
molecules

Article

Systematics of Atomic Orbital Hybridization of
Coordination Polyhedra: Role of f Orbitals

R. Bruce King

Department of Chemistry, University of Georgia, Athens, GA 30602, USA; rbking@uga.edu

Academic Editor: Vito Lippolis
Received: 4 June 2020; Accepted: 29 June 2020; Published: 8 July 2020

����������
�������

Abstract: The combination of atomic orbitals to form hybrid orbitals of special symmetries can be
related to the individual orbital polynomials. Using this approach, 8-orbital cubic hybridization can
be shown to be sp3d3f requiring an f orbital, and 12-orbital hexagonal prismatic hybridization can be
shown to be sp3d5f2g requiring a g orbital. The twists to convert a cube to a square antiprism and
a hexagonal prism to a hexagonal antiprism eliminate the need for the highest nodality orbitals in
the resulting hybrids. A trigonal twist of an Oh octahedron into a D3h trigonal prism can involve a
gradual change of the pair of d orbitals in the corresponding sp3d2 hybrids. A similar trigonal twist
of an Oh cuboctahedron into a D3h anticuboctahedron can likewise involve a gradual change in the
three f orbitals in the corresponding sp3d5f3 hybrids.
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1. Introduction

In a series of papers in the 1990s, the author focused on the most favorable coordination polyhedra
for sp3dn hybrids, such as those found in transition metal complexes. Such studies included an
investigation of distortions from ideal symmetries in relatively symmetrical systems with molecular
orbital degeneracies [1] In the ensuing quarter century, interest in actinide chemistry has generated an
increasing interest in the involvement of f orbitals in coordination chemistry [2–7]. This has prompted
me to revisit such issues, adding the new feature of f orbital involvement as might be expected to
occur in structures of actinide complexes and relating hybridization schemes to the polynomials of the
participating orbitals.

The single s and three p atomic orbitals have simple shapes. Thus, an s orbital, with the quantum
number l = 0, is simply a sphere equivalent in all directions (isotropic), whereas the three p orbitals,
with quantum number l = 1, are oriented along the three axes with a node in the perpendicular plane.
For higher nodality atomic orbitals with l > 1 nodes the situation is more complicated since there is
more than one way of choosing an orthogonal 2 l + 1 set of orbitals. In this connection, a convenient
way of depicting the shapes of atomic orbitals with two or more nodes is by the use of an orbital
graph [8]. Such an orbital graph has vertices corresponding to its lobes of the atomic orbital and
the edges to nodes between adjacent lobes of opposite sign. Orbital graphs are necessarily bipartite
graphs in which each vertex is labeled with the sign of the corresponding lobe and only vertices of
opposite sign can be connected by an edge. For clarity in the orbital graphs depicted in this paper,
only the positive vertices are labeled with plus (+) signs. The unlabeled vertices of the orbital graphs
are considered negative.

Table 1 shows the orbital graphs for the commonly used set of five d orbitals as well as the
corresponding orbital polynomials. The orbital graphs for four of this set of five d orbitals are
squares, whereas that for the fifth d orbital is a linear configuration with three vertices and two edges.
The exponent of the variable z corresponds to l-m, i.e., 2-m for this set of d orbitals. This set of d
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orbitals is not the only possible set of d orbitals. Two alternative sets of d orbitals have all five d
orbitals of equivalent shape corresponding to rectangular orbital graphs oriented to exhibit five-fold
symmetry [9–12] One set of these equivalent d orbitals is based on an oblate (compressed) pentagonal
antiprism, whereas the other set of equivalent d orbitals is based on a prolate (elongated) pentagonal
prism (Figure 1). These sets are useful for structures with five-fold symmetry corresponding to
symmetry point groups such as D5d, D5h, and Ih in the structures studied here. For the icosahedral
group Ih all five d orbitals belong to the five-dimensional Hg irreducible representation.

Table 1. The polynomials, angular functions, and orbital graphs for the five d orbitals.

Polynomial Angular Function Appearance and Orbital Graph Shape

xy
x2
− y2
xz
yz

sin2 sin
sin2 cos2

sin cos cos
sin cos sin
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Figure 1. The oblate and prolate pentagonal antiprisms on which the two sets of five equivalent d
orbitals are based indicating the amounts of compression and elongation, respectively.

Two different sets of f orbitals are used depending on the symmetry of the system (Table 2) [13].
The general set of f orbitals is used except for systems with high enough symmetry to have
three-dimensional irreducible representations. This general set consists of a unique f{z3} orbital
with a linear orbital graph and m = 0, an f{xz2,yz2} pair with a double square orbital graph and m = ± 1,
an f{xyz, z(x2

− y2)} pair with a cube orbital graph and m = ±2, and an f{x(x2
− 3y2),y(3x2

− y2)} set
with a hexagon orbital graph and m = ±3. For systems having point groups with three-dimensional
irreducible representations, such as the octahedral Oh and the icosahedral Ih point groups, the so-called
cubic set of f orbitals is used. The cubic set of f orbitals consists of the triply degenerate f{x3,y3,z3} set
with linear orbital graphs and a quadruply degenerate f{xyz, x(z2

− y2), y(z2
− x2), z(x2

− y2)} set.
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Table 2. The polynomials, angular functions, and orbital graphs for both the general and cubic sets of
the seven f orbitals.

|m| Lobes Shape Orbital Graph General Set Cubic Set

3 6 Hexagon
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Fully using the complete sp3, sp3d5, and sp3d5f7 manifolds in hybridization schemes should lead
to most nearly spherical polyhedra (Figure 2). For the four-orbital sp3 system such a polyhedron is,
of course, the familiar regular tetrahedron. For the 16-orbital sp3d5f7 manifold the most spherical
polyhedron is the tetracapped tetratruncated tetrahedron, also of Td point group symmetry. Such a
16-vertex deltahedron is the largest Frank-Kasper polyhedron where a Frank-Kasper polyhedron
is a deltahedron with only degree 5 and degree 6 vertices with no pair of adjacent degree 6
vertices [14]. The tetracapped tetratruncated tetrahedron is rarely found in experimental molecular
structures but has been recently realized in the central Rh4B12 polyhedron in the rhodaborane
Cp*3Rh3B12H12Rh(B4H9RhCp*), synthesized by Ghosh and co-workers [15]. There is no similarly
symmetrical most spherical 9-vertex polyhedron. The most spherical 9-vertex deltahedron is the D3h
tricapped trigonal prism found experimentally in the MH9

2− (N = Tc, Re) anions [16,17].
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2. Polyhedral Hybridizations

2.1. Polyhedra with Tetragonal Symmetry

The simplest configuration with tetragonal symmetry is the square, found as a coordination
polyhedron in diamagnetic four-coordinate complexes of d8 metals such as Ni(II), Pd(II), Pt(II), Rh(I),
and Ir(I). Since a square is a two-dimensional structure in an xy plane, the polynomials of the atomic
orbitals for square hybridization cannot contain a z variable. This limits the p orbital involvement in
square hybridization to the p{x} and p{y} orbitals so that a d orbital is required for square hybridization.
This d orbital can be either the d{x2

− y2} or d{xy} orbital, depending on whether the x and y axes are
chosen to go through the vertices or edge midpoints, respectively, of the square (Table 3).

Table 3. Hybridization schemes for the tetragonal polyhedra.

Polyhedron Coord. Hybridization
(Symmetry) No. Type s + p d f

Square (D4h) 4 sp2 A1g + Eu B1g {x2
− y2} —

Square Bipy (D4h) 6 sp3d2 A1g + A2u + Eu A1g{z2} + B1g {x2
− y2} —

Octahedron (Oh) 6 sp3d2 A1g + T1u Eg{x2
− y2,xy} —

Square Prism(D4h) 8 sp3d3f A1g + A2u + Eu B1g {x2
− y2} + Eg{xz,yz) B2u{ z(x2

− y2)}
Cube(Oh) 8 sp3d3f A1g + T1u T2g{xy,xz,yz} A2u{xyz}

Bicapped Cube(D4h) 10 sp3d4f2 A1g + A2u + Eu A1g{z2} + B1g {x2
− y2} + Eg{xz,yz) A2u(z3} + B2u{

z(x2
− y2)}

Square
Antiprism(D4d) 8 sp3d4 A1 + B2 + E1 E2{x2

− y2,xy} + E3{xz,yz) —

Bicap Sq Antipr(D4d) 10 sp3d5f A1 + B2 + E1 A1{z2} + E2{x2
− y2,xy} + E3{xz,yz) B2{z3}

The smallest three-dimensional polyhedron with tetragonal symmetry of interest in this context
is the regular octahedron with the Oh point group containing both three-fold and four-fold axes
(Figure 3). This is the most frequently encountered polyhedron in coordination chemistry and is
also the most spherical 6-vertex closo deltahedron in the structures of boranes and related species.
The Oh point group contains two- and three-dimensional irreducible representations. Under octahedral
symmetry, the five d orbitals split into a triply degenerate T2g{xz,yz,xy} set and a doubly degenerate
Eg{x2

− y2,xy} set. Octahedral hybridization supplements the four-orbital sp3 set with the doubly
degenerate Eg{x2

− y2,xy} set of d orbitals.
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An octahedral coordination complex can be stretched or compressed along a four-fold axis thereby
reducing the symmetry from Oh to D4h by removing the three-fold axes. This corresponds to the
Jahn–Teller effect [18] leading to a structure that can be designated as a square bipyramid, analogous to
pentagonal and hexagonal bipyramids discussed later in this paper. This reduction in symmetry of an
octahedral metal complex splits the triply degenerate T1u p orbitals into a doubly degenerate E1u{x,y}
set and a non-degenerate A2u{z} orbital and the doubly degenerate Eg{x2

− y2,xy} set of orbitals into
non-degenerate A1g{z2} and B1g{x2

− y2} orbitals.
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The most symmetrical polyhedron for an 8-coordinate complex is the cube, which is the dual of
the regular octahedron and, thus, also exhibits the Oh point group (Figure 3). Considering the cube as
two squares stacked on top of each other at a distance leading to the three-fold symmetry elements of
the Oh point group leads to a simple way of deriving the atomic orbitals for cubic hybridization. Thus,
to form a set of cubic hybrid orbitals, the atomic orbitals for square hybridization are supplemented
by the four atomic orbitals in which the polynomials for square hybridization are multiplied by z.
In this way, a set of pd2f orbitals with each atomic orbital having one more node than the corresponding
orbital in the sp2d orbital set for square hybridization is added to the sp2d square hybridization to
form an (sp2d)(pd2f) = sp3d3f set for cubic hybridization. This shows that one f orbital, namely the
A2u{xyz} orbital with a cube orbital graph (Table 2), is required for cube hybridization. This suggests
that 8-coordinate ML8 complexes with cubic coordination are likely to be restricted to lanthanide
and actinide chemistry, particularly the latter. Reducing the symmetry of the cube from Oh to D4h by
elongation or compression along a four-fold axis thereby eliminating the three-fold symmetry does not
eliminate the need for an f orbital in the hybridization of an ML8 complex.

The need for an f orbital in the hybridization for an 8-coordinate metal complex can be eliminated
by converting a cube into a square antiprism by rotating a square face of a cube 45◦ around the C4 axis
thereby changing the Oh point group into D4d (Figure 3 and Table 3). The sp3d4 hybridization for the
square antiprism omits the d{z2} orbital.

Capping the square faces of a square antiprism retaining the D4d symmetry leads to the most
spherical closo deltahedron for 10-vertex borane derivatives, such as B10H10

2− (Figure 3). The d{z2} and
f{z3} orbitals, both of which lie along the four-fold z axis, are added to th sp3d4 hybridization of the
square antiprism to give the sp3d5f{z3} hybridization of the bicapped square antiprism. In a similar
way the d{z2} and f{z3} orbitals can be added to the sp3d3f hybridization of the cube to give the sp3d4f2

hybridization of the bicapped cube with D4d symmetry.

2.2. Polyhedra with Pentagonal Symmetry

The simplest structure with pentagonal symmetry is the planar pentagon. Using a set of five
orbitals with only x and y in the orbital polynomial leads to sp2{x,y}d2(x2

− y2,xy} hybridization for
planar pentagon coordination with minimum l values. Either the prolate or oblate sets of equivalent d
orbitals (Figure 1) can provide alternative d5 hybridization for a planar pentagon structure, but with
higher combined l values for the five-orbital set and poor overlap between the ligand orbitals and
those of the central atom.

The smallest three-dimensional polyhedron of interest with pentagonal symmetry is the D5h
pentagonal bipyramid (Figure 4). The sp3d3 scheme for pentagonal bipyramidal coordination
supplements the five-orbital sp2{x,y}d2(x2

− y2,xy} hybridization for the equatorial pentagon with
the p{z} and d{z2} orbitals for the linear sub-coordination of the axial ligands perpendicular to the
equatorial planar pentagon (Table 4).
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Table 4. Hybridization schemes for the pentagonal polyhedra.

Polyhedron Coord. Hybridization
(Symmetry) No. Type s + p d f

Pentagon (D5h) 5 sp2d2 A1’ + E1´ E2´{x2
− y2} —

Pent Bipy (D5h) 7 sp3d3 A1´ + A2 ´́ + E1´ A1´{z2} + E2´{x2
− y2,xy} —

Pent Prism (D5h) 10 sp3d4f2 A1´ + A2 ´́ + E1´ E2´{x2
− y2} + E1 ´́ {xz,yz} E2 ´́ {xyz,z(x2

− y2)}
Bicap Pent
Prism(D5h) 12 sp3d5f3 A1´ + A2 ´́ + E1´ A1´{z2} + E2´{x2

− y2,xy} + E1 ´́ {xz,yz} A2 ´́ {z3} +
E2 ´́ {xyz,z(x2

− y2)}
Pent Antiprism(D5d) 10 sp3d4f2 A1g + A2u + Eu E1g{xz,yz} + E2g{x2

− y2,xy} E2u
Bicap Pent

Antipr(D5d) 12 sp3d5f3 A1g + A2u + Eu A1g{z2} + E1g{xz,yz} + E2g{x2
− y2,xy} A2u{z3} + E2u

Icosahedron (Ih) 12 sp3d5f3 A1g + T1u Hg{all d orbitals} T2u{x3,y3,z3}

The 10-vertex pentagonal prism of D5h symmetry (Figure 4) is encountered experimentally in the
endohedral trianions M@Ge10

3– (M = Fe [19], Co [20]), isolated as K(2,2,2-crypt)+ salts and structurally
characterized by X-ray crystallography. Considering the pentagonal prism as two pentagons stacked
on top of each other to preserve the D5h symmetry supplements the sp2{x,y}d2(x2

− y2,xy} of the planar
pentagon with an additional set of five orbitals with the orbital polynomials multiplied by z, i. e.
The p{z}d3(xz,yz}f2{xyz,z(x2

− y2)} set. Thus, the set of 10 orbitals for the pentagonal prism are sp3d4{x2

− y2,xy,xz,yz} f{xyz,z(x2
− y2)} without involvement of the d{z2} orbital. Capping the pentagonal prism

in a way to preserve the D5h symmetry adds the d{z2} and f{z3} orbitals to the hybrid leading to an
sp3d5f3{z3,xyz,z(x2

− y2)} set for the resulting 12-vertex bicapped pentagonal prism.
Twisting one pentagonal face of a pentagonal prism 36◦ around the C5 axis leads to the pentagonal

antiprism of D5d symmetry (Figure 4). Unlike the analogous conversion of the cube to the square
antiprism, this process does not change the sp3d4f2 hybridization. Capping the two pentagonal faces
of the pentagonal antiprism while preserving five-fold symmetry leads to the bicapped pentagonal
antiprism. This adds the d(z2) and f(z3) orbitals to give an sp3d5f3 12-orbital hybridization scheme.
This process is exactly analogous to the conversion of the square antiprism to the bicapped square
antiprism discussed above.

The special Dnd symmetry of an n-gonal antiprism is preserved by compression or elongation
along the major Cn axis to give oblate or prolate polyhedra, respective, as illustrated in Figure 1
for the pentagonal antiprisms representing the five equivalent d orbitals. The regular icosahedron,
so important in several areas of chemistry, including polyhedral borane chemistry, is a special case of
the bicapped pentagonal antiprism with a specific degree of compression/elongation to add three-fold
symmetry to the D5d symmetry of the bicapped pentagonal antiprism to give the full icosahedral point
group Ih. This ascent in symmetry combines some of the irreducible representations of the D5h point
group to give irreducible representations of higher degeneracy. As a result, the A1g + E1g + E2g irreducible
representations coalesce into the single five-fold degenerate Hg representation of the icosahedral point
group. The five d orbitals belong to this Hg representation in icosahedral symmetry. Similarly, the
three f orbitals of the sp3d5f3 icosahedral hybridization belong to the single T2u{x3,y3,z3} irreducible
representation of the Ih point group considering the cubic set of f orbitals (Table 2).

2.3. Polyhedra with Hexagonal Symmetry

The simplest structure with hexagonal symmetry is the planar hexagon itself. The restriction of
the atomic orbitals to those containing no z term in their polynomials requires the use of a single f
atomic orbital to supplement the planar five-orbital sp2{x,y}d2(x2

− y2,xy} set with either f orbital with
a planar hexagon orbital graph, namely the f{x(x2

− 3y2)} or the f{y(3x2
− y2)} orbital depending on the

{x,y,z} coordinate system chosen.
The smallest three-dimensional figure with hexagonal symmetry is the 8-vertex hexagonal

bipyramid (Figure 5). The sp3d3f set of hybrid orbitals for the hexagonal bipyramid is obtained by
supplementing the sp2{x,y}d2{x2

− y2,xy}f{x(x2
− 3y2)} set of orbitals for the equatorial planar hexagon

with the p{z} and d{z2} pair for the two additional axial vertices. The hexagonal bipyramid shares



Molecules 2020, 25, 3113 7 of 10

with the cube (see above) the feature of not arising from any sp3d4 hybridization scheme but instead
requiring an f orbital in a sp3d3f hybridization scheme.
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The atomic orbitals required to form a prism combine those for the polygonal face having only x
and y in their orbital polynomials with an equal number of orbitals in which the polynomials obtained
by multiplying the orbital polynomials for the planar face by the z variable. Thus, the sp2{x,y}d2{x2

−

y2,xy}f{x(x2
− 3y2)} orbitals corresponding to the hexagonal face of the hexagonal prism is supplemented

by the p{z3}d2{xz,yz}f2{xyz,z(x2
− y2)}g{xz(x2

− 3y2)} set of six orbitals. This leads to the interesting
observation that a single g orbital corresponding to the B2g irreducible representation is required to
provide a set of 12 hybrid orbitals oriented towards the vertices of a D6h hexagonal prism (Table 5).
Not surprisingly, this g orbital has a hexagonal prism orbital graph. Capping the hexagonal prism
in a way to preserve the D6h symmetry adds the d{z2} and f{z3} orbitals to the hybrid leading to an
sp3d5f3{z3,xyz,z(x2

− y2)} for the resulting 12-vertex bicapped pentagonal prism.

Table 5. Hybridization schemes for the hexagonal polyhedra.

Polyhedron Coord. Hybridization
(Symmetry) No. Type s + p d f g

Hexagon (D6h) 6 sp2d2f A1g + E1u E2g{x2
− y2} B1u{x(x2

− 3y2)} —
Hexagonal
Bipy(D6h) 8 sp3d3f A1g + A2u + E1u A1u{z2} + E2g{x2

− y2,xy} B1u{x(x2
− 3y2)} —

Hexagonal
Prism(D6h) 12 sp3d4f3g A1g + A2u + E1u E1g{xz,yz} + E2g{x2

− y2,xy} B1u + E2u{xyz,z(x2
− y2)} B2g

Bicap Hex
Prism(D6h) 14 sp3d5f4g A1g + A2u + E1u A1u{z2} + E1g{xz,yz}+E2g{x2

− y2,xy} A2u{z3} + B1u + E2u B2g

Hex
Antiprism(D6d) 12 sp3d4f4 A1 + B2 + E1 E2{x2

− y2,xy} + E5{xz,yz} E3 + E4{xyz,z(x2
− y2)} —

Bicap Hex
Antipr(D5d) 14 sp3d5f5 A1 + B2 + E1 A1{z2} + E2{x2

− y2,xy} + E5{xz,yz} B2(z3) + E3 + E4 —

Twisting one hexagonal face of a hexagonal prism 30◦ around the C6 axis leads to the hexagonal
antiprism of D6d symmetry (Figure 5). Going from the D6h symmetry of the hexagonal prism to
the D6d symmetry of the hexagonal antiprism in a 12-vertex hexagonal symmetry system eliminates
the need for a g orbital in the set of 12 atomic orbitals forming the corresponding hybrid orbitals.
This is analogous to the conversion of the cube requiring sp3d3f hybridization to the square antiprism
with sp3d4 hybridization not requiring an f orbital by rotation one square face 45◦ relative to its
opposite partner. Capping the hexagonal faces of the hexagonal antiprism in a way to preserve its
six-fold symmetry leads to the bicapped hexagonal antiprism, which is of significance as being the
most spherical closo 14-vertex deltahedron in borane chemistry. This capping process adds d{z2} and
f{z3} orbitals to the 12-orbital hybridization scheme for the hexagonal antiprism leading to a sl3d5f5

hybridization scheme for the bicapped hexagonal antiprism not requiring g orbitals (Table 5).
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2.4. Trigonal Twist Processes in Polyhedral of Octahedral Symmetry

The octahedron and the cuboctahedron are the simplest two polyhedra with triangular faces and
Oh point group symmetry having both three-fold and four-fold rotation symmetry axes. The process of
converting prisms of n-fold symmetry (n = 4, 5, and 6 including the cube as a special tetragonal prism) to
the corresponding antiprisms involves a twist of (180/n)◦ of an n-fold face around the unique n-fold axis.
Analogous processes can be applied to the three-fold axes in the regular octahedron and icosahedron.
Such a twist process converts the Oh regular octahedron into the D3h trigonal prism and the Oh
cuboctahedron into the D3h anticuboctahedron (Figure 6). These processes can be regarded as trigonal
twists involving three symmetry related diamond-square-diamond transformations. For octahedral
coordination complexes of the type M(bidentate)3 involving bidentate chelating ligands variations of
this process are designated as Bailar twists [21] or Ray-Dutt [22] twists.
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diamond process to a polyhedron with D3h symmetry.

Such trigonal twist processes can be studied by first relaxing the symmetry of the original Oh
polyhedron to D3d, which is the subgroup of Oh obtained by removing the C4 axes. Under this
subgroup, the octahedron can be viewed as a trigonal antiprism with the z axis corresponding to
the C3 axis rather than the C4 axis in the discussion above of polyhedral with C4 symmetry. Under
D3d symmetry rather than the higher Oh symmetry and with the different location of the z axis, the
degenerate Eg{xz,yz} pair of d orbitals as well as the Eg(x2

− y2,xy}pair can be used for octahedral sp3d2

hybridization (Table 6). When the twist reaches the stage of the D3h trigonal prism only the E´{xz,yz}
pair of atomic orbitals is available for the sp3d2 hybridization scheme. Thus, the trigonal twist of an
octahedron to a trigonal prism involves replacement of the Eg{x2

− y2,xy}pair of orbitals in the D3d
octahedral sp3d2 hybrids with the E´{xz,yz} pair of orbitals in the D3h trigonal prismatic hybrids.
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Table 6. Hybridization schemes for polyhedra with Oh symmetry and the D3h polyhedral forme from
them by a triple diamond-square-diamond process.

Polyhedron Coord. Hybridization
(Symmetry) No. Type s + p d f

Octahedron (D3d) 6 sp3d2 A1g + A2u + Eu Eg(x2
− y2,xy}or Eg{xz,yz} —

Trigonal Prism (D3h) 6 sp3d2 A1´ + A2 ´́ + E1´ E´́ {xz,yz} —

Cuboctahedron (Oh) 12 sp3d5f3 A1g + T1u Eg(x2
− y2,xy} + T2g{xy,xz,yz} T2u{x(z2

− y2),y(z2
− x2),z(x2

− y2)}

Cuboctahedron (D3d) 12 sp3d5f3 A1g + A2u + Eu
A1g{z2} + Eg(x2

− y2,xy} +
Eg{xz,yz} A2u{z3} + Eu

Anticuboctahedron(D3h) 12 sp3d5f3 A1´ + A2 ´́ + E1´ A1´{z2} + E´(x2
− y2,xy} +

E´́ {xz,yz} A1´{x(x2
− 3y2} + E´{xz2,yz2}

The sp3d5f3 hybridization for a cuboctahedron using its full Oh symmetry taking the z axis as a C4

axis supplements the full 9-orbital sp3d5 set with the triply degenerate T2u{x(z2
− y2),y(z2

− x2),z(x2

− y2)} set of the cubic f orbitals (Table 6). Reducing the symmetry of the cuboctahedron to D3d and
now taking the C3 axis as the z axis splits, the triply degenerate set of f orbitals into a non-degenerate
A1u{z3} orbital and a doubly degenerate Eu set of orbitals, which can be either the Eu{xyz,z(x2

− y2)}
or the Eu{x(3x2

− y2),y(3x2
− y2)} set. Thus, for the cuboctahedron, like the octahedron under D3d

symmetry, there are two alternative pairs of the required highest l value orbitals in the minimum l value
hybrid that can be used in the hybrid. Converting the D3d cuboctahedron to the D3h anticuboctahedron
eliminates the Eu{x(3x2

− y2),y(3x2
− y2)} pair of f orbitals from the sp3d5f3 hybrid requiring use of the

E´{xz2,yz2} pair.

3. Conclusions

The combination of atomic orbitals to form hybrid orbitals of special symmetries can be related
to the individual orbital polynomials. Thus, planar hybridizations such as the square, pentagon,
and hexagon can only use atomic orbitals with only two variables in their polynomials, conventionally
designated as x and y. Since there are only two orbitals for each non-zero l value and one orbital (the s
orbital) for l = 0, square planar hybridization requires one d orbital, pentagonal planar hybridization
requires two d orbitals, and hexagonal planar hybridization requires an f orbital as well as two d
orbitals. Prismatic configurations with two parallel n-gonal faces and Dnh symmetry combine the set
of atomic orbitals for the n-gonal face with only the two x and y variables with a set of equal size
corresponding to the orbitals having polynomials in which the polynomials of the planar n-gon orbitals
are multiplied by a third z variable. As a result, cubic hybridization can be shown to require an f orbital
and hexagonal prismatic hybridization can be shown to require a g orbital. For 8-coordinate systems
with four-fold symmetry twisting a square face of a cube with sp3d3f hybridization by 45◦ around a
C4 axis to give a square antiprism with sp3d4 hybridization eliminates the need for an f orbital in the
resulting sp3d4 hybridization. Similarly, for 12-coordinate systems with six-fold symmetry, twisting a
hexagonal face of a hexagonal prism with sp3d5f2g hybridization to a hexagonal antiprism eliminates
the need for a g orbital in the resulting sp3d5f3 hybridization. A trigonal twist of an Oh octahedron
into a D3h trigonal prism can involve a gradual change of the pair of d orbitals in the sp3d2 hybrids.
A similar trigonal twist of an Oh cuboctahedron into a D3h cuboctahedron can likewise involve a
gradual change in the three f orbitals in the sp3d5f3 hybridization.
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