Catalyst-solvent system for PASE approach to hydroxyquinolinonesubstituted chromeno[2,3-b]pyridines, its quantum chemical study and investigation of reaction mechanism

Fedor V. Ryzhkov,^a Yuliya E. Ryzhkova,^a Michail N. Elinson,^{*a} Stepan V. Vorobyev,^b Artem N. Fakhrutdinov,^a Anatoly N. Vereshchagin,^a Mikhail P. Egorov^a

[a] N. D. Zelinsky Institute of Organic Chemistry Russian academy of sciences
Leninsky pr. 47, Moscow, 119991, Russian Federation E-mail: <u>elinson@ioc.ac.ru</u>
[b] Gubkin Russian State University of Oil and Gas, 65
Leninsky prospect, Moscow 119991, Russian Federation.

Supporting Information

Table of Contents

Contents

2
7
7
9
11
13
15
17
19
21
23
25
51
53
59
· · · · · · · · · · · · · · · · · · ·

General information

All melting points were measured with a Gallenkamp melting point apparatus. ¹H and ¹³C NMR spectra were recorded with Bruker AM-300 spectrometer at ambient temperature. Chemical shifts values are relative to Me₄Si. IR spectra were registered with a Bruker ALPHA-T FT-IR spectrometer in KBr pellets. Mass spectra (EI, 70 eV) were obtained directly with a Finningan MAT INCOS 50 spectrometer. High-resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI).

Salicylaldehyde **1a-i** (1 mmol), 2-aminoprop-1-ene-1,1,3-tricarbonitrile **2** (0.13 g, 1 mmol) and 4-hydroxyquinolin-2(1*H*)-one (1 mmol) **3** were reluxed in 4 ml of ethanol–pyridine (3:1) mixture for 2 h. After the reaction was completed, the solid was filtered, washed with well-chilled methanol (3×2 mL) and dried to isolate pure substituted 2,4-diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitriles **4a–i**.

^{4a, 95%} 2,4-Diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.377g, 95%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3391, 3184, 2993, 2846, 2201, 1642, 1606, 1399, 1237, 751. ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 5.58 (s, 1H, CH), 6.31 (s, 2H, NH₂), 6.44 (s, 2H, NH₂), 6.90-7.05 (m, 3H, Ar), 7.06-7.22 (m, 2H, Ar), 7.28-7.41 (m, 2H, Ar), 7.86 (d, *J* = 7.8 Hz, 1H, Ar), 10.77 (br s, 1H, OH), 11.86 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 28.68, 70.32, 88.97, 115.24, 115.41 (2C), 115.61, 116.54, 121.60, 122.16, 123.39, 127.42 (2C), 128.68, 130.76, 137.49, 151.27, 156.72, 159.19, 159.35, 160.19, 164.18. **MS (EI, 70 eV) m/z (%):** 397 (M⁺, 17), 376 (11), 304 (7), 252 (6), 237 (100), 171 (12), 161 (26), 119 (12), 79 (86), 52 (55). **HRMS-ESI:** [M+H]⁺, calcd for C₂₂H₁₆N₅O₃ 398.1253, found 398.1252.

^{4b. 87%} 2,4-Diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-7-methyl-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.358g, 87%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3419, 3361, 2881, 2845, 2203, 1634, 1580, 1402, 1220, 752. ¹**H-NMR** (400 MHz, DMSO-*d*6) δ 2.14 (s, 3H, CH₃), 5.53 (s, 1H, CH), 6.28 (s, 2H, NH₂), 6.41 (s, 2H, NH₂), 6.78 (s, 1H, Ar), 6.93 (dd, ³*J* = 16.6 Hz, ⁴*J* = 8.0 Hz, 2H, Ar), 7.11 (t, *J* = 7.4Hz, 1H, Ar), 7.33 (d, *J* = 7.8 Hz, 1H, Ar), 7.48 (t, *J* = 7.3 Hz, 1H, Ar), 7.86 (d, *J* = 7,8 Hz, 1H, Ar), 10.74 (s, 1H, OH), 11.84 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 20.11, 28.64, 70.20, 89.00, 115.18 (2C), 115.61, 116.58, 121.48, 122.14, 123.15, 127.97 (2C), 128.34, 130.73, 132.22, 137.46, 149.20, 156.68, 159.15, 159.49 160.09, 164.18. MS (EI, 70 eV) m/z (%): 411 (M⁺, 26), 390 (7), 251 (100), 223 (14), 185 (28), 161 (61), 119 (43), 92 (30), 77 (35), 42 (15). HRMS-ESI: [M+H]⁺, calcd for C₂₃H₁₈N₅O₃ 412.1410, found 412.1402.

^{4c, 83%} 2,4-diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-8-methoxy-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.355g, 83%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3428, 3381, 2887, 2836, 2199, 1632, 1607, 1569, 1402, 1201, 761. ¹**H-NMR** (400 MHz, DMSO-*d*6) δ 3.72 (s, 3H, OMe), 5.50 (s, 1H, CH), 6.29 (s, 2H, NH₂), 6.43 (s, 2H, NH₂), 6.51-6.65 (m, 2H, Ar), 6.88 (d, *J* = 7.9 Hz, 1H, Ar), 7.11 (t, *J* = 7.2 Hz, 1H, Ar), 7.33 (d, *J* = 7.9 Hz, 1H, Ar), 7.48 (t, *J* = 7.2 Hz, 1H, Ar), 7.86 (d, *J* = 7.3 Hz, 1H, Ar), 10.71 (br s, 1H, OH), 11.83 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 28.08, 30.63, 55.21, 70.29, 89.12, 100.60 (2C), 109.69, 115.27, 115.55 (2C), 116.50, 121.43, 122.11, 128.75, 130.64, 137.40, 151.93, 156.68, 158.53, 159.10, 159.97, 164.13. MS (EI, 70 eV) m/z (%): 407 (18), 267 (100), 252 (11), 237 (9), 224 (17), 201 (4), 161 (60), 119 (43), 92 (33), 15 (63). HRMS-ESI: [M+H]⁺, calcd for C₂₃H₁₈N₅O₄ 428.1359, found 428.1351.

2,4-diamino-9-ethoxy-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5H-

chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.433g, 98%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm⁻¹:** 3409, 3372, 2979, 2881, 2202, 1631, 1568, 1483, 1222, 751. ¹**H-NMR** (400 MHz, DMSO *d6*) δ 1.39 (t, *J* = 6.8 Hz, 3H, OEt), 4.04 (m, 2H, OEt), 5.56 (s, 1H, CH), 6.35 (s, 2H, NH₂), 6.41 (s, 2H, NH₂), 6.52 (d, *J* = 6.4 Hz, 1H, Ar), 6.78-6.90 (m, 2H, Ar), 7.10 (t, *J* = 7.6 Hz, 1H, Ar), 7.33 (d, *J* = 8.1 Hz, 1H, Ar), 7.48 (t, *J* = 7.6 Hz, 1H, Ar), 7.88 (d, *J* = 8.1 Hz, 1H, Ar), 10.80 (s, 1H, OH), 11.83 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 14.81, 28.75, 63.62, 70.22, 88.77, 110.79, 115.22, 115.57, 116.55, 119.49 (2C), 121.47, 122.10, 122.90, 124.00, 130.71, 137.43, 140.78, 145.90, 156.64, 159.18 (2C), 160.21, 164.12. **MS (EI, 70 eV) m/z (%):** 441 (M⁺, 19), 412 (18), 392 (26), 281 (74), 253 (77), 187 (14), 161 (100), 119 (57), 92 (42), 29 (95). **HRMS-ESI:** [M+H]⁺, calcd for C₂₄H₁₉N₅O₄ 442.1510, found 442.1503.

^{4e, 68%} 2,4-Diamino-7-bromo-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-9-methoxy-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.344 g, 68%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3445, 3387, 2204, 1639, 1600, 1567, 1398, 1224, 1013, 768. ¹**H**-**NMR** (400 MHz, DMSO*d6*) δ 3.84 (s, 3H, OMe), 5.53 (s, 1H, CH), 6.33 (s, 2H, NH₂), 6.42 (br s, 2H, NH₂), 6.64 (s, 1H, Ar), 7.04 (s, 1H, Ar), 7.12 (t, *J* = 7.3 Hz, 1H, Ar), 7.34 (d, *J* = 8.1 Hz, 1H, Ar), 7.50 (t, *J* = 7.3 Hz, 1H, Ar), 7.88 (d, *J* = 7.2 Hz, 1H, Ar), 10.90 (s, 1H, OH), 11.86 (s, 1H, NH) ppm. ¹³**C-NMR** (100 MHz, DMSO-d6) δ 28.64, 56.06, 70.39, 88.34, 113.03, 113.23, 114.08, 115.07, 115.62, 116.37, 121.62, 122.20, 123.27, 125.73, 130.88, 131.78, 137.51, 137.71, 147.67, 156.58, 156.74, 159.13, 163.94. **MS (EI, 70 eV) m/z (%):** 507 (M⁺, 3), 346 (51), 331 (8), 305 (51), 252 (14), 204 (45), 161 (100), 119 (59), 92 (39), 15 (28). **HRMS-ESI:** [M+H]⁺, calcd for C₂₃H₁₇BrN₅O₄ 506.0464 [⁷⁹Br], 508.0443 [⁸¹Br], found 506.0458 [⁷⁹Br], 508.0434 [⁸¹Br].

^{4f, 91%} 2,4-Diamino-7-chloro-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.393 g, 91%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻ ¹: 3393, 3217, 2975, 2894, 2203, 1633, 1607, 1404, 1259, 757. ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 5.56 (s, 1H, CH), 6.35 (s, 2H, NH₂), 6.47 (br s, 2H, NH₂), 6.96 (s, 1H, Ar), 7.06 (d, *J* = 8.7 Hz, 1H, Ar), 7.13 (t, *J* = 7.6 Hz, 1H, Ar), 7.22 (d, *J* = 8.6 Hz, 1H, Ar), 7.34 (d, *J* = 7.9 Hz, 1H, Ar), 7.50 (t, *J* = 7.6 Hz, 1H, Ar), 7.88 (d, *J* = 6.0 Hz, 1H, Ar), 10.89 (br s, 1H, OH), 11.88 (s, 1H, NH) ppm. ¹³**C-NMR** (100 MHz, DMSO-d6) δ 28.73, 70.43, 88.31, 115.15, 115.37, 115.66, 116.39, 117.27 (2C), 121.51, 122.27, 125.62, 126.68, 127.36, 127.48, 130.90, 137.60, 150.23, 156.65, 156.80, 159.20, 163.98. **MS (EI, 70 eV) m/z (%):** 431 (M⁺, 17), 409 (9), 271 (100), 243 (10), 205 (21), 161 (79), 119 (73), 92 (92), 77 (54), 28 (52). **HRMS-ESI:** [M+H]⁺, calcd for C₂₂H₁₅ClN₅O₃ 432.0863 [³⁵Cl], 434.0834 [³⁷Cl], found 432.0856 [³⁵Cl], 434.0824 [³⁷Cl].

^{4g, 68%} 2,4-Diamino-7-bromo-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5H-chrome-no[2,3-b]pyridine-3-carbonitrile, (White solid, 0.324 g, 68%), mp > 231-233 °C (from Py-EtOH), FTIR (KBr) cm⁻¹: 3343, 3184, 2993, 2846, 2201, 1642, 1609, 1398, 1258, 775. ¹H-NMR (400 MHz, DMSO-*d6*) δ 5.56

(s, 1H, CH), 6.35 (s, 2H, NH₂), 6.46 (br s, 2H, NH₂), 7.01 (d, J = 8.5 Hz, 1H, Ar), 7.08 (s, 1H, Ar), 7.13 (t, J = 7.5 Hz, 1H, Ar), 7.35 (d, J = 7.9 Hz, 2H Ar), 7.50 (t, J = 7.5 Hz, 1H, Ar), 7.88 (d, J = 6.0 Hz, 1H Ar), 10.89 (s, 1H, OH), 11.87 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 28.61, 70.43, 88.34, 114.47, 115.07, 115.65 (2C), 116.36, 117.72, 121.52, 122.27, 126.09, 130.23, 130.34, 130.90, 137.56, 150.67, 156.67, 158.92, 159.20, 160.32, 163.90. **MS (EI, 70 eV) m/z (%):** 316 ([M-C₉H₆NO₂]⁺, ⁸¹Br, 2), 314 ([M-C₉H₆NO₂]⁺, ⁷⁹Br, 2), 236 (2), 202 (1), 171 (1), 161 (13), 119 (9), 92 (5), 78 (73), 63 (100), 15 (31). **HRMS-ESI:** [M+H]⁺, calcd for C₂₂H₁₄BrN5O₃ 476.0353 [⁷⁹Br], 478.0333 [⁸¹Br], found 476.0324 [⁷⁹Br], 478.0323 [⁸¹Br].

^{4h, 59%} 2,4-Diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-7-nitro-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (Yellow solid, 0.261 g, 59%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3357, 3184, 2199, 1661, 1627, 1336, 1242, 1026, 828, 752. ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 5.24 (s, 1H, CH), 6.53 (br s, 2H, NH₂), 6.56 (s, 2H, NH₂), 7.28 (t, *J* = 7.6 Hz, 1H, Ar), 7.34 (d, *J* = 8.3 Hz, 1H Ar), 7.42 (d, *J* = 8.3 Hz, 1H Ar), 7.54 (t, *J* = 7.6 Hz, 1H, Ar), 7.87-7.94 (m, 1H, Ar), 8.02 (d, *J* = 8.3 Hz, 1H Ar), 8.08 (dd, ³*J* = 7.0 Hz, ⁴*J* = 2.6 Hz, 1H, Ar), 9.57 (s, 1H, OH), 11.62 (s, 1H, NH) ppm. ¹³C-NMR (100 MHz, DMSO-d6) δ 28.45, 98.42, 107.18, 112.75, 115.20 (2C), 116.43, 116.77, 121.76 (2C), 123.02, 124.14, 126.22, 130.52, 137.22, 143.17, 152.75, 153.74, 154.75, 155.08, 159.76, 161.57. MS (EI, 70 eV) m/z (%): 294 (11), 247 (10), 236 (3), 190 (3), 161 (20), 150 (100), 122 (65), 78 (16), 63 (31), 18 (32). HRMS-ESI: [M+H]⁺, calcd for C₂₂H₁₅N₆O₅ 443.1104, found 443.1098.

4i. 87%

9,11-diamino-12-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-12H-

benzo[5,6]chromeno[2,3-*b*]pyridine-10-carbonitrile, (White solid, 0.389 g, 87%), mp > 350°C (from Py-EtOH), **FTIR (KBr) cm**⁻¹: 3454, 3400, 2875, 2835, 2203, 1634, 1607, 1409, 1239, 755. ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 6.06 (s, 1H, CH), 6.35 (s, 2H, NH₂), 6.69 (s, 2H, NH₂), 7.07 (t, *J* = 7.6 Hz, 1H, Ar), 7.25-7.51 (m, 5H, Ar), 7.76-7.93 (m, 3H, Ar), 8.02 (d, *J* = 8.4 Hz, 1H Ar), 10.82 (s, 1H, OH), 11.95 (s, 1H, NH) ppm. ¹³**C-NMR** (100 MHz, DMSO-d6) δ 26.76, 70.47, 89.08, 114.46, 115.21, 115.58, 116.51, 117.06 (2C), 121.56, 122.13, 122.68, 124.08, 126.83, 128.30, 128.44 (2C), 130.18, 130.78, 131.32, 137.26, 149.24, 156.86, 159.17, 160.96, 163.90. **MS (EI, 70 eV) m/z (%):** 429 ([M-H₂O]⁺, 5), 410 (14), 364 (19), 287 (100), 258 (6), 221 (13), 161 (35), 144 (38), 92 (12), 63 (13). **HRMS-ESI:** [M+H]⁺, calcd for C₂₆H₁₈N₅O₃ 448.1410, found 448.1401.

Isolation of the intermediate 5

Salicylaldehyde **1a** (0.12 g, 1 mmol) and 2-aminoprop-1-ene-1,1,3-tricarbonitrile **2** (0.13 g, 1 mmol) were stirred at room temperature in 4 ml of ethanol–pyridine (3:1) mixture for 2 h. After the reaction was completed, the solid was filtered, washed with well-chilled methanol (3×2 mL) and dried to isolate pure 2-(amino(2-imino-2*H*-chromen-3-yl)-methylene)malononitrile **5**.

^{5, 88%} 2-(amino-(2-imino-2*H*-chromen-3-yl)methylene)malononitrile, (Yellow solid, 0.208 g, yield 88 %), m.p. 272–273 °C (decomp.) (lit¹ m.p. 271–272 °C (decomp.)). ¹**H-NMR** (300 MHz, DMSO-*d6*) δ 7.11–7.31 (m, 2H, 2CH Ar), 7.45–7.63 (m, 2H, 2CH Ar), 7.75 (s, 1H, CH), 8.65 (s, 1H, NH), 8.93 (br.s, 1H, NHH), 8.95 (br.s, 1H, NHH) ppm.

Synthesis of chromeno[2,3-*b*]*pyridine* **4***a from* 2-(*amino*(2-*imino*-2*H*-*chromen*-3-*y*]*)methylene*)*malononitrile* **5** *and* 4-*hydroxyquino*lin-2(1*H*)-*one* **3**

2-(Amino(2-imino-2*H*-chromen-3-yl)methylene)malononitrile **5** (0.24 g, 1 mmol) and 4-hydroxyquinolin-2(1*H*)-one (0.16 g, 1 mmol) **3** were refluxed in 4 ml of ethanol–pyridine (3:1) mixture for 2 h. After the reaction was completed, the solid was filtered, washed with well-chilled methanol (3×2 mL) and dried to isolate pure chromeno[2,3-*b*]pyridine **4a**.

^{4a, 95%} 2,4-Diamino-5-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile, (White solid, 0.377g, 95%), mp > 350°C (from Py-EtOH), ¹**H-NMR** (400 MHz, DMSO*d6*) δ 5.58 (s, 1H, CH), 6.31 (s, 2H, NH₂), 6.44 (s, 2H, NH₂), 6.90-7.05 (m, 3H, Ar), 7.06-7.22 (m, 2H, Ar), 7.28-7.41 (m, 2H, Ar), 7.86 (d, *J* = 7.8 Hz, 1H, Ar), 10.77 (br s, 1H, OH), 11.86 (s, 1H, NH) ppm.

¹H and ¹³C Spectra of Compounds

Figure S1. Compound 4a

Figure S2. Compound 4a

Figure S3. Compound 4b

Figure S4. Compound 4b

Figure S5. Compound 4c

Figure S6. Compound 4c

Figure S7. Compound 4d

Figure S8. Compound 4d

Figure S9. Compound **4e**

Figure S10. Compound **4e**

Figure S11. Compound **4f**

Figure S12. Compound 4f

Figure S13. Compound **4g**

Figure S14. Compound 4g

Figure S15. Compound **4h**

Figure S16. Compound **4h**

Figure S17. Compound **4i**

Figure S18. Compound 4i

¹H NMR monitoring

During monitoring, ¹H NMR spectra were recorded with Bruker AV600 spectrometer at 40°C. Chemical shifts values are relative to Me₄Si.

Salicylaldehyde **1a** (0.006 g, 0.05 mmol), 2-aminoprop-1-ene-1,1,3-tricarbonitrile **2** (0.007 g, 0.05 mmol) and 4-hydroxyquinolin-2(1*H*)-one (0.008 g, 0.05 mmol) **3** were dissolved in DMSO- d_6 (0.6 ml) and were placed into ampoule, which was further placed directly into apparatus at 40°C. The spectra were recorded each 12 minute.

The spectra of reference compounds (recorded on Bruker AM-300) and the series of ¹H NMR monitoring spectra are presented below.

Figure S19. Salicyclaldehyde 1a

Figure S20. Malononitrile dimer 2

Figure S21. Hydroxyhinolinone **3**

Figure S22. Intermediate 5

Figure S22. Substituted intermediate 5

Figures S23-S42. ¹H NMR monitoring of the reaction, recorded each 12 minutes of the reaction.

Quantum chemistry simulations

Results of quantum chemical calculations for studied compounds 4a-i with extended decimal point are presented in Table S1

Comp.	4a	4b	4c	4d	4e	4f	4g	4h	4i	
Gas phase calculations										
Total energy, a.u.	-1347.192591	-1386.519626	-1461.746133	-1501.069826	-4035.282019	-1806.813879	-3920.734590	-1551.750784	-1500.868189	
Е _(номо) , eV	-5.707	-5.649	-5.644	-5.558	-5.695	-5.835	-5.830	-6.065	-5.669	
E _(LUMO) , eV	-2.040	-2.023	-1.997	-1.982	-2.072	-2.135	-2.131	-2.416	-2.047	
$\Delta E_{(L-H),} eV$	3.667	3.626	3.647	3.576	3.623	3.700	3.699	3.649	3.622	
μ, D	7.896	8.071	7.645	8.119	7.487	7.325	7.351	7.619	7.670	
X	3.874	3.836	3.821	3.770	3.884	3.986	3.981	4.241	3.858	
η	1.834	1.813	1.824	1.788	1.812	1.85	1.849	1.825	1.811	
ω	4.092	4.058	4.003	3.975	4.164	4.301	4.286	4.929	4.109	
σ	0.545	0.552	0.548	0.559	0.552	0.541	0.541	0.548	0.552	
Calculations for solvated compounds										
Total energy, a.u.	-1347.218268	-1386.545401	-1461.773407	-1501.098635	-4035.310729	-1806.839494	-3920.760255	-1551.779693	-1500.894522	
E _(HOMO) , eV	-5.993	-5.947	-5.940	-5.900	-5.968	-6.037	-6.035	-6.139	-5.934	
E _(LUMO) , eV	-1.795	-1.791	-1.783	-1.791	-1.822	-1.826	-1.825	-2.726	-1.810	
$\Delta E_{(L-H),} eV$	4.198	4.156	4.157	4.109	4.146	4.211	4.210	3.413	4.124	
μ, D	10.263	11.789	9.883	10.873	11.137	9.490	9.486	9.609	10.135	
X	3.894	3.869	3.867	3.846	3.895	3.932	3.930	4.433	3.872	
η	2.099	2.078	2.079	2.055	2.073	2.106	2.105	1.707	2.062	
ω	3.612	3.602	3.596	3.599	3.659	3.671	3.669	5.756	3.635	
σ	0.476	0.481	0.481	0.487	0.482	0.475	0.475	0.586	0.485	
Calculations for protonated forms of studied compounds										
Total energy, a.u.	-1347.665214	-1386.992850	-1462.220470	-1501.546164	-4035.756965	-1807.285181	-3921.205929	-1552.223091	-1501.341028	
E _(HOMO) , eV	-6.592	-6.541	-6.374	-6.350	-6.449	-6.623	-6.617	-6.670	-6.321	
E _(LUMO) , eV	-1.983	-1.971	-1.967	-1.977	-2.026	-2.035	-2.033	-2.927	-2.044	
$\Delta E_{(L-H),} eV$	4.609	4.57	4.407	4.373	4.423	4.588	4.584	3.743	4.277	
μ, D	9.704	9.785	11.099	8.722	13.356	12.543	13.784	16.319	11.489	
X	4.288	4.256	4.171	4.164	4.263	4.329	4.325	4.799	4.183	
η	2.305	2.285	2.204	2.187	2.212	2.294	2.292	1.872	2.139	
ω	3.988	3.964	3.947	3.964	4.108	4.085	4.081	6.151	4.090	
σ	0.434	0.438	0.454	0.457	0.452	0.436	0.436	0.534	0.468	

Table S1. Results of quantum chemical calculations for studied compounds 4a-i (extended decimal point)

Figure S43. Optimized structure for compound 4a (gas phase)

Frontier orbitals of several studied compounds

Figure S44. HOMO of **4a** (gas phase)

Figure S45. LUMO of 4a (gas phase)

Figure S46. HOMO of **4e** (gas phase)

Figure S47. LUMO of **4e** (gas phase)

Figure S48. HOMO of **4h** (gas phase)

Figure S49. LUMO of **4h** (gas phase)

Figure S50. HOMO of **4c** (solvated compound)

Figure S51. LUMO of **4c** (solvated compound)

Figure S52. HOMO of 4a (protonated compound)

Figure S53. LUMO of 4a (protonated compound)

Figure S54. HOMO of 4h (protonated compound)

Figure S55. LUMO of **4h** (protonated compound)

References

¹ M.N. Elinson, A.N. Vereshchagin, Y.E. Anisina, A.N. Fakhrutdinov, A.S. Goloveshkin, M.P Egorov. (2019). *Eur. J. Org. Chem.*, 2019, 4171-4178.