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Abstract: Although anodic tungsten oxide has attracted increasing attention in recent years, there is
still a lack of detailed studies on the photoelectrochemical (PEC) properties of such kind of materials
grown in different electrolytes under various sets of conditions. In addition, the morphology of
photoanode is not a single factor responsible for its PEC performance. Therefore, the attempt was
to correlate different anodizing conditions (especially electrolyte composition) with the surface
morphology, oxide thickness, semiconducting, and photoelectrochemical properties of anodized
oxide layers. As expected, the surface morphology of WO3 depends strongly on anodizing conditions.
Annealing of as-synthesized tungsten oxide layers at 500 ◦C for 2 h leads to obtaining a monoclinic
WO3 phase in all cases. From the Mott-Schottky analysis, it has been confirmed that all as prepared
anodic oxide samples are n-type semiconductors. Band gap energy values estimated from incident
photon−to−current efficiency (IPCE) measurements neither differ significantly for as−synthesized
WO3 layers nor depend on anodizing conditions such as electrolyte composition, time and applied
potential. Although the estimated band gaps are similar, photoelectrochemical properties are different
because of many different reasons, including the layer morphology (homogeneity, porosity, pore size,
active surface area), oxide layer thickness, and semiconducting properties of the material, which
depend on the electrolyte composition used for anodization.

Keywords: anodic tungsten oxides; anodization; nanostructured morphology;
photoelectrochemical properties

1. Introduction

Tungsten oxide (WO3) is an n-type semiconductor that has been considered so far as one of
the most promising materials for photoanodes for photoelectrochemical (PEC) water splitting due
to its superior charge transport properties, moderate hole diffusion length and, mostly, a relatively
narrow band gap (2.5–2.8 eV). Many different methods have been employed for the synthesis of
WO3 nanomaterials, including chemical vapor deposition (CVD) [1], hydrothermal methods [2,3],
sol−gel processes [4], electrodeposition [5], anodic oxidation (anodization) [6–8], and many others [9].
Among these techniques, electrochemical oxidation of metallic tungsten has received considerable
attention since it can be applied to synthesize nanostructured WO3 with various morphologies such
as nanoporous [6,8,10–15] or nanotubular layers [10,16], compact films [8,12,14], nanoplates [17,18],
nanowires [11], and others [11,14]. A great advantage of this method is its simplicity, versatility, and
cost-effectiveness. Moreover, as-received anodic oxide films exhibit good adhesion to the conductive
metallic substrate, which is another advantage in terms of its application in photoelectrochemical
devices [8]. What is important, the type of the received morphology and geometrical features of the
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oxide film (e.g., pore/tube/wire sizes, anodic layer thickness) is strongly dependent on the conditions
applied during electrolysis, in particular the electrolyte composition. For instance, nanoporous WO3

layers can be received during anodization of tungsten in various electrolytes containing fluoride
ions [6,8,10–14], oxalic acid [15], and pure molten orto-phosphoric acid [19]. On the contrary, compact
or almost compact oxide films can be obtained in electrolytes without fluoride ions [10,12] or when the
F− content is insufficient [8,12,20]. It has been also reported, that WO3 nanoplates can be synthesized
by anodic oxidation of W in nitric acid [18] or in a mixture of sodium fluoride and sulfuric acid [17],
while electrooxidation of tungsten in a NaOH solution leads to the formation of a hexagonally ordered
nanobubble WO3 structure [21]. Moreover, all other electrosynthesis conditions such as applied
voltage [8,22], electrolyte composition (especially its pH and viscosity) [10,23], temperature [8], process
duration [8,10], or even hydrodynamic conditions [24], can also have a significant impact on the
morphology of anodic oxide layers.

Since it is widely recognized that there is a strong correlation between the morphology and
size of semiconductor and its properties, several studies comparing the photoelectrochemical
and photocatalytic activity of anodic WO3 layers with different morphologies have been already
reported [6,10,14,23,25,26]. For instance, Reyes-Gil et al. [12] have shown that the anodically formed
nanoporous WO3 photoanodes exhibit superior photoelectrochemical performance compared to
the compact ones due to the higher surface area, enhanced internal quantum yields, and effective
minority−carrier diffusion lengths, consequently reducing the electron-hole recombination rate.
The photoelectrochemical characterization of WO3 with different morphologies (nanoporous layers,
nanobowls, and nanoholes) obtained by anodization of tungsten in different electrolytes has been
performed by de Tacconi et al. [11], and the best photoresponse was observed for nanoporous WO3.
On the other hand, Chin Wei Lai [10] studied the performance of WO3 photoanodes electrochemically
synthesized in electrolytes with various F− contents and confirmed an enhanced efficiency of
well-developed nanotubular films under solar illumination compared to irregular nanoporous layers.
Mohamed et al. [27] compared photoelectrochemical performance of WO3 nanoporous films with
nanoflakes and found that the latter exhibit superior properties after annealing at 500 ◦C.

Table 1 shows a comparison of photoelectrochemical properties (photocurrent densities) of anodic
tungsten oxide obtained by anodization in various electrolytes. It is clearly seen that it is difficult to
compare those values because different types and intensities of light sources, supporting electrolytes,
and polarization of photoanodes were used. For this reason, we propose a detailed investigation of the
morphology, photoelectrochemical, and optical properties of anodic WO3 layers grown in different
electrolytes under various operation conditions.

Table 1. Structural features and photoelectrochemical properties of anodic WO3 formed in
different electrolytes.

Electrolyte Composition; Time
of Anodization; Applied Voltage

Morphology; Oxide
Thickness

Current Density
(at a Given Potential) Electrolyte Light Source and

Intensity Ref.

0.15 M NH4F (glycerol/water
50/50 vol %); 1 h; 40 V Nanotubes 0.38 mA cm−2

(0.6 V vs. SCE)

0.5 M Na2SO4,
25 vol %

methanol

LED
(15 mW cm−2) [7]

1 M HNO3; 1 h; 40 V Nanoflakes 1.17 mA cm−2

(1.2 V vs. SCE)
1 M H2SO4

Xe lamp (AM 1.5 G
filter; 100 mW cm−2) [27]

10 wt% K2HPO4/glycerol; 20 h; 50
V

Mesoporous layers; 2.5
µm

~1.4 mA cm−2 (1.0 V
vs. Ag/AgCl)

1 M HClO4 Xe lamp (AM1.5 filter) [26]

0.1 M NaF; 24 h; 60 V Porous film; 2. 59 µm 0.75 mA cm−2 (1.23 V
vs. RHE)

0.1 M HCl Xe lamp (100 mW
cm−2) [12]

0.15 M NaF; 1 h; 60 V Nanoporous 3.21 mA cm−2 (2.0 V vs.
Ag/AgCl)

0.5 M Na2SO4 Xe lamp [14]

0.15 M NaF; 1 h; 60 V Nanoporous 0.63 mA cm−2 (2.0 V vs.
Ag/AgCl)

0.5 M Na2SO4 Xe lamp [11]

Despite a lot of papers discussing the influence of anodizing conditions (especially applied
potential) on the morphology of anodic WO3 layers having already been published [8,14,19,28],
detailed studies on the photoelectrochemical properties of such kind of materials grown in different
electrolytes under various sets of conditions are sporadically reported in the literature. Moreover, the
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morphology of the photoanode is not a single factor responsible for its PEC performance. Obviously,
the semiconducting/electronic properties of the material, such as a band gap, flat-band potential, dopant
concentration, etc., seem to be especially important. Therefore, in this work, we report for the first
time a detailed investigation of the semiconducting and photoelectrochemical properties of tungsten
oxide layers obtained by anodization of metallic W in different electrolytes under various conditions.
The complex characterization of the morphology and composition of as-received WO3 layers is also
presented. A special emphasis is put on the establishment of correlations between conditions applied
during anodic oxidation, morphological features of the synthesized materials, their semiconducting
properties and, finally, photoelectrochemical performance of the photoanodes.

2. Results

In order to compare the properties of different types of anodic WO3 with various morphologies,
six different sets of anodizing conditions (labelled as B, C, D, G, F, Z—for details, see Table 2) were
chosen on the basis of literature research and preliminary results.

Table 2. Band gap values (eV) of anodic WO3 layers obtained in various anodizing conditions and then
annealed in air at 500 ◦C for 2 h estimated from IPCE and UV-Vis reflectance measurements.

Anodization Conditions WO3 Sample Label Photoelectrochemical
Measurements

UV-Vis Diffuse Reflectance Spectroscopy
Measurements

1 M (NH4)2SO4 and 0.075 M NH4F; 50 V;
240 min B 2.69 ± 0.05 2.90 ± 0.06

1 M Na2SO4 and 0.12 M NaF;
40 V; 120 min C 2.71 ± 0.05 2.91 ± 0.06

1 M Na2SO4 and 0.19 M NH4F;
40 V; 15 min D 2.72 ± 0.05 2.87 ± 0.06

0.27 M NH4F in 2.2 wt.% H2O in ethylene
glycol; 10 V; 60 min G 2.68 ± 0.05 3.00 ± 0.06

0.15 M NH4F; 30 V; 30 min F 2.74 ± 0.05 2.79 ± 0.06

Figure 1 shows SEM images of tungsten oxide layers obtained at different anodizing conditions.
Considering aqueous electrolytes containing fluoride ions (samples B, C, D, and F), it is clear that the
B-WO3 (Figure 1A) and C-WO3 (Figure 1C) layers are characterized by a well-defined nanoporous
morphology. On the contrary, when the duration of the process was too short (sample F and D), anodic
layers with a partially clogged porous surface were obtained (Figure 1B,F). Since it is well known that
the size of the pores increases as the potential applied during anodization increases [8,14,19,28] and
more uniform and smoother anodic layers are formed in viscous electrolytes [29], the anodic oxide film
with smaller channels was synthesized in an ethylene glycol-based solution containing F− ions and a
small amount of water at the potential of 10 V (sample G, see Figure 1D). Surprisingly, contrary to
the results obtained by Chen et al. [21], no oxide layers were observed on the tungsten surface after
the anodization in a 1.8 M NaOH electrolyte (sample Z, Figure 1E), and this fact was confirmed by
EDS results—no oxygen was found (see Figure S1, Supplementary Materials). However, very recently,
Wang et al. [30] reported that efficient electrochemical polishing of tungsten can be conducted in this
kind of electrolyte resulting on a smooth tungsten surface. Therefore, sample Z was not taken for
further studies.

Cross-sectional views of the obtained tungsten oxide films are presented in Figure 2. It is clearly
visible that the received oxide layers differ in thickness, from about 400 nm (sample F) up to 890 nm
(sample G). Moreover, anodic films formed in aqueous electrolytes exhibit a typical irregular rough
morphology, while that grown in the ethylene glycol-based solution is uniform, more compact, and
smooth (Figure 1D).
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Figure 1. SEM images of anodic WO3 obtained in different anodizing conditions: 1 M(NH4)2SO4 +

0.075 M NH4F at 50 V for 4 h – sample B (A), 1 M Na2SO4 + 0.19 M NH4F at 40 V for 15 min – sample
D (B), 1 M Na2SO4 + 0.12 M NaF at 40 V for 2 h – sample C (C), 0.27 M NH4F (in 2.2 wt.% H2O in
ethylene glycol) at 10 V for 1 h – sample G (D), 1.8 M NaOH at 35 V for 45 s – sample Z (E), and 0.15 M
NH4F at 30 V for 30 min – sample F (F).
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Figure 2. Cross-sectional SEM images of anodic WO3 layers obtained in different anodizing conditions:
1 M(NH4)2SO4 + 0.075 M NH4F at 50 V for 4 h - sample B (A), 1 M Na2SO4 + 0.19 M NH4F at 40 V for
15 min – sample D (B), 1 M Na2SO4 + 0.12 M NaF at 40 V for 2 h – sample C (C), 0.27 M NH4F (in 2.2
wt.% H2O in ethylene glycol) at 10 V for 1 h – sample G (D), 0.15 M NH4F at 30 V for 30 min (E).

In order to study the oxide build-up process, current densities were recorded for each sample
during anodization (Figure 3).
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Figure 3. Current density vs. time curves recorded during anodic oxidation of metallic tungsten
with marked different stages of anodization (A). Current density vs. time curves recorded during
anodization of W at different conditions (B).

Analyzing the typical shape of current density vs. time curves recorded during anodization,
it can be seen that four characteristic stages can be distinguished (Figure 3A). At the beginning of
electrochemical oxidation, the surface of tungsten is covered entirely with a compact oxide layer
thickening with time by a field-assisted oxide growth, which is accompanied by a significant current
drop (stage I). Over the course of the process, a compact layer is transformed into initially porous as a
result of the field-enhanced dissolution of anodic oxide [31] and formation of penetration paths and
pore embryos in the compact oxide layer (sometimes accompanied by oxygen evolution or chemical
etching of oxide with fluoride ions) [15]. Consequently, the current density increases until it reaches the
maximum (stage II). At stage III, some initial pores grow up and coalesce with adjacent smaller pores,
and consequently, a slight decrease in the current density with time is detected. Finally, a stable current
density is observed, indicating a steady-state growth of nanostructured oxide layer (stage IV) [32].
As can be seen in Figure 3B, the typical shape of the current density vs. time cure is reproduced for all
samples anodized in aqueous electrolytes. As expected, both the steady-state current density and time
required to reach a local current minimum (initiation of pore formation) are strongly dependent on the
anodizing conditions, especially the electrolyte composition (i.e., the higher the concentration of F−

ions, the earlier pore formation occurs due to more effective oxide dissolution) and applied potential
(the higher the applied potential, the faster pore formation and the higher charge passing through the
system) [8]. On the contrary, for anodization of the tungsten foil in the ethylene glycol-based solution
(sample G), the current density decreases continuously up to ca. 50 s when a stable value is reached.
Such a shape of the current-time curve without a local minimum is typical for the formation of compact
anodic layers, which is strongly in line with the morphology of sample G shown in Figures 1D and 2D.

The steady-state current density and growth rate as well as a growth ratio, defined as the average
oxide thickness divided by the charge density, were calculated for all studied WO3 samples, and the
results are collected in Figure 4.

Among the samples anodized in aqueous solutions, the highest growth ratio and growth rate
were observed for the shortest duration of anodization process (sample G). In our recent work [8], we
confirmed that the most effective oxide thickening is observed at the initial stage of anodization, and
the longer the process, the more effective is the chemical etching of the oxide film caused by F− ions.
For detailed analysis of the influence of anodizing parameters on the growth rate and efficiency of WO3

formation during anodization in aqueous electrolytes containing fluorides, please refer to our previous
paper [8]. For the WO3 layer received in the ethylene glycol based electrolyte at 10 V (sample G), the
growth ratio reaches a much higher value (460 nm cm C−1) compared with other samples anodized
at higher potentials in aqueous electrolytes (15–120 nm cm C−1). The highest efficiency of the oxide
formation at the proposed conditions is a result of both a much slower oxide etching by F− ions in
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the non-aqueous electrolyte [33] and less effective field-assisted oxide dissolution caused by a weaker
electric field.
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Figure 4. The oxide growth rate (red), growth ratio (blue), steady state current density (green), and
oxide thickness of WO3 layers obtained in different anodizing conditions.

The as-received anodic WO3 samples were then subjected to controlled annealing treatment in
air at 500 ◦C for 2 h [34]. Afterward, all materials were characterized by X-ray diffraction. As can be
seen in Figure 5, planes that can be assigned to the metallic substrate ((200) and (211)) and monoclinic
tungsten trioxide ((020), (200), (120), (112), (022), (220), (222), (040), (400), and (042)) can be clearly
distinguished in the XRD patterns of anodic oxides.
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Semiconducting properties of the obtained anodic tungsten oxide layers were studied using
Mott-Schottky analysis (1) [35–37]:

C−2
SC =

(
2

εε0qNd

)(
E− E f b −

kT
q

)
(1)

where Csc is the capacitance of the space charge region (F cm−2), Nd is donor density (cm−3), ε is
the dielectric constant of porous tungsten oxide (20) [36,38], ε0 is permittivity of free space (8.85
× 10−14 F cm−1), q is the electron charge (1.602 × 10−19 C), E is the applied potential (V), Efb is a
flat band potential (V), T is the absolute temperature (K), and k is the Boltzmann constant (1.38 ×
10−23 J K−1). The Mott−Schottky analysis allows probing the semiconductor/electrolyte interface
by capacitance-voltage measurements, and estimates the donor density and flat band potential of
semiconducting material. The dependence Csc on the potential was recorded for all studied samples at
the frequency of 200, 500, and 1000 Hz. As can be seen in Figure 6, a positive slope of linear part of
the curves indicates an n-type semiconducting behavior of all prepared tungsten oxide layers. The
estimated flat band potentials are negative for all studied samples and vary from −0.08 V to −0.25 V vs.
SCE (see Table 3). As can be seen, the flat band potential for sample B is slightly more positive than for
other samples and might indicate an improved photoelectrochemical properties over the other anodic
oxides [39].
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Table 3. Estimated flat band potentials (Efb), donor densities (Nd) of WO3 obtained in various anodizing
conditions and annealed in air at 500 ◦C for 2 h.

Anodization Conditions WO3 Sample Label Efb vs. SCE / V Nd / cm−3

1 M (NH4)2SO4 and 0.075 M NH4F; 50 V;
240 min B −0.08 (3.64 ± 0.22) × 1021

1 M Na2SO4 and 0.12 M NaF; 40 V; 120 min C −0.25 (2.64 ± 0.29) × 1021

1 M Na2SO4 and 0.19 M NH4F; 40 V; 15 min D −0.25 (1.53 ± 0.17) × 1021

0.27 M NH4F in 2.2 wt.% H2O in ethylene
glycol; 10 V; 60 min G −0.20 (3.08 ± 0.45) × 1021

0.15 M NH4F; 30 V; 30 min F −0.24 (1.18 ± 0.35) × 1021

In a similar way, flat band potentials were determined from the intercepts of the linear parts of
the Mott-Schottky curves measured at different frequencies (for details, see Table S1, Supplementary
Materials). Slight differences in the estimated values may result from the porosity and non-homogeneity
of the tested surfaces. This effect is often observed for crystalline porous materials [35,40]. The donor
densities were also calculated for all tested materials, and the obtained values are collected in Table 3.
In general, tungsten oxide-based materials described in the literature exhibit donor densities in the
range of 1019–1022 cm-3, depending on the synthesis method. The values typically reported for oxide
layers obtained by anodization (1022 cm−3) [24,41–45] are in agreement with those obtained for the
anodic WO3 samples studied in this work. The highest values were received for samples B and G.

Photoelectrochemical properties of the anodic WO3 samples obtained at different conditions were
also studied and the results are presented in Figure 7. The photocurrent maps, showing photocurrent
densities as a function of incident light wavelength and applied potential, were recorded for all studied
photoanodes. Typical 3D spectra with the lowest (sample F) and highest (sample B) photoresponse
of anodic WO3 are shown in Figure 7A,B, respectively. As can be seen, the highest photocurrents
were generated when the photoanodes were polarized with the potential of 1 V vs. SCE. Therefore,
the photoelectrochemical response of all tested materials during a sequential illumination with the
wavelength in the range of 300–500 nm was examined under the same conditions (Figure 7C). It is
clear that the maximum photocurrent density was observed for sample B (140 µA cm−2 at 350 nm). It
can be attributed to a higher donor density and consequently a higher conductivity of the material
(lower donor densities result in a significant decline in resulting photocurrents).
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Based on the photoelectrochemical measurements, the incident photon to current efficiency (IPCE)
values were calculated using the following equation (2) [34,46]:

IPCE = 1240·
Ip(λ)

P(λ)λ
(2)

where Ip(λ)—photocurrent density [A m−2] at the wavelength λ (nm), P(λ)—incident power density of
light [W m−2] at the wavelength λ (nm), 1240—constant [W nm A−1]. The obtained IPCE spectra are
collected in Figure 7D. As can be seen, the highest IPCE value (c.a. 61% at the wavelength of 350 nm)
was observed for sample B whereas other anodic materials exhibit twice-lower values.

In order to better characterize semiconducting properties of anodic tungsten oxides, average band
gap energies (Eg) were determined from (IPCE hν)0.5 vs. hν curves (an example is shown in Figure 8A),
since it is known that WO3 possesses an indirect band gap [7,47]. The optical band gaps of anodic WO3

layers were also estimated from UV-Vis diffusion reflectance measurements (for details, see Figure
S2, Supplementary Materials) using the Tauc method (see Figure 8B). The average band gap energies
determined by both methods are collected in Table 2. As can be seen, the band gap values are in the
range between 2.7–3.0 eV, and no significant influence of anodizing conditions such as the electrolyte
composition, time, and applied potential on the band gap was found.
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3. Discussion

Based on research conducted for the tested WO3 samples, it can be stated that operating conditions
applied during the anodization process are of great importance in designing photoanodes with
enhanced properties. Although the estimated band gaps do not differ significantly within the samples,
their photoelectrochemical properties can be very different. It is related with a combination of
several important factors such as the morphology of anodic oxide (homogeneity, porosity, pore size,
active surface area), oxide layer thickness, and mostly, properties of the semiconductor itself (e.g.,
density of charge carriers), which in turn depend on anodizing conditions, including electrolyte
composition. As mentioned before, the porosity of anodic oxide has a significant effect on its
photoelectrochemical properties. Consequently, porous structures with a larger active surface area
exhibit better photoelectrochemical performance due to a reduced rate of electron−hole recombination.
Moreover, nanoporous oxide layers can release more photoinduced electron−hole pairs compared
to compact materials [6,10,12,48,49]. It can explain a significantly worse photoresponse of sample G
(more compact) compared to sample B (much more porous), while for both samples, the layer thickness
and donor density are similar (see Figure 9A).
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Another aspect worth mentioning is thickness of the semiconducting layer. When the thickness
of anodic oxide increases to optimal value, the photocurrent density increases because of the greater
number of photogenerated electron-hole pairs. However, for the thicker oxide layers (thicker than the
optimal thickness), the photoresponse worsens due to a limited depth of pore penetration by the incident
light [50] and possible recombination of photogenerated charge carriers during their migration through
the oxide layer (towards the current collector) over longer distances [50–52]. Therefore, the formation
of thick anodic WO3 films (samples C and D) is not an effective strategy for improvement of the
photoanode performance. For instance, sample C being almost twice as thick as sample D and having
a better developed porous morphology (see Figure 1) generates even lower photocurrents (Figure 9A).
Comparing the IPCE values obtained for samples having similar thicknesses and well-defined porous
morphology (i.e., samples D and F), the better performance of sample D can be explained in terms of
the higher Nd value (Figure 9A). In order to sum up the semiconducting properties of the investigated
materials, the energy diagrams were constructed (Figure 9B) based on the assumption that for n-type
semiconductors, the flat band potential merges practically with the conduction band edge [34,53].

The superior photoelectrochemical properties of sample B are a direct consequence of its optimal
morphology (mainly a well-developed porous surface) combined with electronic properties (high
donor density). Finally, in order to assess the stability of photoanode response over time, sample B
(showed the best photoelectrochemical performance) was tested for 10 weeks (for details, see Figure
S3, Supplementary Materials). The average IPCE value calculated for consecutive 10 measurements
performed at 350 nm and polarization 1 V vs. SCE was about 58.5 ± 2.8%. The obtained results suggest
that the photoanode exhibits very stable performance in terms of the generated photocurrent.

4. Materials and Methods

4.1. Preparation of Anodic WO3 Layers

Tungsten oxide layers were obtained by single-step anodic oxidation of metallic tungsten (99.95%,
0.2 mm thick, Goodfellow, Huntingdon„ England) carried out in different electrolytes. Applied
electrooxidation conditions, including the electrolyte composition, applied voltage, and duration of
the process are collected in Table 4. Anodizations were carried out in a two-electrode cell, where the W
foil was used as an anode and the Pt mesh as a cathode. All syntheses were performed at a constant
temperature of 20 ◦C in a continuously stirred (250 rpm) electrolyte [8]. In order to obtain a photoactive
phase, the as-received samples were subjected to annealing in air at 500 ◦C for 2 h (heating rate of 2 ◦C
min−1) using a muffle furnace (FCF 5SHM Z, Czylok, Krakow, Poland) [34].

Table 4. Operating Conditions of Anodic Oxidation of Tungsten Foil.

Electrolyte Composition Time of Anodization / min Applied Voltage / V WO3 Sample Label

1 M (NH4)2SO4 + 0.075 M NH4F 240 50 B
1 M Na2SO4 + 0.12 M NaF 120 40 C

1 M Na2SO4 + 0.19 M NH4F 15 40 D
0.27 M NH4F + 2.2 wt.% H2O,
ethylene glycol based solution 60 10 G

0.15 M NH4F 30 30 F
1.8 M NaOH 45 s 35 Z

4.2. Characterization of Anodic WO3 Layers

The morphology of the obtained materials was verified using a field emission scanning electron
microscope (FE-SEM/EDS, Hitachi S-4700 with a Noran System 7, Tokyo, Japan. The thickness of the
anodic films was estimated directly from SEM images by using WSxM image processing software [54].
The phase composition of received samples was determined using the X-ray diffractometer Rigaku
Mini Flex II (Rigaku, Tokyo, Japan) with monochromatic Cu Kα radiation (λ = 1.5418 Å) at the
2θ range of 20–80◦. The diffuse reflectance spectra of the samples were recorded in the range of
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250–800 nm at room temperature using the Perkin Elmer Lambda 750S UV/Vis/NIR spectrophotometer
(Waltham, MA, USA).

4.3. Electrochemical and Photoelectrochemical Measurements

All photoelectrochemical tests were carried out in a Teflon cell with a quartz window in a
three-electrode system, where anodic tungsten oxide layers were used as working electrodes (WE), a
platinum foil as a counter electrode (CE), and Ag/AgCl/KCl (3 M KCl) electrode as a reference electrode
(RE). The generated photocurrents were measured in 0.1 M KNO3 using a photoelectric spectrometer
equipped with the 150 W xenon arc lamp (Instytut Fotonowy, Krakow, Poland) and combined with a
potentiostat (Instytut Fotonowy, Poland). The Mott-Schottky analysis was carried out using the Gamry
Reference 3000 potentiostat (Warminster, PA, USA ) at frequencies of 200, 500, and 1000 Hz and DC
potential range 0–1 V.

5. Conclusions

In summary, a detailed investigation of the anodic formation of tungsten oxide layers in different
electrolytes confirmed that the morphology of anodic oxide depends strongly on anodizing conditions,
especially the electrolyte composition. The n-type semiconducting behavior of all obtained tungsten
oxides was confirmed by Mott-Schottky analyses. Despite the fact that no significant effect of anodizing
parameters on the band gap value was observed, the other semiconducting properties, including
flat band potential and, especially, donor densities were found to be strongly dependent on the
conditions applied during anodic oxidation. In consequence, the studied samples exhibited different
photoelectrochemical properties because of several important reasons, including differences in the
surface morphology (homogeneity, porosity, pore size, active surface area), oxide layer thickness, and
aforementioned semiconducting properties. Therefore, it should be emphasized that not only the
morphology of the resulting sample should be taken into consideration when looking for optimal
conditions for the fabrication of the most promising anodic WO3 photoanode, since the electrolysis
parameters also affect the semiconducting nature of the nanostructured film itself. Here, we found
that WO3 with a well-defined porous morphology and the best PEC properties can be formed by
anodization in 1 M (NH4)2SO4 and 0.075 M NH4F at 50 V during 4 h followed by annealing in air at
500 ◦C. Importantly, the obtained photoanode exhibited very stable photoelectrochemical performance
over 10 weeks.

We expect that the as-prepared tungsten oxide sample can be a promising material for further
investigations, such as doping or creating heterojunctions to shift photoresponse into visible light
range. Moreover, the presented differences in semiconducting properties of anodic materials might be
beneficial for other applications of anodic tungsten oxide layers, including sensors, photocatalysts, and
smart windows.

Supplementary Materials: Supplementary Materials are available online, Figure S1: EDS spectra of tungsten foil
and tungsten sample anodized in a 1.8 M NaOH solution, Figure S2. UV-Vis reflectance spectra for all studied
WO3 samples after anodization and annealing in air at 500 oC for 2 h, Figure S3. IPCE values obtained at 1 V
vs. SCE for the sample B over 10 weeks of storage with corresponding average response, Table S1. Flat band
potentials estimated for all studied WO3 samples at 200, 500 and 1000 Hz.
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