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Abstract: While a plethora of different protein–ligand docking protocols have been developed over
the past twenty years, their performances greatly depend on the provided input protein–ligand pair.
In this study, we developed a machine-learning model that uses a combination of convolutional
and fully connected neural networks for the task of predicting the performance of several popular
docking protocols given a protein structure and a small compound. We also rigorously evaluated
the performance of our model using a widely available database of protein–ligand complexes
and different types of data splits. We further open-source all code related to this study so that
potential users can make informed selections on which protocol is best suited for their particular
protein–ligand pair.

Keywords: deep learning; structural biology; chemoinformatics; molecular docking

1. Introduction

Molecular docking is nowadays a common approach in a computational drug discovery
pipeline [1,2]: knowing a good approximation to the crystal pose of a ligand can provide medicinal
chemists with new ideas for lead optimization that could potentially accelerate structure-based drug
design. A docking protocol can be described as the combination of a search algorithm that samples the
conformational space of a ligand within a binding site and a scoring function, which quantitatively
evaluates the accuracy of such poses.

While in many cases the conformational search operated by docking protocols is effective in
producing the correct pose for a ligand (i.e., the crystallographic pose is generally reproduced within
reasonable accuracy), scoring functions often fail in ranking them (i.e., the crystallographic pose often
is usually not the one with the best score) [3]. Given that the choice of the scoring function considerably
affects results, and, to rationalize protocol choice, the comparison of the performance of different
protocols is commonly performed in the early stages of docking studies. In particular, the DockBench
platform [4] was recently developed with the aim to facilitate protocol selection. The aforementioned
platform presents a benchmark of different docking protocols in a self-docking routine, whose goal is
to reproduce the pose of a ligand with a known co-crystal: the ability of each protocol in producing
the crystallographic pose being measured in terms of their Root Mean Square Deviation (RMSD).
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In particular, the average and the lowest RMSD (RMSDave and RMSDmin) of the generated poses
are reported, as well as the number of poses with a lower RMSD than the X-ray resolution of the
corresponding crystal (nRMSD) [5]. The success of introducing a benchmarking procedure in molecular
docking campaigns has been reported in several blind challenges [6,7]. This approach has been shown
to be particularly useful when multiple protein–ligand complexes are available for the same target,
making protein conformation choice a further variable to be considered.

An ideal docking scoring function would produce the lowest RMSDave and RMSDmin metrics,
leading to a better reproduction of the crystallographic pose. Motivated by this and the previously
mentioned challenges, in the work presented here, we try to address the following two questions:

1. Given a particular docking protocol, would it be possible to know a priori which protein–ligand
pairs will result in the best docking pose?

2. Is there a preferable way of choosing the best docking protocol for an arbitrary ligand rather than
selecting the one that reproduces the best self-docking pose for a particular proteins structure?

Applications of Deep Learning (DL) in drug discovery have become ubiquitous in the
last few years, as these methods have shown promise in relevant problems such as property
prediction [8–13], compound retrosynthesis [14], de-novo drug design [15,16], and reaction
prediction [17], among many others.

In the context of molecular docking, DL approaches have been investigated to replace classical
scoring functions, showing moderate success [18,19], but still far behind the accuracy provided by
standard docking procedures. Partially due to this fact, in this study, we explored the potential
of DL approaches to both select the best possible docking protocol given a protein–ligand pair
and to provide insight into which protein–ligand pairs will result in a better pose given a docking
protocol. We performed an exhaustive evaluation of the proposed methodology using the diverse
and well-known PDBbind protein–ligand database [20] and different data splits to conclude that the
approach is able to help users make informed docking modeling choices. We furthermore open-source
all our production and evaluation code so that the community can either use our models or reproduce
the results presented in this work easily.

2. Results and Discussion

We prepared the protein–ligand refined set of the PDBbind database [21] (v.2017) according to
the workflow previously described in the DockBench suite (see Sections 3.1 and 3.2). With these
data, we used the aforementioned software to generate docking results for 14 different well-known
commercial and open-source protocols (see Section 3.3). A combination of 3D-convolutional and
fully connected neural networks (see Section 3.5) was used as our main model alongside a voxelized
representation of the protein pocket and a mixture of extended connectivity fingerprints [22] and
two-dimensional descriptors for the ligand (see Section 3.4). The proposed model was trained to predict
three quantities of interest (RMSDave, RMSDmin, and nRMSD) with the goal of determining which
protein–ligand pairs work better under specific docking protocols (i.e., our first research question).
We furthermore used four different evaluation data splits (see Section 3.6) to understand under
which circumstances the models here presented perform optimally. For each docking protocol (see
Section 3.3), we present results on the evaluation of the predicted RMSDave, RMSDmin, and nRMSD
against the molecular docking results, using the root mean squared error (RMSE) and Pearson’s
correlation coefficient R metrics (Table 1 and Tables S1 and S2).
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Table 1. Predictive performance for RMSDave (±1 std.) per docking protocol, for each of the four
splits considered.

Protocol RMSE Pearson’s R RMSE Pearson’s R RMSE Pearson’s R RMSE Pearson’s R
Random Ligand Scaffold Protein Classes Protein Classes Balanced

autodock-ga 1.60 (±0.08) 0.74 (±0.03) 1.34 (±0.26) 0.38 (±0.21) 1.76 (±0.09) 0.60 (±0.05) 1.48 (±0.04) 0.73 (±0.02)
autodock-lga 2.01 (±0.08) 0.65 (±0.03) 1.82 (±0.41) 0.30 (±0.20) 2.20 (±0.13) 0.57 (±0.05) 1.89 (±0.03) 0.70 (±0.02)
autodock-ls 2.04 (±0.09) 0.50 (±0.04) 1.79 (±0.18) 0.50 (±0.14) 2.02 (±0.05) 0.41 (±0.04) 1.93 (±0.03) 0.46 (±0.02)
glide-sp 2.79 (±0.18) 0.52 (±0.05) 3.34 (±0.55) 0.14 (±0.14) 2.84 (±0.38) 0.44(±0.07) 2.34 (±0.12) 0.64 (±0.03)
gold-asp 2.43 (±0.10) 0.68 (±0.02) 2.50 (±0.58) 0.50 (±0.21) 2.52 (±0.21) 0.64 (±0.14) 2.08 (±0.08) 0.78 (±0.01)
gold-chemscore 2.59 (±0.14) 0.62 (±0.03) 2.74 (±0.39) 0.37(±0.19) 2.62 (±0.12) 0.61 (±0.03) 2.25 (±0.13) 0.73 (±0.02)
gold-goldscore 2.47 (±0.10) 0.52 (±0.03) 2.44 (±0.72) 0.53 (±0.29) 2.49 (±0.19) 0.51 (±0.06) 2.12 (±0.14) 0.66 (±0.03)
gold-plp 2.49 (±0.15) 0.66 (±0.03) 2.53 (±0.52) 0.32 (±0.22) 2.57 (±0.27) 0.62 (±0.06) 2.14 (±0.05) 0.76 (±0.01)
plants-chemplp 2.55 (±0.17) 0.44 (±0.02) 2.68 (±0.99) −0.02 (±0.06) 2.55 (±0.24) 0.56 (±0.23) 2.23 (±0.13) 0.58 (±0.02)
plants-plp95 3.04 (±0.09) 0.42 (±0.02) 3.16 (±0.89) −0.12 (±0.07) 3.08 (±0.23) 0.40 (±0.03) 2.58 (±0.22) 0.57 (±0.04)
plants-plp 2.75 (±0.17) 0.43 (±0.02) 2.76 (±0.58) 0.09 (±0.37) 2.79 (±0.27) 0.41 (±0.28) 2.44 (±0.10) 0.54 (±0.02)
rdock-solv 3.95 (±0.23) 0.35 (±0.26) 3.58 (±0.34) 0.09 (±0.08) 3.73 (±0.48) 0.42 (±0.09) 3.33 (±0.22) 0.54 (±0.18)
rdock-std 3.92 (±0.05) 0.35 (±0.25) 3.62 (±0.43) 0.08 (±0.46) 3.71 (±0.41) 0.42 (±0.09) 3.23 (±0.19) 0.56 (±0.03)
vina-std 2.23 (±0.03) 0.40 (±0.03) 2.30 (±0.15) 0.19 (±0.38) 2.35 (±0.16) 0.33 (±0.06) 1.97 (±0.12) 0.69 (±0.05)

Average 2.63 (±0.63) 0.52 (±0.11) 2.62 (±0.71) 0.24 (±0.16) 2.66 (±0.57) 0.50 (±0.12) 2.29 (±0.48) 0.64 (±0.10)

We first focus on the comparison between the random and ligand scaffold splits, arguably the most
commonly used evaluation procedures in other chemoinformatics ML-based studies. Results for the
random split show moderately good results, with some docking protocols showing average correlations
over 0.6 (autodock-ga, autodock-lga, gold-asp, gold-chemscore, and gold-plp), suggesting that for
those it is easier to predict which ligands will result in a better docking pose. On the other hand,
results are significantly worse for the ligand-scaffold-based split for most protocols, which suggests
that it is significantly harder for the model to distinguish which compounds outside the training set
chemical manifold will result in a better docking result. This conclusion is in line with other works,
where random-split-based results were significantly better than those provided by more sophisticated
alternatives, such as the ligand-scaffold-based one [13,23,24].

Given that docking is inherently a structure-based problem, we also decided to explore model
performance under different protein-dependent splits. The first protein-based split separates samples
into different non-overlapping PFAM clusters (here named protein classes), showing a similar
performance to the random split, albeit slightly inferior, suggesting that, while protein information
plays a role, wider sampling of ligand chemistry space during training may have a more relevant
impact. In the last type of split we evaluated, we sampled for training a percentage of complexes
belonging to each protein family (protein classes balanced): our reasoning was that having a more
homogeneous sampling of protein space would show a significant performance improvement.

Further evaluation was considered to tackle our second research question, the capability of
the proposed model to choose the optimal docking protocol given a particular protein–ligand pair.
Results can be consulted in Table 2 and Tables S3 and S4 as well as in Figure 1, where we draw similar
conclusions as in the protocol-centric evaluation, with the proposed model performing worse in the
ligand scaffold split scenario than in the others. Furthermore, in Figure 2, we consider the distribution
of the experimental RMSDmin, RMSDave, and nRMSD values had we followed the recommendations
of the proposed model, with the intent of investigating whether in fact it produces protocol selections
that may improve docking errors. For both RMSDmin and RMSDave values, the protocol with the
minimum predicted value was selected, while for nRMSD the maximum was chosen—and then
their corresponding experimental values were analyzed. With the exception of the ligand scaffold
scenario, the decisions undertaken by the proposed model produce the lowest mean RMSDmin and
RMSDave, and the highest nRMSD values compared to the rest of the protocols. Additional significance
analyses were performed with a unilateral two-sample Mann–Whitney test. Using a significance
level of α = 0.01, we can conclude that the procedure here proposed results in significantly lower
RMSDave values than the rest of the protocols in all the evaluation scenarios, with the notable exception
of gold-goldscore, where no statistical conclusion could be drawn in any direction either in the
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random, ligand scaffold, and protein clases splits. Interestingly, in the balanced protein split scenario,
our approach manages to significantly outperform the aforementioned protocol.

Table 2. Ligand-centric evaluation (RMSDave,±1 std.) for the four different proposed split types in
this study.

Split Type Pearson’s R RMSE

random 0.54 (±0.01) 2.47 (±0.05)
ligand scaffold 0.47 (±0.07) 2.58 (±0.64)
protein classes 0.56 (±0.04) 2.33 (±0.21)

protein classes balanced 0.65 (±0.01) 1.98 (±0.07)

Figure 1. Ligand-centric RMSDave evaluation merging all protocols and for all different types of
proposed splits.

Overall results suggest that the proposed model provides better suggestions if both ligand
chemistry and protein families are not significantly far from the training set manifold. We also
investigated disaggregated performance for the 30 most populated PFAM families in our dataset
(Figure 3 and Figure S1), to find similar conclusions to the previous evaluations. The results show
that the model performs similarly well for the most populated families, and particularly for those
splits that more uniformly sample protein space (i.e., the random and protein classes balanced),
again highlighting the importance of structure-based models.
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Figure 2. Distribution of RMSDmin, RMSDave, and nRMSD values in a self-docking scenario using the
PDBbind v.2017 database of cocrystals, for all the protocols described in Table 3, and the approach
proposed in this work under different evaluation scenarios.
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Figure 3. Average Pearson’s R correlation coefficient for the RMSDave metric for all types of splits
disaggregated into the 30 most populated PFAM families in the PDBbind refined dataset.

3. Materials and Methods

In this section, we first describe the preprocessing procedure for the complexes considered in this
study as well as the docking simulation setup. We then describe the two different types of features
used and the proposed neural-network architecture. Finally, we discuss technical training details as
well as the evaluation procedure undertaken.
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3.1. Datasets

The complexes considered for this study were retrieved from the 2017 version of the PDBbind
database [21] In particular, we focused on its refined set, that we recently used for a large
docking benchmarking campaign [25]. It consists of 4463 protein–ligand complexes, although 294
protein–peptide complexes were excluded as they were not considered in the original DockBench
study, resulting in a final dataset of 4169 complexes. Docking settings were selected so as to match as
close as possible the default parameters provided by the developers of each protocol for the handling
of small organic molecules.

3.2. Complex Preparation

The proteins in the complexes were prepared according to a protocol previously reported [25].
Structures were processed using an internal workflow written in Scientific Vector Language (SVL),
based on the protein preparation tool included in the MOE molecular suite [26]. First, crystal structural
issues such as missing atoms and partially solved residues were fixed, hydrogen atoms were added and
protonation states for all titrable residues were computed. Finally, solvent molecules and impurities
(e.g., co-solvents) were removed. An additional preparation step for the ligands was taken, in which
the most favorable ionic state was calculated and partial charges of atoms were assigned. Towards this
end, we take advantage of two tools provided by the OpenEye toolkit: fixpKa and molcharge [27].
Finally, ligand geometries were minimized before docking using Open Babel’s [28] routing and the
MMFF94 force field [29].

3.3. Data Generation

The docking simulation and consequent data generation were performed via the DockBench
software (version 1.06), which automates docking simulations and evaluates protocol performances in
reproducing ligand conformations in the crystal structure. We included 14 docking protocols from six
different software alternatives: AutoDock 4.2.5.1 [30], Vina 1.1.2 [31], PLANTS 1.2 [32], rDOCK [33],
Glide 6.5 [34], and Gold 5.4.1 [35]. For each of the included protocols, we defined the binding site as a
sphere of a 15Å radius centered at the center of mass of the co-crystalized ligand, and we generated 20
poses with an RMSD separation of at least 1Å. In the case of both Autodock and Vina, since they do

not support spheric site definition, the cube side is scaled to

√
4π

3
r to maintain comparable volumes

with the protocols adopting parallelepiped-shaped cavity definitions, where r is the sphere radius.
In addition, in the case of Vina, to guarantee that at least 20 poses were returned, we modified the
“maximum energy difference” argument. Description of the protocols, as well as their search algorithms
and scoring functions can be found in Table 3.

We studied three different and complementary evaluation values for prediction as described in
the DockBench suite: the minimum RMSD (RMSDmin), the average RMSD (RMSDave) and the number
of poses with an RMSD lower than the resolution of their corresponding crystal structures (nRMSD).
Box plots detailing the distribution of these values are available in Figure 2, where we can clearly
highlight that some protocols (e.g., gold-asp, gold-goldscore, gold-plp, or glide-sp) display consistent
accuracy in many benchmark scenarios, while others (e.g., rdock-solv and autodock-lga) display a
higher error variability depending on the input.
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Table 3. Docking protocols, search algorithms, and scoring functions considered in this study.

Score Search Algorithm Scoring Function Protocol Abbrv.

Autodock 4.2 Local search Autodock SF autodock-ls
Lamarckian GA autodock-lga
GA autodock-ga

Glide 6.5 Glide algorithm Standard precision glide-sp

GOLD 5.4.1 GA

ASP gold-asp
Chemscore gold-chemscore
Goldscore gold-goldscore
PLP gold-plp

PLANTS 1.2 ACO algorithm
ChemPLP plants-chemplp
PLP plants-plp
PLP95 plants-plp95

rDock 2013.1 GA + MC + Simplex minimization rDock master SF rdock-std
rDock master SF + desolvation rdock-solv

Vina 1.1.2 MC + BFGS local search Vina SF vina-std

GA (Genetic Algorithm), MC (Monte Carlo), BFGS (Broyden–Fletcher–Goldfarb–Shanno), ASP (Astex
Statistical Potential), PLP (Pairwise Linear Potential), ACO (Ant Colony Optimization).

3.4. Descriptor Calculation

We take a structure-based approach to represent proteins, deciding to use 3D-voxel
descriptors [36,37] that capture the influence of each atom to each voxel of the grid via a pair correlation
function n(r) that depends on their euclidean distance r and the Van der Waals radius rvdw of the first:

n(r) = 1 − exp
(
−
( rvdw

r

)12
)

. (1)

We used the voxelization routines available in the HTMD python framework for molecular
modeling [38], which computes eight different pharmacophore-like properties: hydrophobic, aromatic,
hydrogen-bond acceptor and donor, positive and negative ionizable, and metallic and total excluded
volume. A 24 Å3 array was computed and centered on the center of mass of the co-crystalized ligand,
with a resolution of 1 Å. For the ligands, we used Extended Connectivity Fingerprints (ECFP4) [22]
with a size of 1024 bits and a radius of 2 bonds as well as a set of 183 physical-chemical descriptors
available in the RDKit software [39].

3.5. Neural Network Architecture

A Neural Network (NN) architecture usually takes an array-based input and performs several
transformations to obtain another array-based output [40]. Depending on the nature of the input array,
some architectures are more appropriate than others. For instance, when the input represents a spatial
arrangement (e.g., an image or the 3D-voxel representation described here), a convolutional neural
network (CNN) is a typical choice, whereas a fully forward neural network (FNN) is more suitable
for a one-dimensional vector, such as a chemical fingerprint [41]. In this study, we designed a specific
neural network that takes advantage of both CNN and FNN architectures so as to handle both input
types appropriately.

We designed a two-legged neural network that takes protein voxels and ligand fingerprints as
inputs separately (Figure 4). Protein voxels pass through five convolutional layers with a rectified
linear unit activation function and then they are flattened into a one-dimensional vector. In parallel,
ligand descriptors are fed to three consecutive linear layers again with the ReLU activation function.
Then, the outputs of both legs are concatenated into a single vector of size 1024. A batch normalization
layer [42] is then applied to this hidden protein–ligand representation and three different output linear
layers with ReLU activation function are computed, corresponding to each of the three metrics used
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by DockBench: RMSDmin, RMSDave and nRMSD. For the first two RMSD-based outputs, we used a
standard mean-squared-error loss, while, for nRMSD, we use a Poisson negative log-likelihood loss
function, defined by:

` (y, ŷ) = ŷ − y log(ŷ) + log(y!), (2)

where y and ŷ are true and predicted values, respectively. We consider the unweighted sum of these
three objectives for loss minimization.

3.6. Training and Validation

We used a k-fold cross-validation scheme (k = 5) to estimate model performance under different
split scenarios: for each split, a model is trained on k − 1 non-overlapping subsets and evaluated
on the remaining one. Furthermore, we decided to investigate the dependency of the performance
with respect to the composition of the chosen subsets. For this reason, we considered four different
sampling procedures, each representing a particular application scenario: (i) a completely random
split; (ii) a ligand-scaffold-based split where compounds are grouped according to a k-means clustering
of the ligands’ ECFP4 fingerprints [43]; (iii) a protein-based split based on non-overlapping PFAM
families [44]; and (iv) a balanced protein-class-based split, where we randomly sample 20% of the
validation complexes from each PFAM family. In each of the splits, we trained the model for 200
epochs using the Adam optimizer [45] (β1 = 0.99, β2 = 0.999) with a starting learning rate of 10−3

coupled with an exponential learning rate scheduler (γ = 0.95) and a batch size of 32 samples.
Data augmentation was performed during training by applying random rotations to the protein
pocket coordinates using the geometric center of the ligand as point of reference.

FNN

3D CNN

FNN+

+

rdkit
descriptors

ECFP4

voxelized
binding site

Figure 4. Schema of the proposed architecture in this work. A fully connected neural network handles
ECFP4 fingerprints and descriptors computed from RDKit while a 3D-convolutional neural network
processes a voxelized representation of the protein binding site. Latent space from both inputs is then
concatenated and fed into further fully connected layers that predict the three outputs of interest per
docking protocol.

3.7. Implementation and Code Availability

The final production model as well as code to train it and replicate all results and analyses in
this paper are openly available on a GitHub repository (github.com/cuzzo87/CNN_DockBench)
under an AGPLv3 license. Users can easily use production model scripts to run predictions for their
protein–ligand pairs. Our model was implemented in Python using PyTorch (version 1.0) [46] as our
main tensor manipulation and automatic differentiation library. While GPU support is not needed

github.com/cuzzo87/CNN_DockBench
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for the replication of our work, as well as its production usage, it is strongly recommended, as it can
substantially accelerate computations.

4. Conclusions

In this study, we developed a deep-learning-based pipeline for the informed selection of a
particular molecular docking protocol, given a protein–ligand pair, and the elucidation of which
protein–ligand pairs result in a better pose with a predefined docking algorithm. In conclusion,
we believe that we successfully managed to answer both of those research questions. First, we show
that it is possible to predict which protein–ligand pairs produce the best poses given a particular
docking protocol, although results greatly vary depending on the latter. Interestingly, some protocols
(autodock-ga, autodock-lga, gold-asp, and gold-plp) show easier predictability across different data
splits than others (plants-plp95, plants-plp, rdock-solv, and rdock-std). We also show that it is certainly
possible to predict which docking protocols are better suited for a given protein–ligand pair using the
proposed model, although predictive performance greatly depends on the type of the evaluation split
taken. Specifically, performance on the random and balanced protein classes splits is undoubtedly
superior to that on the ligand scaffold split in most of our evaluations. In addition, we measured the
distribution of several relevant docking-related metrics according to the suggestions of the proposed
methodology, to find that these are consistently better than other existing individual protocols under
most circumstances.

In general, the results presented in this work highlight the usefulness of the presented
methodology, but also show that its performance greatly varies depending on the type of evaluation
split taken, suggesting that its prospective applicability may differ depending on how close both protein
and ligand queries are to the training set manifold. Along those lines, we believe that future interested
users in the proposed approach should take these points into consideration before evaluation or
re-training of the neural network on their own data. Additionally, while we thoroughly benchmarked
our model, all the evaluations presented here are retrospective per se. Future blind structure-based
evaluations, such as the ones proposed by the D3R Grand Challenges [47–49], would provide excellent
opportunities to evaluate approaches similar to the one proposed here prospectively.

Methodology-wise, there are several interesting directions for future research regarding neural
network architectural design. In particular, it is a well-known issue that 3D-convolutional neural
networks are not rotationally equivariant [50] (i.e., the output of the network varies if the coordinates
of the protein are rotated), a desirable characteristic when modeling atomistic systems. While this
issue is mitigated in the current work through data augmentation, recent approaches such as
SE(3) equivariant neural networks [51] bear promise towards solving this issue. On the ligand
side, graph convolutions [52] are a family of approaches that are displaying good results in a
variety of tasks relevant to drug discovery, such as property prediction [11,12,53] or compound
generation [54]. How these approaches would perform in the task proposed here remains a topic for
further exploration.

Finally, while we firmly believe that future-generation docking protocols will more tightly
incorporate machine-learning elements into their pipelines [18,19] (e.g., by the design of more
efficient search algorithms or scoring functions [55,56]), we think that the approach proposed in
this paper represents a novel research direction that will drive structure-based drug design researchers
towards more rational existing docking protocol choices. Hence, with the intent of improving
research reproducibility and lowering accessibility barriers, we have open-sourced all evaluation
and deployment code as well as trained models related to this work.

Supplementary Materials: The following are available online , Figure S1: Average RMSE for the RMSDave
metric for all types of splits disaggregated into the 30 most populated PFAM families in the PDBbind refined
dataset. Table S1: Predictive performance for RMSDmin (±1 std.) per docking protocol, for each of the four splits
considered. Table S2: Predictive performance for nRMSD,(±1 std.) per docking protocol, for each of the four
splits considered. Table S3: Ligand-centric evaluation for the RMSDmin(±1 std.) metric and the four different
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proposed split types in this study. Table S4: Ligand-centric evaluation for the nRMSD(±1 std.) metric and the
four different proposed split types in this study.

Author Contributions: Conceptualization, J.J.-L. and A.C.; methodology, J.J.-L. and A.C.; software, J.J.-L.;
formal analyses, J.J.-L. and A.C.; data curation, G.B. and M.S.; and project administration, M.S. and S.M.
All authors have read and agreed to the published version of the manuscript.

Funding: J.J.-L. acknowledges support from the RETHINK initiative at ETH Zuerich and financial support from
Boehringer Ingelheim Pharma.

Acknowledgments: MMS lab is very grateful to Chemical Computing Group, OpenEye, and Acellera for the
scientific and technical partnership. We also thank Francesca Grisoni and Brooke Husic for useful discussion and
comments on the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RMSD Root mean squared distance
DL Deep learning
NN Neural network
CNN Convolutional neural network
FNN Fully-connected neural network

References

1. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug
discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935. [CrossRef] [PubMed]

2. Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges.
Proteins Struct. Funct. Bioinform. 2006, 65, 15–26. Available online: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/prot.21082 (accessed on 3 September 2019). [CrossRef] [PubMed]

3. Chaput, L.; Mouawad, L. Efficient conformational sampling and weak scoring in docking programs?:
Strategy of the wisdom of crowds. J. Cheminform. 2017, 9, 37, doi:10.1186/s13321-017-0227-x. [CrossRef]
[PubMed]

4. Cuzzolin, A.; Sturlese, M.; Malvacio, I.; Ciancetta, A.; Moro, S. DockBench: An integrated informatic platform
bridging the gap between the robust validation of docking protocols and virtual screening simulations.
Molecules 2015, 20, 9977–9993. [CrossRef] [PubMed]

5. Ciancetta, A.; Cuzzolin, A.; Moro, S. Alternative Quality Assessment Strategy to Compare Performances
of GPCR-Ligand Docking Protocols: The Human Adenosine A2A Receptor as a Case Study. J. Chem. Inf.
Model. 2014, 54, 2243–2254. Available online: http://xxx.lanl.gov/abs/https://doi.org/10.1021/ci5002857
(accessed on 3 September 2019). [CrossRef] [PubMed]

6. Salmaso, V.; Sturlese, M.; Cuzzolin, A.; Moro, S. Combining self-and cross-docking as benchmark tools:
The performance of DockBench in the D3R Grand Challenge 2. J. Comput. Aided Mol. Des. 2018, 32, 251–264.
[CrossRef] [PubMed]

7. Salmaso, V.; Sturlese, M.; Cuzzolin, A.; Moro, S. DockBench as docking selector tool: The lesson learned
from D3R Grand Challenge 2015. J. Comput. Aided Mol. Des. 2016, 30, 773–789. [CrossRef]

8. Dahl, G.E.; Jaitly, N.; Salakhutdinov, R. Multi-task neural networks for QSAR predictions. arXiv 2014,
arXiv:1406.1231.

9. Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A deep convolutional neural network for bioactivity
prediction in structure-based drug discovery. arXiv 2015, arXiv:1510.02855.

10. Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning.
Front. Environ. Sci. 2016, 3, 80. [CrossRef]

11. Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V.
MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [CrossRef]
[PubMed]

12. Feinberg, E.N.; Sur, D.; Wu, Z.; Husic, B.E.; Mai, H.; Li, Y.; Sun, S.; Yang, J.; Ramsundar, B.; Pande, V.S.
Potentialnet for molecular property prediction. ACS Cent. Sci. 2018, 4, 1520–1530. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrd1549
http://www.ncbi.nlm.nih.gov/pubmed/15520816
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.21082
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.21082
http://dx.doi.org/10.1002/prot.21082
http://www.ncbi.nlm.nih.gov/pubmed/16862531
http://dx.doi.org/10.1186/s13321-017-0227-x
http://www.ncbi.nlm.nih.gov/pubmed/29086077
http://dx.doi.org/10.3390/molecules20069977
http://www.ncbi.nlm.nih.gov/pubmed/26035098
http://xxx.lanl.gov/abs/https://doi.org/10.1021/ci5002857
http://dx.doi.org/10.1021/ci5002857
http://www.ncbi.nlm.nih.gov/pubmed/25046649
http://dx.doi.org/10.1007/s10822-017-0051-4
http://www.ncbi.nlm.nih.gov/pubmed/28840418
http://dx.doi.org/10.1007/s10822-016-9966-4
http://dx.doi.org/10.3389/fenvs.2015.00080
http://dx.doi.org/10.1039/C7SC02664A
http://www.ncbi.nlm.nih.gov/pubmed/29629118
http://dx.doi.org/10.1021/acscentsci.8b00507
http://www.ncbi.nlm.nih.gov/pubmed/30555904


Molecules 2020, 25, 2487 11 of 12

13. Jiménez-Luna, J.; Pérez-Benito, L.; Martínez-Rosell, G.; Sciabola, S.; Torella, R.; Tresadern, G.; De Fabritiis, G.
DeltaDelta neural networks for lead optimization of small molecule potency. Chem. Sci. 2019, 10, 10911–10918.
[CrossRef] [PubMed]

14. Segler, M.H.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic
AI. Nature 2018, 555, 604. [CrossRef]

15. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.;
Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical
design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018, 4, 268–276.
[CrossRef]

16. Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritiis, G. Shape-Based Generative Modeling for de Novo Drug
Design. J. Chem. Inf. Model. 2019, 59, 1205–1214. [CrossRef]

17. Segler, M.H.; Waller, M.P. Neural-symbolic machine learning for retrosynthesis and reaction prediction.
Chem. A Eur. J. 2017, 23, 5966–5971. [CrossRef]

18. Ragoza, M.; Turner, L.; Koes, D.R. Ligand pose optimization with atomic grid-based convolutional neural
networks. arXiv 2017, arXiv:1710.07400.

19. Gentile, F.; Agrawal, V.; Hsing, M.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep Docking: A deep
learning approach for virtual screening of big chemical datasets. bioRxiv 2019, doi:10.1101/2019.12.15.877316.
[CrossRef]

20. Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data:
Current status of the PDBbind database. Bioinformatics 2015, 31, 405–412. [CrossRef] [PubMed]

21. Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind database: Collection of binding affinities for protein-
ligand complexes with known three-dimensional structures. J. Med. Chem. 2004, 47, 2977–2980. [CrossRef]
[PubMed]

22. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [CrossRef]
23. Sheridan, R.P. Time-split cross-validation as a method for estimating the goodness of prospective prediction.

J. Chem. Inf. Model. 2013, 53, 783–790. [CrossRef] [PubMed]
24. Jiménez, J.; Sabbadin, D.; Cuzzolin, A.; Martínez-Rosell, G.; Gora, J.; Manchester, J.; Duca, J.; De Fabritiis, G.

PathwayMap: Molecular pathway association with self-normalizing neural networks. J. Chem. Inf. Model.
2018, 59, 1172–1181. [CrossRef] [PubMed]

25. Bolcato, G.; Cuzzolin, A.; Bissaro, M.; Moro, S.; Sturlese, M. Can we still trust docking results? An extension
of the applicability of DockBench on PDBbind database. Int. J. Mol. Sci. 2019, 20, 3558. [CrossRef]

26. Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE):
Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572.
[CrossRef]

27. OpenEye Scientific Software. QUACPAC; OpenEye Scientific Software: Santa Fe, NM, USA, 2016.
28. O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A Python wrapper for the OpenBabel cheminformatics

toolkit. Chem. Cent. J. 2008, 2, 5. [CrossRef]
29. Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of

MMFF94. J. Comput. Chem. 1996, 17, 490–519. [CrossRef]
30. Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock.

J. Mol. Recognit. 1996, 9, 1–5. [CrossRef]
31. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring

function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]
32. Korb, O.; Stutzle, T.; Exner, T.E. Empirical scoring functions for advanced protein- ligand docking with

PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [CrossRef] [PubMed]
33. Li, L.; Chen, R.; Weng, Z. RDOCK: Refinement of rigid-body protein docking predictions. Proteins Struct.

Funct. Bioinform. 2003, 53, 693–707. [CrossRef] [PubMed]
34. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.;

Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and
assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [CrossRef] [PubMed]

35. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking
using GOLD. Proteins Struct. Funct. Bioinform. 2003, 52, 609–623. [CrossRef]

http://dx.doi.org/10.1039/C9SC04606B
http://www.ncbi.nlm.nih.gov/pubmed/32190246
http://dx.doi.org/10.1038/nature25978
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1021/acs.jcim.8b00706
http://dx.doi.org/10.1002/chem.201605499
http://dx.doi.org/10.1101/2019.12.15.877316
http://dx.doi.org/10.1093/bioinformatics/btu626
http://www.ncbi.nlm.nih.gov/pubmed/25301850
http://dx.doi.org/10.1021/jm030580l
http://www.ncbi.nlm.nih.gov/pubmed/15163179
http://dx.doi.org/10.1021/ci100050t
http://dx.doi.org/10.1021/ci400084k
http://www.ncbi.nlm.nih.gov/pubmed/23521722
http://dx.doi.org/10.1021/acs.jcim.8b00711
http://www.ncbi.nlm.nih.gov/pubmed/30586501
http://dx.doi.org/10.3390/ijms20143558
http://dx.doi.org/10.2174/156802608786786624
http://dx.doi.org/10.1186/1752-153X-2-5
http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1021/ci800298z
http://www.ncbi.nlm.nih.gov/pubmed/19125657
http://dx.doi.org/10.1002/prot.10460
http://www.ncbi.nlm.nih.gov/pubmed/14579360
http://dx.doi.org/10.1021/jm0306430
http://www.ncbi.nlm.nih.gov/pubmed/15027865
http://dx.doi.org/10.1002/prot.10465


Molecules 2020, 25, 2487 12 of 12

36. Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor
using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042. [CrossRef]

37. Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D.R. Protein-ligand scoring with convolutional neural
networks. J. Chem. Inf. Model. 2017, 57, 942–957. [CrossRef]

38. Doerr, S.; Harvey, M.; Noé, F.; De Fabritiis, G. HTMD: High-throughput molecular dynamics for molecular
discovery. J. Chem. Theory Comput. 2016, 12, 1845–1852. [CrossRef]

39. Landrum, G. Rdkit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive
Modeling. 2013. Available online: http://www.rdkit.org/RDKit_Overview.pdf (accessed on
3 September 2019).

40. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
41. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
42. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.
43. Kramer, C.; Gedeck, P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from

diverse protein data sets. J. Chem. Inf. Model. 2010, 50, 1961–1969. [CrossRef]
44. Bateman, A.; Coin, L.; Durbin, R.; Finn, R.D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.;

Moxon, S.; Sonnhammer, E.L.; et al. The Pfam protein families database. Nucleic Acids Res. 2004, 32,
D138–D141. [CrossRef] [PubMed]

45. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
46. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 8024–8035.

47. Gathiaka, S.; Liu, S.; Chiu, M.; Yang, H.; Stuckey, J.A.; Kang, Y.N.; Delproposto, J.; Kubish, G.; Dunbar, J.B.;
Carlson, H.A.; et al. D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions.
J. Comput. Aided Mol. Des. 2016, 30, 651–668. [CrossRef] [PubMed]

48. Gaieb, Z.; Liu, S.; Gathiaka, S.; Chiu, M.; Yang, H.; Shao, C.; Feher, V.A.; Walters, W.P.; Kuhn, B.;
Rudolph, M.G.; et al. D3R Grand Challenge 2: Blind prediction of protein-ligand poses, affinity rankings,
and relative binding free energies. J. Comput. Aided Mol. Des. 2018, 32, 1–20. [CrossRef]

49. Gaieb, Z.; Parks, C.D.; Chiu, M.; Yang, H.; Shao, C.; Walters, W.P.; Lambert, M.H.; Nevins, N.; Bembenek, S.D.;
Ameriks, M.K.; et al. D3R Grand Challenge 3: Blind prediction of protein-ligand poses and affinity rankings.
J. Comput. Aided Mol. Des. 2019, 33, 1–18. [CrossRef]

50. Cohen, T.S.; Geiger, M.; Köhler, J.; Welling, M. Spherical cnns. arXiv 2018, arXiv:1801.10130.
51. Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; Riley, P. Tensor field networks: Rotation-and

translation-equivariant neural networks for 3d point clouds. arXiv 2018, arXiv:1802.08219.
52. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum

chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia,
6–11 August 2017; Volume 70, pp. 1263–1272.

53. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond
fingerprints. J. Comput. Aided Mol. Des. 2016, 30, 595–608. [CrossRef]

54. Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. arXiv
2018, arXiv:1802.04364.

55. Morrone, J.A.; Weber, J.K.; Huynh, T.; Luo, H.; Cornell, W.D. Combining Docking Pose Rank and Structure
with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
J. Chem. Inf. Model. 2020, doi:10.1021/acs.jcim.9b00927. [CrossRef]

56. Wang, X.; Terashi, G.; Christoffer, C.W.; Zhu, M.; Kihara, D. Protein docking model evaluation by 3D deep
convolutional neural networks. Bioinformatics 2020, 36, 2113–2118. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/btx350
http://dx.doi.org/10.1021/acs.jcim.6b00740
http://dx.doi.org/10.1021/acs.jctc.6b00049
http://www.rdkit.org/RDKit_Overview.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1021/ci100264e
http://dx.doi.org/10.1093/nar/gkh121
http://www.ncbi.nlm.nih.gov/pubmed/14681378
http://dx.doi.org/10.1007/s10822-016-9946-8
http://www.ncbi.nlm.nih.gov/pubmed/27696240
http://dx.doi.org/10.1007/s10822-017-0088-4
http://dx.doi.org/10.1007/s10822-018-0180-4
http://dx.doi.org/10.1007/s10822-016-9938-8
http://dx.doi.org/10.1021/acs.jcim.9b00927
http://dx.doi.org/10.1093/bioinformatics/btz870
http://www.ncbi.nlm.nih.gov/pubmed/31746961
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results and Discussion
	Materials and Methods
	Datasets
	Complex Preparation
	Data Generation
	Descriptor Calculation
	Neural Network Architecture
	Training and Validation
	Implementation and Code Availability

	Conclusions
	References

