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Abstract: The last decade has witnessed the impressive progress of perovskite solar cells (PSCs),
with power conversion efficiency exceeding 25%. Nevertheless, the unsatisfactory device stability
and current–voltage hysteresis normally observed with most PSCs under operational conditions are
bottlenecks that hamper their further commercialization. Understanding the electrical characteristics
of the device during the aging process is important for the design and development of effective
strategies for the fabrication of stable PSCs. Herein, electrochemical impedance spectroscopical (IS)
analyses are used to study the time-dependent electrical characteristics of PSC. We demonstrate that
both the dark and light ideality factors are sensitive to aging time, indicating the dominant existence of
trap-assisted recombination in the investigated device. By analyzing the capacitance versus frequency
responses, we show that the low-frequency capacitance increases with increasing aging time due to
the accumulation of charges or ions at the interfaces. These results are correlated with the observed
hysteresis during the current–voltage measurement and provide an in-depth understanding of the
degradation mechanism of PSCs with aging time.

Keywords: impedance spectroscopy; perovskite solar cells; recombination

1. Introduction

Perovskite solar cells (PSCs) have become the front runner in emerging thin-film solar cells, with
power conversion efficiency (PCE) exceeding 25% owing to their low-cost solution processing and
exciting optoelectronic features such as their high absorption coefficient, tunable stability, and superior
carrier transportation properties [1–8]. Nevertheless, the key issue that hampers the commercialization
of PSCs is device instability under light, moisture, and high-temperature exposure [9,10]. There are
two types of instability for PSCs. One is the intrinsic chemical instability of the perovskite absorber
layer, and the other is associated to the electronic properties of the device [10]. The latter includes ion
migration and inefficient charge transport, which lead to the hysteresis phenomenon and light soaking
under operational conditions [11].
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Apart from the device architectures and perovskite formulations, the performance of PSCs highly
depends on the morphology and quality of each compositional layer [12–14]. For instance, the
large crystallite size of the perovskite absorber reduces the grain boundaries and trap states, leading
to a decrease in non-radiative recombination and improved PCE [15–17]. Furthermore, in-depth
investigations of the bulk and interface parameters using capacitance–voltage and frequency-dependent
capacitance studies suggest that ion migration changes the inherent electric field and decreases the
charge accumulation at the interfaces [18,19]. For example, Zhao et. al. demonstrated that upon light
illumination, the bulk defects within the perovskite layer are positively charged and are neutralized
by the photogenerated electrons, and that this process affects the open-circuit voltage (VOC) and fill
factor (FF) of the device [18]. Moreover, the short-circuit current density (JSC) decreases in the light
soaking test as the bulk electrical polarization is decreased within the perovskite film. On the other
hand, Deng et al. showed that the performance of PSCs decreases due to the negative ions drifting
to the spiro-OMeTAD/perovskite interface in a prolonged light soaking test [20]. In another study,
the loss in performance was attributed to light-activated trap states [21]. Tress et al. reported that
accumulation of cation vacancies at the electrode induced reversible performance losses [22]. To date,
many mechanisms have been proposed to understand the phenomenon of light soaking by considering
different device architectures, preparation methods, and properties of hole and electron extracting
layers [23–26]. However, a clear explanation is still lacking and thus further studies on this topic are
required to elucidate more in-depth conclusions.

In this work, we employed electrochemical impedance spectroscopical (IS) analyses for studying
the PSC aging process in ambient conditions. The current–voltage (J–V) characteristics were measured
to monitor the evolution of the photovoltaic parameters of the device over time. We found that the
ideality factors calculated from either the dark and light current–voltage curves increased over aging
time. The capacitance–frequency analysis depicted that the low-frequency capacitance increased with
increasing aging time. The increase in capacitance at low frequencies resulted from the accumulation
of charges or ions at the interfaces, which was well correlated with the observed hysteresis in the
current–voltage characteristics of PSCs.

2. Results

A prototypical PSC with an architecture consisting of fluorine-doped tin oxide (FTO)/compact
TiO2/mesoporous TiO2/MAPbI3/spiroOMeTAD/Au was prepared to study time-dependent device
performance and stability (for details on the device fabrication procedure see the Experimental Section).
The thicknesses of the perovskite absorber and hole transporting layers were around 250 nm and
150 nm, respectively (Figure S1). The current–voltage (J–V) characteristics of the device were measured
under air mass 1.5 global (AM 1.5 G) irradiance using the Bio-Logic galvanostat in the dark and with
different light intensities (reverse scanning at room temperature). The electrical properties of the freshly
prepared device (further denoted as a reference) were measured as a function of time after 24 h and 94 h
with the help of impedance spectroscopy techniques. Before J–V measurement, the device was stored
in the ambient relative humidity (RH) of 20% in the dark. In our previous work, we demonstrated
that the performance of PSCs could be also hampered by the applied electrical potential [27]. Thus,
a minimum duration bias followed by a long recovery time was applied to avoid the bias effect.

The J–V curves of the device measured over time and the extracted photovoltaic parameters are
shown in Figure 1a and Table 1, respectively. The reference device exhibited a JSC of 20.91 mA cm−2,
VOC of 1.12 V, FF of 74%, and PCE of 17.3%. In turn, the 96-h aged device showed reduced values
of JSC, VOC, FF, and PCE, which were 19.7 mA cm−2, 1.11 V, 68%, and 14.97%, respectively. It was
observed that the reduction in PCE was mainly related to the lowering of FF and JSC.

To obtain more insight into the reduction of these parameters, a dark J–V measurement of the PSC
at room temperature (300 K) was performed and is shown in Figure 1b. A lower magnitude of the net
current obtained for the reference device as compared to the aged devices signified that upon aging,
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a higher charge recombination rate took place in the device. The ideality factors (n) of the PSCs were
calculated from the semi-log J–V plots in the dark using Equation (1):

n = 1/
(

q
kT

∂ J
∂ ln V

)
(1)

where k, T, q, J, and n are Boltzmann constant, temperature, charge of the electron, current density, and
ideality factor, respectively (Figure 1b) [22,28]. The ideality factor values for the reference, 24-h, and
94-h aged PSCs were calculated to be 2.69, 2.73, and 2.84, respectively. The increase in the value of the
ideality factor over time suggested the enhancement of trap states upon aging [28].

Illumination-dependent photovoltaic parameters were measured to further study the charge
extraction and recombination in the investigated device. The normalized J–V characterizations of the
reference and the devices after 24-h and 96-h aging times under various illumination intensities are
shown in Figure S2. The variation in JSC with light illumination is shown in Figure 1c. By using the
power-law dependency of JSC on light intensity, a slope value in the range of α = 0.96 to 0.91 was
obtained. A decrease in the values of α indicates that the charge extraction is reduced with aging
time [29]. The extracted values of the VOC in PSCs as a function of light intensity measurements are
shown in Figure 1d. From the obtained plot, the slope value was calculated by using Equation (2):

n =
q

kT
∂ VOC

∂ ln I
(2)

where k, T, q, I, and n are the Boltzmann constant, temperature, charge of the electron, intensity of
incident light, and ideality factor, respectively [30]. The ideality factor value was found to be 1.61, 1.72,
and 1.92 for the reference and the devices aged for 24 and 96 h, respectively. In general, the dominance
of trap-assisted [31] and bimolecular recombination [32] can be categorized by analyzing the value of
ideality factor (n). The unity value of n proposes the dominance of recombination at the surface of
the perovskite film and 1 < n < 2 suggests the presence of trap-assisted recombination in the PSC [22].
The higher ideality factor value of the devices aged for 24 and 96 h indicates the dominant existence of
trap−assisted recombination.
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Figure 1. The current–voltage (J–V) measurements of the perovskite solar cell (PSC) as a function of
time under (a) AM 1.5 G light intensity and reverse scanning. (b) Dark J–V curves of the corresponding
devices at room temperature. Light intensity dependence of (c) short-circuit current density (JSC) and
(d) VOC under reverse scanning in the investigated devices.

Table 1. Photovoltaic parameters of the investigated PSC aged over time (reverse scanning). FF: fill
factor; PCE: power conversion efficiency.

Index VOC (V) JSC
(mAcm−2)

FF (%) PCE (%) Ideality Factor
(n) (Dark)

Ideality Factor
(n) (Light)

0 min 1.128 20.91 74 17.32 2.69 1.64
24 h 1.110 20.57 70 15.94 2.73 1.72
96 h 1.111 19.78 68 14.97 2.84 1.92

To shed more light on the origin of higher ideality factor observed for aged PSCs, impedance
spectroscopy (IS) as a function of the applied bias was recorded under AM 1.5 G light illumination.
The IS spectra was measured at frequencies ranging from 0.1 Hz to 1 MHz with 20 mV perturbation
at room temperature (300 K). Figure S3 shows the bias-dependent IS spectra of the cells measured
under AM 1.5 G light illumination. The commonly used electrical equivalent circuit for IS spectra
fitting of the PSCs is shown in Figure 2a. Figure 2a shows the IS spectra measured at built-in potential
(Vbi) under AM 1.5 G light illumination. The description and physical significance of the used
electrical equivalent circuit has been discussed in detail in several works, including our own [27,33,34].
Briefly, the RS defines the series resistance, due to the electrical ohmic contacts. The high-frequency
capacitance (CHF) and resistance (RHF) are due to the geometrical capacitance and recombination
resistance. The low-frequency capacitance CLF is attributed to the ionic response of accumulation or
ion motion. The origin of low-frequency resistance RLF is still a controversial topic in the literature and
can be attributed to the surface resistance, accumulation resistance, and recombination resistance [35].
By using the electrical equivalent circuit, the value of RS was determined to be 13, 15, and 18 Ω cm2

for the reference and devices with 24- and 94-h aging times, respectively. The estimated values of
RS from IS measurements were 13, 16, and 19 Ω cm2 for the reference and devices with 24- and 94-h
aging times, respectively. Those values were comparable to the RS values obtained from a single diode
model. The higher series resistance suggests that the barrier for the transport of photogenerated charge
carriers is increased in aged devices. Therefore, photogenerated charge extraction is reduced with time,
leading to decreased FF [27]. As mentioned in the literature, the migrated ions from the perovskite
layer can react with the selective contacts and restrict charge transport [29,36]. The fitted values of RHF

as a function of applied bias for all the PSCs are shown in Figure 2b. In general, a higher value of RHF

in PSCs defines the lower recombination rate. It was found that the reference device had the highest
value of RHF in the probed bias range, indicating a lower recombination. This result further confirmed
the findings of the dark J–V and VOC vs. illumination measurements. In the literature, it was shown
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that the recombination in PSCs could be also accelerated by the ions migration within the absorber
layer [27]. To further confirm this fact, J−V hysteresis and capacitance−frequency (C–F) measurements
were performed.
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Figure 2. (a) A commonly used electrical equivalent circuit for impedance spectroscopy (IS) fitting of
the PSCs and the IS spectra measured at built-in potential (Vbi) under AM 1.5 G light illumination.
(b) High-frequency resistance (RHF) vs. voltage under AM 1.5 G light illumination over time.

Figure 3a shows the normalized J–V hysteresis of the PSCs measured under AM 1.5 G light
illumination as a function of aging time. As reported elsewhere [37], the hysteresis loop between
the forward and reverse scanning was related to the ion migration or accumulation phenomena.
The hysteresis effect of the PSCs increased with time and maximized after 96 h, suggesting that the ion
migration and charge accumulation in the device enhanced over time. The hysteresis behavior observed
in the device was also correlated with the magnitude of low-frequency capacitance [37]. The C–F
spectra of the device at zero bias in dark and under 1.5 G light illumination are shown in Figure 3b,c,
respectively. In the obtained C–F plots, three distinct regions are clearly visible. The capacitance at low
frequency was related to the electrode polarization, ions, and charge accumulation [35,38]. As shown
in Figure 3b, the low−frequency capacitance was enhanced with the aging time, suggesting an increase
in ion accumulation [35]. Jacobs et al. reported that the low-frequency capacitance under illumination
was directly related to the recombination rate [39]. The higher value of low−frequency capacitance in
aged devices is attributed to the higher accumulation of charges or ions at the interfaces and could
be responsible for the observed high ideality factor in these devices. In the high-frequency range
(<104 Hz), the series resistance (RS) of the device reduced these capacitive responses. The higher
value capacitance at 1 MHz in the aged devices clearly suggested that the series resistance increased
with the aging time. This further confirmed that the electrical contact between the electrodes and cell
deteriorate with aging. In turn, the capacitance values in the frequency range of 102

−105 Hz defined as
depletion layer capacitance plateau remained unaffected in all devices.

To understand the origin of the degraded VOC of the aging device, the Mott–Schottky study was
performed at a constant 1 kHz frequency, and built-in potential (Vbi) could be determined by fitting
the linear part of the C−2-V curves using Equation (3):

1
C−2 =

2
A2Nqεε0

(Vbi −V) (3)

where C, V, A, N, q, ε, and ε0 are the measured capacitance, applied bias, active area, the concentration of
donor-dopant, elementary charge, relative permittivity, and permittivity of free space, respectively [40].
The Mott–Schottky (M–S) plots of the reference and aged devices are shown in Figure 3d. As seen,
the linear fit is done to obtain the built-in potential (Vbi) of the device [38,41]. The calculated Vbi

values from the intercepts were 1.02, 0.97, and 0.93 V for the reference and 24-h and 94-h aged devices,
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respectively. The Vbi is necessary for efficient charge extraction and avoids recombination [42]. A high
value of Vbi allows the solar cell to reach a high VOC. The value of Vbi decreased for the aged devices,
suggesting that the recombination increased with time, resulting in a drop in the VOC of the cell.
Moreover, the slope of the Mott–Schottky (M–S) plot provides the value of doping density in the
PSCs [43]. In the present case, almost same values of the slope were observed, suggesting that the
aging time had no significant impact on the doping density.
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1 kHz.

3. Materials and Methods

3.1. Solar Cell Device Fabrication

Fluorine-doped tin oxide (FTO)-coated glass substrates were cleaned by ultrasonic treatment
in 2% Hellmanex water solution for 30 min and rinsed with deionized water and ethanol, and
were then UV ozone-treated for 15 min before fabrication. The compact TiO2 layer was deposited
by spray pyrolysis using 9 mL of ethanol solution containing 0.6 mL of titanium diiso-propoxide
bis(acetylacetonate) solution (75% in 2-propanol, Sigma-Aldrich) and 0.4 mL acetylacetone at 450 ◦C
in air [44]. On top of this layer, a 150-nm-thick mesoporous titanium dioxide layer was prepared by
spin-coating 30-nm nanoparticles (Dyesol 30NRD, Dyesol) diluted in ethanol (1:6 wt/wt) at 5000 rpm
for 10 s. The films were then gradually heated to 500 ◦C and sintered at that temperature for 1.5 h
under oxygen atmosphere. The perovskite precursor solution (1.4 M in DMSO) was prepared from
PbI2 (0.64 g) by mixing with methylammonium iodide (MAI, 0.22 g) in a molar ratio of 1:1 by vigorous
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stirring at 60 ◦C. The perovskite solutions were spin-coated in a two-step program at 1000 and 6000 rpm
for 10 and 20 s, respectively. During the second step, 100 µL of chlorobenzene was poured on the
spinning substrate 10 s prior to the end of the program [45]. The substrates were then annealed at
100 ◦C for 30 min in a dry box. The hole-transporting material (HTM) solution was prepared by
dissolving 74 mg spiro-MeOTAD in 1 mL of chlorobenzene and additionally mixing it with 17.5 µL of
lithium bis(trifluoromethylsulphonyl)imide (stock solution Li-TFSI 520 mg·mL−1 in acetonitrile),
28.8 µL tert-butylpyridine, and 29 µL of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)
bis(trifluoromethylsulphonyl) imide (stock solution FK 209, 300 mg·mL−1 in acetonitrile). Subsequently,
the HTM was deposited on top of the perovskite layer by spin coating at 4000 rpm for 20 s. Finally,
80 nm of gold top electrode was thermally evaporated under high vacuum. The active area of the
devices was approximately 0.16 cm2.

3.2. Device Characterization

The J–V characteristics of the devices were measured under 100 mW/cm2 conditions (AM 1.5 G)
using a 450 W Xenon lamp (Oriel) as a light source, equipped with a Schott K113 Tempax sunlight
filter (Praezisions Glas & Optik GmbH, Iserlohn, Germany) to match the emission spectra to the AM
1.5 G standard in the region of 350–750 nm. The current–voltage characteristics of the devices were
obtained by applying external potential bias to the cell while recording the generated photo-current
using a Keithley (Model 2400, Cleveland, OH, USA) digital source meter. The J–V curves of all devices
were measured by masking the active area with a metal mask of area 0.16 cm2. AC measurements
were performed using a potentiostat Biologic SP300 equipped with a frequency response analyzer.
We measured the IS measurements in the frequency range from 100 mHz to 1 MHz under AM 1.5 G
light illumination conditions in the bias range from Vbi (0.85 V) to VOC (1.13 V) under fresh conditions
and then in dark conditions for 24 h, with further measurement and subsequent maintenance for 72 h.

4. Conclusions

In conclusion, we showed that the photovoltaic and electrical characteristics of the PSC changed
during aging time. The observed reduction in PCE of the investigated device after 96-h exposure
to ambient conditions was mainly related to the lowering of FF and JSC. The time-dependent
measurements of the dark and light ideality factors revealed the dominant existence of trap-assisted
recombination. Moreover, the analysis of the capacitance–frequency responses demonstrated that
the low-frequency capacitance increased with increasing the aging time, which was attributed to the
accumulation of charges or ions at the interfaces. The change in the capacitance clearly correlated
with the observed hysteresis during the J–V measurements. The present study provides an in-depth
analysis on the change in the electrical characteristics of PSCs with aging time, which will be crucial
for designing the stable solar cells.

Supplementary Materials: The following are available online. Figure S1: The normalized J–V characterizations
of the investigated devices under different levels of illumination. Figure S2: IS spectra of the investigated devices
measured under AM 1.5 G light illumination as a function of bias from built-in potential (Vbi) to VOC.
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