-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-

6,6-di carboxylate (2d) in DMSO- d_6

Figure S48. ¹³C NMR spectrum of diethyl 2,10-dimethyl-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-

6,6-di carboxylate (**2d**) in DMSO- d_6

Figure S49. ¹H NMR spectrum of diethyl 3-fluoro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2e**) in Methanol-*d*₄

Figure S50. ¹³C NMR spectrum of diethyl 3-fluoro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-6,6-

dicarboxylate (2e) in Methanol-d4

Figure S51. ¹H NMR spectrum of diethyl 2-fluoro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2f**) in Methanol-*d*₄

Figure S52. ¹³C NMR spectrum of diethyl 2-fluoro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-

dicarboxylate (**2f**) in Methanol- d_4

Figure S53. ¹H NMR spectrum of diethyl 2,10-difluoro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole-

6,6-dicarboxylate (**2g**) in DMSO- d_6

Figure S54. ¹³C NMR spectrum of diethyl 2,10-difluoro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b'*]diindole-

6,6-dicarboxylate (2g) in DMSO- d_6

Figure S55. ¹H NMR spectrum of diethyl 3-chloro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-b:3,4-b]diindole-6,6-dicarboxylate (**2h**) in Methanol- d_4

Figure S56. ¹³C NMR spectrum of diethyl 3-chloro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-6,6-

Figure S57. ¹H NMR spectrum of diethyl 2-chloro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2i**) in DMSO-*d*₆

Figure S58. ¹³C NMR spectrum of diethyl 2-chloro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-

dicarboxylate (2i) in DMSO- d_6

Figure S59. ¹H NMR spectrum of diethyl 2,10-dichloro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-di carboxylate (**2j**) in DMSO-*d*₆

Figure S60. ¹³C NMR spectrum of diethyl 2,10-dichloro-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-

6,6-di carboxylate (2j) in DMSO- d_6

Figure S61. ¹H NMR spectrum of diethyl 3-bromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6dicarboxylate (**2k**) in DMSO-*d*₆

Figure S62. ¹³C NMR spectrum of diethyl 3-bromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-

Figure S63. ¹H NMR spectrum of diethyl 2-bromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2l**) in DMSO-*d*₆

Figure S64. ¹³C NMR spectrum of diethyl 2-bromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-

dicarboxylate (21) in DMSO-d6

Figure S65. ¹H NMR spectrum of diethyl 2,10-dibromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-di carboxylate (**2m**) in DMSO-*d*₆

Figure S66. ¹³C NMR spectrum of diethyl 2,10-dibromo-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-

Figure S67. ¹H NMR spectrum of diethyl 3-methoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2n**) in DMSO-*d*₆

Figure S68. ¹³C NMR spectrum of diethyl 3-methoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (**2n**) in DMSO-*d*₆

Figure S69. ¹H NMR spectrum of diethyl 2-methoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-

dicarboxylate (20) in Methanol-d4

Figure S70. ¹³C NMR spectrum of diethyl 2-methoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

Figure S71. ¹H NMR spectrum of diethyl 1-methoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**2p**) in DMSO-*d*₆

Figure S72. ¹³C NMR spectrum of diethyl 1-methoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-

Figure S73. ¹H NMR spectrum of diethyl 2,10-dimethoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4*b*⁻]diindole-6,6-di carboxylate (**2q**) in Methanol-*d*₄

Figure S74. ¹³C NMR spectrum of diethyl 2,10-dimethoxy-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-

Figure S75. ¹H NMR spectrum of diethyl 3-(trifluoromethyl)-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-b:3,4-b']diindole-6,6-di carboxylate (**2r**) in DMSO- d_6

Figure S76. ¹³C NMR spectrum of diethyl 3-(trifluoromethyl)-5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-

b']diindole-6,6-di carboxylate (2r) in DMSO-d₆

Figure S77. ¹H NMR spectrum of ethyl 6-(methylsulfonyl)-6,7,12,13-tetrahydro-5*H*-cyclohepta[2,1-*b*:3,4*b*']diindole-6-carboxylate (**2s**) in Methanol- d_4

Figure S78. ¹³C NMR spectrum of ethyl 6-(methylsulfonyl)-6,7,12,13-tetrahydro-5*H*-cyclohepta[2,1-*b*:3,4-

Figure S79. ¹H NMR spectrum of ethyl 6-cyano-6,7,12,13-tetrahydro-5*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6-

carboxylate	(2t)	in	DMSO-d6

Figure S80. ¹³C NMR spectrum of ethyl 6-cyano-6,7,12,13-tetrahydro-5*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6-carboxylate (**2t**) in DMSO-*d*₆

Figure S81. ¹H NMR spectrum of diethyl 4b,5,7,12,12b,13-hexahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*]diindole-6,6-dicarboxylate (**3a**) in Methanol-*d*₄

dicarboxylate (3a) in Methanol-d4

Copies of HRMS chromatograms

Figure S83. HRMS chromatogram of diethyl 2,2-bis((1H-indol-3-yl)methyl)malonate (1a)

nple Type trument juired Tir Method	e Name ne	Sample Agilent G65 12/19/2018 small mole	20 Q-TOF 3 11:55:44 cular data a	analysis meth	nod.m	Posit Acq M IRM (Comr	ion 4ethod Calibrati nent	on Status	P1 20 Su ES	-C7 160322 ccess IH by Z	_MS_E ZY	SIH_P	OS_1m	in.m		
Fragmer	n tor Voltage 125	e Co	ollision En O	ergy	Ionization ESI	n Mode										
x10 ⁵ +	ESI Scan (rt	: 0.2 min) l	-rag=125.	0V ESIH_2	0181219_Y	CH_PL_	25.d									
1.8-					433	3.2130										
1.6-					100											
1.4-																
1.2-																
1-																
0.8-																
0.6-						134.2	160									
0.4-						104.2	100									
0.2-							435.218	18								
0				431.	1972											
	425 420	5 427 4	28 429	430 431	1 432 43 Col	33 434 ints vs. N	435 Aass-to-C	436 437 Charge (m/	438 /z)	439	440	441	442	443	444	445
mula Cal	culator Res	ults							-							
z	Calc m/z	Diff (I	nDa)	Diff (ppm)) Ion F	ormula	I	on	4							

Figure S84. HRMS chromatogram of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-methyl-1*H*-indol-3-

yl)methyl)malonate (1b)

Figure S85. HRMS chromatogram of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-methyl-1*H*-indol-3-yl)methyl)malonate (**1c**)

--- End Of Report ---

Figure S86. HRMS chromatogram of diethyl 2,2-bis((6-methyl-1H-indol-3-yl)methyl)malonate (1d)

Figure S87. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((5-fluoro-1H-indol-3-yl)methyl methyl methyl

yl)methyl)malonate (**1e**)

⁻⁻⁻ End Of Report ---

Figure S89. HRMS chromatogram of diethyl 2,2-bis((6-fluoro-1H-indol-3-yl)methyl)malonate (1g)

Data Filename	ESIH_20181219_YCH_PL_27.d	Sample Name	PL-27
Sample Type	Sample	Position	P1-C9
Instrument Name	Agilent G6520 Q-TOF	Acq Method	20160322_MS_ESIH_POS_1min.m
Acquired Time	12/19/2018 11:59:25	IRM Calibration Status	Success
DA Method	small molecular data analysis method.m	Comment	ESIH by ZZY
User Spectra			
Fragmentor Volta	nge Collision Energy Ionizati	on Mode	

--- End Of Report ---

Figure S90. HRMS chromatogram of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-chloro-1*H*

yl)methyl)malonate (1h)

Figure S91. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((6-chloro-1H-ind

yl)methyl)malonate (1i)

--- End Of Report ---

Figure S92. HRMS chromatogram of diethyl 2,2-bis((6-chloro-1*H*-indol-3-yl)methyl)malonate (1j)

Figure S93. HRMS chromatogram of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((5-bromo-1*H*-indol-3-yl)methyl)malonate (1k)

Qualitative Analysis Report

Data Filename Sample Type Instrument Name Acquired Time DA Method ESIH_20181219_YCH_PL_32.d Sample Agilent G6520 Q-TOF 12/19/2018 12:08:33 small molecular data analysis method.m Sample Name Position Acq Method IRM Calibration Status Comment PL-32 P1-D5 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

--- End Of Report ---

Figure S94. HRMS chromatogram of diethyl 2-((1*H*-indol-3-yl)methyl)-2-((6-bromo-1*H*-indol-3-yl)methyl methyl met

yl)methyl)malonate (11)

Figure S95. HRMS chromatogram of diethyl 2,2-bis((6-bromo-1H-indol-3-yl)methyl)malonate (1m)

ESIH_20181219_YCH_PL_22.d Data Filename Sample Name PL-22 Sample Type . Position P1-C4 Sample Agilent G6520 Q-TOF 12/19/2018 11:50:14 Instrument Name Acq Method 20160322_MS_ESIH_POS_1min.m Acquired Time **IRM Calibration Status** DA Method small molecular data analysis method.m ESIH by ZZY Comment User Spectra Collision Energy Fragmentor Voltage Ionization Mode

m/z		Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
	449.2082	449.2071	-1.09	-2.44	C26 H29 N2 O5	(M+H)+

--- End Of Report ---

Figure S96. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methoxy-1H-indol-3-yl)methyl-2-((5-methox

yl)methyl)malonate (1n)

Figure S97. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methoxy-1H-indol-3-yl)methyl-2-((6-methox

yl)methyl)malonate (10)

Data Filename Sample Type Instrument Name Acquired Time DA Method ESIH_20181219_YCH_PL_24.d Sample Agilent G6520 Q-TOF 12/19/2018 11:53:54 small molecular data analysis method.m

Sample Name Position Acq Method IRM Calibration Status Comment PL-24 P1-C6 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
449.2082	449.2071	-1.15	-2.56	C26 H29 N2 O5	(M+H)+
					,

---- End Of Report ----

Figure S98. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((7-methoxy-1H-indol-3-

yl)methyl)malonate (1p)

Figure S99. HRMS chromatogram of diethyl 2,2-bis((6-methoxy-1H-indol-3-yl)methyl)malonate (1q)

 Data Filename
 ESIH,

 Sample Type
 Samp

 Instrument Name
 Agiler

 Acquired Time
 12/15

 DA Method
 small

ESIH_20181219_YCH_PL_38.d Sample Agilent G6520 Q-TOF 12/19/2018 12:19:32 small molecular data analysis method.m Sample Name Position Acq Method IRM Calibration Status Comment PL-38 P1-E2 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

--- End Of Report ---

Figure S100. HRMS chromatogram of diethyl 2-((1H-indol-3-yl)methyl)-2-((5-(trifluoromethyl)-1H-indol-3-

yl)methyl)malonate (1r)

Figure S101. HRMS chromatogram of ethyl 2-((1H-indol-3-yl)methyl)-3-(1H-indol-3-yl)-2-

(methylsulfonyl)propanoate (1s)

--- End Of Report ---

Figure S102. HRMS chromatogram of ethyl 2-((1H-indol-3-yl)methyl)-2-cyano-3-(1H-indol-3-yl)propanoate (1t)

Figure S103. HRMS chromatogram of diethyl 5,7,12,13-tetrahydro-6*H*-cyclohepta[2,1-*b*:3,4-*b*']diindole-6,6-dicarboxylate (**2a**)

Data Filename ESIH_20181219_YCH_PL_05.d Sample Name PL-5 Sample Type Sample Position P1-A5 Agilent G6520 O-TOF Acq Method 20160322_MS_ESIH_POS_1min.m Instrument Name Acquired Time 12/19/2018 11:19:09 IRM Calibration Status DA Method small molecular data analysis method.m Comment ESIH by ZZY User Spectra Fragmentor Voltage **Collision Energy** Ionization Mode 125 ESI +ESI Scan (rt: 0.2 min) Frag=125.0V ESIH_20181219_YCH_PL_05.d Subtract x10⁵ 1.2 431.1976 0.8 0.6 0.4 432.2008 0.2 430.1897 433 2029 0 436 425 433 437 440 442 426 427 429 432 434 435 438 439 441 428 430 431 Counts vs. Mass-to-Charge (m/z) Formula Calculator Results Diff (ppm) Diff (mDa) Ion Formula Ion m/z Calc m/z 431.1965 431.197 -1.09 2.54 C26 H27 N2 O4 (M+H)+

---- End Of Report ----

Figure S104. HRMS chromatogram of diethyl 3-methyl-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2b)

--- End Of Report

Figure S105. HRMS chromatogram of diethyl 2-methyl-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2c)

--- End Of Report ---

Figure S106. HRMS chromatogram of diethyl 2,10-dimethyl-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-di carboxylate (**2d**)

--- End Of Report ---

Figure S107. HRMS chromatogram of diethyl 3-fluoro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2e)

Data Filename Sample Type Instrument Name Acquired Time DA Method ESIH_20181219_YCH_PL_10.d Sample Agilent G6520 Q-TOF 12/19/2018 11:28:16 small molecular data analysis method.m

Sample Name Position Acq Method IRM Calibration Status Comment PL-10 P1-B1 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

--- End Of Report ---

Figure S108. HRMS chromatogram of diethyl 2-fluoro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b]diindole-

6,6-dicarboxylate (2f)

--- End Of Report ---

Figure S109. HRMS chromatogram of diethyl 2,10-difluoro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-dicarboxylate (2g)

Data Filename Sample Type Instrument Name Acquired Time DA Method

ESIH_20181219_YCH_PL_07.d Sample Agilent G6520 Q-TOF 12/19/2018 11:22:49 small molecular data analysis method.m Sample Name Position Acq Method IRM Calibration Status Comment PL-7 P1-A7 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

--- End Of Report ---

Figure S110. HRMS chromatogram of diethyl 3-chloro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2h)

⁻⁻⁻ End Of Report ---

Figure S111. HRMS chromatogram of diethyl 2-chloro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2i)

 Data Filename
 ESIH_20181219_YCH_PL_16-1.d

 Sample
 Sample

 Instrument Name
 Agilent G6520 Q-TOF

 Acquired Time
 12/19/2018 14:37:41

 DA Method
 small molecular data analysis method.m

Sample Name Position Acq Method IRM Calibration Status Comment PL-16 P2-B7 20160324_MS_ESIH_NEG_1min.m Success ESIH by ZZY

User Spectra

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
483.088	483.0884	0.36	0.74	C25 H21 Cl2 N2 O4	(M-H)-

--- End Of Report ---

Figure S112. HRMS chromatogram of diethyl 2,10-dichloro-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-di carboxylate (**2j**)

Figure S113. HRMS chromatogram of diethyl 3-bromo-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2k)

Data Filename Sample Type Instrument Name Acquired Time DA Method ESIH_20181219_YCH_PL_12.d Sample Agilent G6520 Q-TOF 12/19/2018 11:31:56 small molecular data analysis method.m

Sample Name Position Acq Method IRM Calibration Status Comment PL-12 P1-B3 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

--- End Of Report ---

Figure S114. HRMS chromatogram of diethyl 2-bromo-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (2l)

--- End Of Report ---

Figure S115. HRMS chromatogram of diethyl 2,10-dibromo-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-di carboxylate (2m)

Data Filena Sample Typ Instrumen Acquired T DA Method User Spect	ame pe t Name Time I I	ESIH_201 Sample Agilent G6 12/19/201 small mole	81219_YCF 5520 Q-TOF 18 11:13:39 ecular data	I_PL_02.d :) analysis met	thod.m		Sample Positior Acq Mei IRM Ca Comme	Name 1 thod libratio nt	on Status	:	PL-2 P1-A2 201603 Success ESIH by	22_MS_ s y ZZY	_ESIH_I	POS_1r	nin.m		
Fragme	entor Voltag	a (Collision Er	nergy	Ioni	zation M	lode										
-	125		0			ESI											
x10 ⁵	+ESI Scan (r	t: 0.3 min)	Frag=125	.0V ESIH_2	201812	19_YCH	I_PL_02	.d									
1.4-																	
						447	.1920										
1.2-																	
1-																	
0.8-																	
0.6-																	
0.4 -							448.1	1953									
0.2-					44	46.1842		449 1	976								
о-	439 4	40 441	442 44	13 444	445	46 4	17 4/9	3 449	450	451	452	453	454	455	456	457	458
	439 44	10 441	4 42 44	10 444	440	Counts	s vs. Ma	ss-to-Cl	harge (m	/z)	402	400	404	-+55	400	407	
Formula Ca	alculator Res	ults															
m/z	Calc m/z	Diff	(mDa)	Diff (ppn	ı)	Ion For	mula	Io	n	1							
447.192	2 447.	1914	-0.5	9	-1.31	C26 H27	N2 O5	(M	+H)+]							

---- End Of Report ----

Figure S116. HRMS chromatogram of diethyl 3-methoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-dicarboxylate (**2n**)

Figure S117. HRMS chromatogram of diethyl 2-methoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-dicarboxylate (20)

ESIH_20181219_YCH_PL_04.d Data Filename Sample Name Sample Type Position Sample Agilent G6520 Q-TOF 12/19/2018 11:17:19 Acq Method IRM Calibration Status Instrument Name Acquired Time DA Method small molecular data analysis method.m Comment

PL-4 P1-A4 ESIH by ZZY

20160322 MS ESIH POS 1min.m

User Spectra

	m/z		Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
		447.1927	447.1914	-1.28	-2.86	C26 H27 N2 O5	(M+H)+
ĺ							

--- End Of Report ---

Figure S118. HRMS chromatogram of diethyl 1-methoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-dicarboxylate (2p)

Figure S119. HRMS chromatogram of diethyl 2,10-dimethoxy-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-di carboxylate (**2q**)

Data Filename Sample Type Instrument Name Acquired Time DA Method

ESIH_20181219_YCH_PL_18.d Sample Agilent G6520 Q-TOF 12/19/2018 11:42:55 small molecular data analysis method.m Sample Name Position Acq Method IRM Calibration Status Comment PL-18 P1-B9 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

---- End Of Report ----

Figure S120. HRMS chromatogram of diethyl 3-(trifluoromethyl)-5,7,12,13-tetrahydro-6H-cyclohepta[2,1-b:3,4-

b']diindole-6,6-di carboxylate (**2r**)

Figure S121. HRMS chromatogram of ethyl 6-(methylsulfonyl)-6,7,12,13-tetrahydro-5H-cyclohepta[2,1-b:3,4-

b']diindole-6-carboxylate (2s)
Qualitative Analysis Report

 Data Filename
 ESIH_20181219

 Sample Type
 Sample

 Instrument Name
 Agilent G6520 Q

 Acquired Time
 12/19/2018 11:

 DA Method
 small molecular

ESIH_20181219_YCH_PL_20.d Sample Agilent G6520 Q-TOF 12/19/2018 11:46:34 small molecular data analysis method.m Sample Name Position Acq Method IRM Calibration Status Comment PL-20 P1-C2 20160322_MS_ESIH_POS_1min.m Success ESIH by ZZY

User Spectra

--- End Of Report ---

Figure S122. HRMS chromatogram of ethyl 6-cyano-6,7,12,13-tetrahydro-5H-cyclohepta[2,1-b:3,4-b]diindole-6-

carboxylate (2t)

--- End Of Report ---

Figure S123. HRMS chromatogram of diethyl 4b,5,7,12,12b,13-hexahydro-6H-cyclohepta[2,1-b:3,4-b']diindole-

6,6-dicarboxylate (3a)