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Abstract: Folic acid has been widely introduced into nano-drug delivery systems to give
nanoparticle-targeted characteristics. However, the poor water solubility of folic acid may hinder
the exploitation of its ability to load antineoplastic drugs. In the present study, we designed a new
folate derivative (FA-2-DG) synthesized from folic acid and 2-Deoxyglucose (2-DG). The aim of this
study was to evaluate the self-assembly characteristics of FA-2-DG, and its ability of loading cisplatin.
The critical micelle concentration was 7.94 × 10−6 mol L−1. Fourier transform infrared spectroscopy
indicated that hydrogen bonding interaction is a main driving force for the self–assembly of FA-2-DG.
The particle was stable in pure water or 0.5% bovine serum albumin dispersions. By forming
a coordination bond, the particles assembled from FA-2-DG can load cisplatin. The loading efficiency
was maximal when the molar ratio of FA-2-DG to cisplatin was 2:1.
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1. Introduction

The targeting of active substances to the tumor region is an effective chemotherapy therapeutic
protocol for cancer. Folic acid has carcinoma-associated effects due to the high expression tumor cell
membrane folate receptors (FRs) [1–4]. FR α and FR β are two forms of FRs, which have high binding
affinity with folic acid. Most normal tissues lack expression of FRs, making selective tumor targeting
on the basis of folic acid achievable [5].

The superiority of the targeted nanoparticle drug delivery system makes it widely attractive in
anticancer therapy research. Folic acid has been widely introduced to make nanoparticles with targeted
characteristics [6–8]. Although known as a water-soluble vitamin, the water solubility of folic acid is
poor and greatly affected by the pH value of the surrounding chemical environment, which may hinder
the development of its loading ability for antineoplastic drugs. To overcome this problem, many forms
of folic-acid-based nanoparticles have been developed [9–19]. One of the most effective ways to
improve the water solubility of folic-acid-based nanoparticles is glycosylation modification [20–23].

2-Deoxyglucose (2-DG) is a structural analogue of glucose. In addition to having good water
solubility similar to glucose, it also has biological functions, such as inhibiting glycolysis and reversing
cancer cell metastasis [24–27]. These characteristics make 2-DG a good candidate for improving water
solubility in antineoplastic therapy.
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Cisplatin, a first-line clinical antitumor agent, has been widely used in the treatment of many kinds
of malignant tumors, such as breast cancer, ovarian cancer, and lung cancer [28–30]. Its better curative
effect also brings greater toxicity, and it takes up to 20 days after each administration to re-administer.
Therefore, in order to reduce toxicity, research about cisplatin mostly uses the drug-loading system to
target cisplatin to the tumor site [31,32].

In the present study, we designed a new folate derivative (FA-2-DG) synthesized from folic acid
and 2-DG, with amino ethanol as a linker agent, and the structure is shown in Figure 1. The aim of the
study was to evaluate the self-assembly characteristics of FA-2-DG and its ability of loading cisplatin.
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Figure 1. Chemical structure of FA-2-DG. 

2. Results 
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To evaluate the enhancement of water solubility by the introduction of 2-DG, the UV-VIS 
absorption spectra of a series of diluted FA-2-DG saturated solutions and folic acid solution in pure 
water were determined. The saturated folic acid solution was diluted 2-, 5-, and 10-fold, 
corresponding to B, D, and E in Figure 2, respectively. The saturated FA-2-DG solution was diluted 
2000- and 4000-fold, corresponding to A and C in Figure 2, respectively. The results shown in Figure 
2 indicate that the absorption at a wavelength of 280 nm of solution B is close to that of solution A, 
although a little lower, whereas the absorption of solution D at a wavelength of 280 nm is nearly the 
same as that of solution C. To summarize, the solubility of folic acid in aqueous solution increases by 
800-fold with the introduction of 2-DG into its molecular structure. All the experiments were 
performed at a constant temperature of 37 °C to ensure the rigor of the test results. 
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Figure 1. Chemical structure of FA-2-DG.

2. Results

2.1. Water Solubility of FA-2-DG

To evaluate the enhancement of water solubility by the introduction of 2-DG, the UV-VIS
absorption spectra of a series of diluted FA-2-DG saturated solutions and folic acid solution in pure
water were determined. The saturated folic acid solution was diluted 2-, 5-, and 10-fold, corresponding
to B, D, and E in Figure 2, respectively. The saturated FA-2-DG solution was diluted 2000- and 4000-fold,
corresponding to A and C in Figure 2, respectively. The results shown in Figure 2 indicate that the
absorption at a wavelength of 280 nm of solution B is close to that of solution A, although a little
lower, whereas the absorption of solution D at a wavelength of 280 nm is nearly the same as that of
solution C. To summarize, the solubility of folic acid in aqueous solution increases by 800-fold with the
introduction of 2-DG into its molecular structure. All the experiments were performed at a constant
temperature of 37 ◦C to ensure the rigor of the test results.
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Figure 2. UV-VIS absorption spectra of different dilutions of saturated folic acid or saturated FA-2-DG
solutions. (A) 2000-fold dilution of saturated FA-2-DG solution. (B) 2-fold dilution of saturated folic
acid solution. (C) 4000-fold dilution of saturated FA-2-DG solution. (D) 5-fold dilution of saturated
folic acid solution. (E) 10-fold dilution of saturated folic acid solution.

2.2. Intermolecular Hydrogen Bonding

The FTIR spectra of different samples are shown in Figure 3. The blue dotted box marked in
each spectrum outlines the locations of O–H and N–H signals, which are donors or receptors of
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intermolecular hydrogen bonds [33]. For 2-DG, the peaks of four O–H stretching vibrations occur at
3406 cm−1, 3346.51 cm−1, 3248.30 cm−1, and 3128.17 cm−1, as shown in Figure 3A. Figure 3B shows
the FTIR spectrum of folic acid, in which N–H and O–H peaks occur at 3540.56 cm−1, 3412.08 cm−1,
and 3319.51 cm−1. In the spectrum of a physical mixture of folic acid and 2-DG (FA-2-DG/PM), shown
in Figure 3C, peaks representing O–H stretching vibrations are still present, indicating that there are
no intermolecular hydrogen-bonding interactions between folic acid and 2-DG. However, in Figure 3D,
none of the N–H and O–H peaks can be clearly identified, but are replaced by one broad band, which is
a clear indication of strong hydrogen-bonding interactions between the molecules. This phenomenon
indicates that the molecules can self-assemble under the appropriate conditions.
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Figure 3. FTIR spectra of (A) 2-DG, the signals at 3406 cm−1, 3346.51 cm−1, 3248.30 cm−1,
and 3128.17 cm−1 in blue dotted box represent the O–H peaks; (B) folic acid, the signals at 3540.56 cm−1,
3412.08 cm−1, and 3319.51 cm−1 represent the N–H and O–H peaks; (C) a physical mixture of folic
acid and 2-DG (FA-2-DG/PM), the signals represented by their respective structures are also obvious;
and (D) FA-2-DG, none of the N–H and O–H peaks can be clearly identified.

2.3. Critical Micelle Concentration (CMC) of FA-2-DG

A fluorescent probe, such as naphthalene, is often used to measure critical micelle concentration
(CMC) [34]. However, FA-2-DG emits a fluorescent signal when excited at 280 nm, and its range
of emission wavelengths overlaps that of naphthalene. Therefore, naphthalene was not applicable
as a fluorescent probe in this study. As mentioned above, when the water solubility of FA-2-DG
was determined from its UV-VIS absorption spectrum. Its maximum absorption wavelength was
280 nm, and it also emitted fluorescence at 442 nm. Therefore, we used UV-VIS and fluorescence
spectroscopy to determine the CMC of FA-2-DG. As shown in Figure 4, the CMCs determined with
UV-VIS and fluorescent spectra were nearly the same, and from the intersection of the two trend lines,
we concluded that the CMC of FA-2-DG is 7.94 × 10−6 mol L−1.
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2.4. Dynamic Light Scattering (DLS) Measurement of FA-2-DG

DLS measurements can provide the hydration diameter of particles in solution. Here,
we determined the diameter of the particles in three FA-2-DG aqueous solutions of different
concentrations. To confirm that the self-assembly of the molecules persisted in plasma, FA-2-DG
was also dispersed in 0.5% aqueous bovine serum albumin (BSA) solution at a concentration of
9.5 × 10−6 mol L−1. From Figure 5A–C, we can see that the particle size increased as the concentration
increased. To test the serum stability of the self-aggregated compound, we compared the particle
size of FA-2-DG in BSA solution and in pure water. The results shown in Figure 5D–F indicate that
the particle size was not influenced by BSA. Therefore, the aggregates were not disaggregated in
BSA solution.
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(B) 14 × 10−6 mol L−1 in pure water, (C) 47 × 10−6 mol L−1 in pure water, (D) 9.5 × 10−6 mol
L−1 in pure water, (E) 0.5% bovine serum albumin (BSA) aqueous solution without FA-2-DG,
and (F) 9.5 × 10−6 mol L−1 in aqueous 0.5% BSA solution.

2.5. Ability of FA-2-DG to Load Cisplatin

The free carboxyl group in the structure of FA-2-DG can be used for drug loading [35]. Cisplatin,
a first-line antineoplastic drug with weak water solubility, is often studied to improve its bioavailability,
and many nanodrug-loading systems have been developed to achieve this goal [32,36,37]. These studies
have shown that forming coordination bonds between carriers and cisplatin is a very effective strategy.
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FA-2-DG can form coordination bonds with cisplatin by substituting one chloride ion in the cisplatin
molecule [39]. The structure shown in Figure 6A represents the compound after the formation of
the coordination bond. To verify the correctness of this structure, the compound was analyzed
with high-resolution mass spectrometry (MS). Figure 6B shows the quasimolecular ion peaks of
the precise molecular mass of this compound. The excellent matching of the isotope peaks confirms
the introduction of the platinum atom into the molecule.

To evaluate the loading efficiency of FA-2-DG for cisplatin, a set of solutions with different
molar ratios of FA-2-DG and cisplatin were prepared and high-performance liquid chromatography
(HPLC)–MS was used for the quantitation of the coordination compound. As shown in Figure 6C,
we prepared four kinds of solutions with molar ratios of 1:1, 1.5:1, 2:1, and 3:1. The extracted ion
chromatogram at 895.22906 corresponds, from top to bottom, to increasing proportions of FA-2-DG.
The peak area was maximal at a molar ratio of 2:1, indicating the highest loading efficiency at this ratio.
It also shows that the proportion of loaded molecule and the loading efficiency do not have a simple
linear relationship, so that maximizing the loading efficiency will require individualized adjustment
for different drugs.
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3. Materials and Methods

3.1. Preparation of FA-2-DG

The preparation of FA-2-DG has been reported previously [39]. The structure of FA-2-DG was
confirmed with FTIR, nuclear magnetic resonance, and MS. All solvents and biochemical reagents
were of analytical grade and were purchased from commercial sources (J&K Scientific, Beijing, China;
Solarbio Science & Technology, Beijing, China).

3.2. Optical Characterization Method

UV-VIS spectroscopy (UV-2600, Shimadzu, Kyoto, Japan) was used to determine the absorption
of FA-2-DG and folic acid in samples at different concentrations [40]. All spectra were measured at
37 ◦C with a quartz cuvette with a 1 cm path length, and recorded in a scan range of 220–800 nm.

Fluorescence emission spectroscopy (F-4500, Hitachi, Tokyo, Japan) was used to detect the
emission intensities of the different samples [41]. Sample preparation was the same as for the UV-VIS
analysis. The samples were excited at 280 nm and an emission spectrum was recorded from 300 to
600 nm. All of the fluorescence measurements were made at 37 ◦C.
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The FTIR analysis (Nicolet iS5, Thermo Fisher Scientific, Waltham, MA, USA) was performed
with the attenuated total reflectance method [42]. The samples, in powdered form, were analyzed in
an IR frequency range of 500–4000 cm−1.

3.3. DLS Characterization

A DLS instrument (Zetasizer Nano ZS, Malvern, UK) was used to measure the particle size of
FA-2-DG at different concentrations and in different solvents [43]. All particle diameter measurements
were made at 37 ◦C.

3.4. Cisplatin Loading Method and Evaluation of Efficiency

Cisplatin-loaded FA-2-DG was prepared by adding cisplatin into an aqueous solution of FA-2-DG
at different concentrations. The mixture was stirred at 25 ◦C for 6 h in the dark, and the solution was
then lyophilized to obtain the product. Fourier transform ion cyclotron resonance MS (solarix, Bruker
Daltonics, Bremen, Germany) using electrospray ionization was used to verify the precise molecular
mass of the compound [44]. Mass spectrometry coupled with HPLC (1260, Agilent, Santa Clara,
CA, USA) was used to develop a method for its quantitative analysis. A hydrophilic interaction
chromatography (HILIC) column (2.1 × 100 mm, 1.7 µm; Waters, Milford, MA, USA) was used for
the separation. The mobile phase was water (A) and acetonitrile (B), and the gradient elution method
was used: initially 5% A, increased to 40% in 50 min. The flow rate was 0.3 mL/min and the column
temperature was 25 ◦C.

4. Conclusions

In this study, 2-DG-modified folic acid (FA-2-DG) was evaluated with optical characterization
methods and morphological characterization. Its self-assembly was confirmed, and its formation of
nanoparticles was verified. The water solubility of FA-2-DG was much greater than that of folic acid,
which may explain these results. FA-2-DG also loaded cisplatin with coordination bonding, and the
loading efficiency was maximal at a molar ratio of 2:1.
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