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Abstract: Dysregulation of microtubules is commonly associated with several psychiatric and
neurological disorders, including addiction and Alzheimer’s disease. Imaging of microtubules
in vivo using positron emission tomography (PET) could provide valuable information on their role in
the development of disease pathogenesis and aid in improving therapeutic regimens. We developed
[11C]MPC-6827, the first brain-penetrating PET radiotracer to image microtubules in vivo in the mouse
brain. The aim of the present study was to assess the reproducibility of [11C]MPC-6827 PET imaging
in non-human primate brains. Two dynamic 0–120 min PET/CT imaging scans were performed in
each of four healthy male cynomolgus monkeys approximately one week apart. Time activity curves
(TACs) and standard uptake values (SUVs) were determined for whole brains and specific regions
of the brains and compared between the “test” and “retest” data. [11C]MPC-6827 showed excellent
brain uptake with good pharmacokinetics in non-human primate brains, with significant correlation
between the test and retest scan data (r = 0.77, p = 0.023). These initial evaluations demonstrate the
high translational potential of [11C]MPC-6827 to image microtubules in the brain in vivo in monkey
models of neurological and psychiatric diseases.

Keywords: PET imaging; microtubule; blood–brain barrier; reproducibility; non-human primate

1. Introduction

Microtubules are complex scaffolding molecules that work closely with actin to provide structural
integrity to the cell network [1]. Microtubules are believed to play a critical role in cell division
and core messenger activities, and are highly regulated in terms of length, number, allocation,
positioning, and confirmation [2]. When their structural integrity is compromised, dysfunction is
observed in key biophysical functions including cellular signaling and axoplasmic transport, which
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lead to the development of neurological and psychiatric disorders. [3–5]. For example, the structural
changes in neurons induced by alcohol contribute to the long-lasting nature of alcohol use disorder
(AUD) [6–8]. Repeated exposure to alcohol induces structural plasticity [9,10] in brain reward circuits
and changes in the density and morphology of dendritic spines, which have significant consequences
including cognitive deficits [11]. Any abnormalities in these functions can lead to a variety of
brain diseases, including Alzheimer’s disease (AD), multiple sclerosis, amyotrophic lateral sclerosis,
psychiatric disorders, addiction, and cancer [2,12–17]. Importantly, hyperphosphorylation of tau,
a microtubule-associated protein, leads to the development of major neurodegenerative diseases
including AD and other AD-related disorders (ADRDs) [16,18–20]. However, microtubule structure
and functions are sufficiently complex that the sequence of events from microtubule disruption to the
expression of disease largely remains unknown [1,7,21,22].

Quantification of microtubules in vivo using PET (positron emission tomography) can provide
significant information about altered disease mechanisms and can also be used evaluate therapeutic
strategies to monitor the progress of treatment [8,23,24]. We screened multiple microtubule-targeting
agents (MTAs) as potential PET ligands and identified MPC-6827 as our lead candidate [25]. MPC-6827
was a well-characterized MTA with high affinity for the β-tubulin site (IC50 = 1.5 nM) [25]. It has been
proven safe in human subjects, with ideal pharmacokinetics, and has undergone multiple clinical trials
for the treatment of glioblastoma and other advanced cancers [25,26]. Our laboratory recently reported
the design, development, and in vivo evaluations of the first brain-penetrating microtubule-based PET
radiotracer, [11C]MPC-6827 (Figure 1) in rodents [27]. Microtubule-based PET imaging could provide
a novel imaging biomarker platform with which to diagnose disease pathology early on, and we are
currently working on evaluating the microtubule-based PET imaging properties of [11C]MPC-6827 in
murine models of AD [28]. To explore the translational potential of [11C]MPC-6827, non-human primate
(NHP) brain PET imaging was initially performed in two adult male rhesus monkeys [29], in which we
demonstrated high uptake in the whole brain. In the present study, we extended the characterization of
[11C]MPC-6827 to include brain measures of between-subject variability and within-subject “test–retest”
variability in four adult male cynomolgus monkeys.
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Figure 1. Structure of [11C]MPC-6827.

2. Results and Discussion

PET-MR images (Figure 2) demonstrated high brain uptake of the radiotracer. Uptake in the
whole brain and specific regions of the brain including caudate nucleus, putamen, globus pallidus,
subthalamic nucleus, paranigral nucleus, substantia nigra, amygdala, occipital cortex, hippocampus,
and cerebellum were defined by their standardized uptake value (SUV), calculated by dividing the
tracer concentration in each pixel by the injected dose per body mass. These data were used to generate
time activity curves (TACs) [30] (Figure 3) using the PMOD NEURO (Ver 3.5, PMOD Technologies
LLC, Zurich, Switzerland) software analysis tool [31].
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Figure 2. Representative (a). axial, (b). sagittal, and (c). coronal PET-MR coregistered images from
“test” and “retest” scans (n = 8) following an i.v. injection of [11C]MPC-6827 in male cynomolgus
monkeys (n = 4).
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Figure 3. Representative “test” and “retest” whole brain time activity curves (TACs) from dynamic 
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Figure 4. Representative standard uptake values (SUVs) from different regions of brain obtained from 

dynamic 0–2 h PET scans from male monkeys (n = 4) injected with 0.37 ± 0.03 Gbq of [11C]MPC-6827. 

The data are expressed in mean SUVs (±SEM) g/mL units. 
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Figure 3. Representative “test” and “retest” whole brain time activity curves (TACs) from dynamic
0–2 h PET images (n = 8) from four male monkeys injected with 0.37 ± 0.03 Gbq of [11C]MPC-6827.

The test–retest scans did not differ significantly regarding the injected dose (0.37 ± 0.05 GBq),
specific activity (140.5 ± 3.7 GBq/µmol), and radiochemical purity (99.0 ± 0.5%). No significant
differences in body weight (8.2 ± 1.0 kg) or vital signs were found between the test and retest scans.
PET imaging data were presented as the mean SUV ± SD from eight PET/CT scans (four test and
four retest scans). The significant differences among multiple groups were calculated by one-way
analysis of variance and p values ≤ 0.05 were considered statistically significant. From the whole-brain
TACs (Figure 3), the radiotracer was injected over a period of 45–60 sec and the concentration of
[11C]MPC-6827 peaked at ~ 4.0–4.5 min after the intravenous tracer injection in all the scans (n = 8).
Radioactive uptake was slightly higher in paranigral nucleus, putamen, and globus pallidus (SUVmean

= 3.81 ± 0.41 g/mL) compared to caudate nucleus and occipital cortex (SUVmean = 3.01 ± 0.31 g/mL)
(Figure 4). The mean SUVs (g/mL) for whole brain for all the test and retest scans were between
3.34 ± 0.22 and 3.58 ± 0.12, with a variation of < 1%. The reproducibility of [11C]MPC-6827 PET scans
with respect to SUV measurements was calculated using relative difference % (rel diff %) and absolute
variability % (abs var %) between the test and retest scans. Rel diff % was calculated as ((retest SUV
− test SUV)/test SUV) × 100 and abs var % as ((retest SUV − test SUV)/((retest SUV + test SUV)/2) ×
100. With respect to reproducibility evaluation [30], the relative difference of SUVs for whole brain
and the organs of interests between the “test” and “retest” scans varied from −0.3% to −14%, and
the absolute variability between the same parameters/regions from “test” and “retest” was < 0.5%.
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The intra-subject repeatability [30] expressed as the coefficient of variance in test scans showed an
average of 16.78% ± 4.02% and in “retest” scans of 18.03% ± 3.01%. When a two-way ANOVA (Sidak’s
comparison test, GraphPad Prism 7.05) was performed with SUVmean values of whole brain and the
brain regions between the test scans (test-1 and test-2), there was no statistical significance (p > 0.999).
Consistent with the lack of significance between the two tests, the correlation between the “test” and
“retest” was statistically significant, p = 0.023, with correlation coefficient (r) = 0.77, standard error of
mean (SEM) = 0.053 and confidence interval (95%) between −0.26 to −0.012.

Molecules 2020, 25, x 4 of 8 

 

0 2000 4000 6000 8000

2

3

4

5

seconds

S
U

V
 (

g
/m

L
)

"test" data

"retest" data

 

Figure 3. Representative “test” and “retest” whole brain time activity curves (TACs) from dynamic 

0–2 h PET images (n = 8) from four male monkeys injected with 0.37 ± 0.03 Gbq of [11C]MPC-6827. 

w
h
o
le

 b
ra

in
 

ca
u
d
at

e 
n
u
cl

eu
s 

p
u
ta

m
en

 

g
lo

b
u
s 

p
al

li
d
u
s

su
b
th

al
am

ic
 n

u
cl

eu
s 

p
ar

an
ig

ra
l 

n
u
cl

eu
s 

su
b
st

an
ti

a 
n
ig

ra

am
y
g
d
al

a 

h
ip

p
o
ca

m
p
u
s 

o
cc

ip
it

al
 c

o
rt

ex
 

ce
re

b
el

lu
m

 

0

2

4

6

S
U

V
 (

g
/m

L
)

"test" scans

"retest" scans

 

Figure 4. Representative standard uptake values (SUVs) from different regions of brain obtained from 

dynamic 0–2 h PET scans from male monkeys (n = 4) injected with 0.37 ± 0.03 Gbq of [11C]MPC-6827. 

The data are expressed in mean SUVs (±SEM) g/mL units. 

3. Material and Methods 

[11C]MPC-6827 was produced following our previously reported radiochemistry methods 

[27,32]. Briefly base-assisted [11C]MeI methylation of desmethyl MPC-6827 in NaOH/DMF at 80 °C 

for 5 min followed by HPLC and C18 SepPak trapping and elution resulted in [11C]MPC-6827 with 

high-quality specifications, i.e., > 98% radiochemical purity, 43% radiochemical yield, and ~3890–4500 

mCi/µmol specific activity, decay corrected to end of synthesis (EOS). 

PET imaging of [11C]MPC-6827 was performed in adult male cynomolgus monkeys (n = 4, ~ 8.2 

± 1.0 kg) and the same cohort was rescanned with PET using [11C]MPC-6827 after ~7 days. All animal 

Figure 4. Representative standard uptake values (SUVs) from different regions of brain obtained from
dynamic 0–2 h PET scans from male monkeys (n = 4) injected with 0.37 ± 0.03 Gbq of [11C]MPC-6827.
The data are expressed in mean SUVs (±SEM) g/mL units.

3. Material and Methods

[11C]MPC-6827 was produced following our previously reported radiochemistry methods [27,32].
Briefly base-assisted [11C]MeI methylation of desmethyl MPC-6827 in NaOH/DMF at 80 ◦C for 5 min
followed by HPLC and C18 SepPak trapping and elution resulted in [11C]MPC-6827 with high-quality
specifications, i.e., > 98% radiochemical purity, 43% radiochemical yield, and ~3890–4500 mCi/µmol
specific activity, decay corrected to end of synthesis (EOS).

PET imaging of [11C]MPC-6827 was performed in adult male cynomolgus monkeys (n = 4,
~ 8.2 ± 1.0 kg) and the same cohort was rescanned with PET using [11C]MPC-6827 after ~7 days.
All animal housing and handling and all experimental procedures were performed in accordance with
the National Institute of Health Guide for the Care and Use of Laboratory Animals (2011) and were
approved by the Animal Care and Use Committee (ACUC) of Wake Forest University. Environmental
enrichment was provided as outlined in the ACUC of Wake Forest University Non-Human Primate
Environmental Enrichment Plan. Monkeys were fasted overnight before the PET study. The monkeys
were initially anesthetized using ketamine (10 mg/kg, i.m.) and transported to the PET scanner
suite. Isoflurane (3–5%) was administered via nose cone until each monkey was intubated with an
endotracheal tube and isoflurane anesthesia was maintained at 1.5% isoflurane/oxygen throughout the
PET scanning procedure. NHPs were placed in the scanner and a catheter was inserted into an external
saphenous vein for tracer injection and fluid replacement. Body temperature was maintained at 40 ◦C
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with a water-circulating heating pad, and vital signs including heart rate, blood pressure, respiration
rate, and temperature were monitored throughout the scanning procedure.

First, an initial low-dose CT-based attenuation correction scan was acquired. Next, all monkeys
received an intravenous dose of 0.37± 0.03 GBq [11C]MPC-6827 and 0–120 min dynamic brain PET scans
were acquired using a 64 slice GE PET/CT discovery scanner [33]. For each frame, image reconstruction
of the acquired emission data was done with full quantitative corrections including attenuation and
reconstructed into 2 × 30 sec, 3 × 1 min, 5 × 2 min, 4 × 4 min, and 9 × 10 min frames [34,35]. Because
certain brain regions are more affected than others during progression of addiction and AD [24,31],
we selected those commonly studied/affected areas of brain for our image analyses [36]. To identify
these regions, anatomical images were acquired for all the monkeys using magnetic resonance imaging
(MRI). Anesthesia was maintained during the scanning procedure with ketamine (15 mg/kg i.m.) and
3D MRI brain images were acquired with 3T GE signa NR scanner using typical NHP brain parameters
(TE 5, TR 45, flip angle 45, RBW 15.6 kHz, FOV 18 cm, 256 × 192 matrix, slice thickness 2 mm) [37,38].
T1-weighted whole brain images were used to anatomically define spherical regions of interest (ROIs).
ROIs had ~2.5 mm radii for all regions except the cerebellum, which was a 4.0 mm radius. PET images
were coregistered with MRI and fused PET/MR data were analyzed using PMOD Biomedical Image
Quantification Software (version 3.5; PMOD Technologies) [24,31,39].

4. Conclusions

The observed high correlation of [11C]MPC-6827 PET/CT images between the “test” and “retest”
scans in NHP brains further supports the high translational potential of the radiotracer. Importantly,
high SUV values in selective brain areas including putamen, globus pallidus, cortex, and hippocampus
warrants additional studies to investigate microtubule regulation in models of diseases such as AUD
and AD. Further studies will include [11C]MPC-6827 PET imaging in NHP models of substance abuse
disorder, including alcohol and cocaine self-administration [39,40], and NHP model of AD [38]. We will
also characterize the metabolite analyses, arterial input functions, and specificity studies, and correlate
the data with PET images using sophisticated pharmacokinetic modeling [31].
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