

Supplementary Materials

Asymmetric Dinuclear Lanthanide(III) Complexes from the Use of a Ligand Derived from 2-Acetylpyridine and Picolinoylhydrazide: Synthetic, Structural and Magnetic Studies⁺

Diamantoula Maniaki¹, Panagiota S. Perlepe^{2,3}, Evangelos Pilichos¹, Sotirios Christodoulou⁴, Mathieu Rouzières², Pierre Dechambenoit^{2,*}, Rodolphe Clérac^{2,*} and Spyros P. Perlepes^{1,5,*}

- ¹ Department of Chemistry, University of Patras, 265 04 Patras, Greece; <u>dia.maniaki@gmail.com</u> (D.M.); <u>pilvag@gmail.com</u> (E.P.)
- ² Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 336 00, Pessac, France; panagiota.perlepe@crpp.cnrs.fr (P.S.P.); mathieu.rouzieres@crpp.cnrs.fr (M.R.)
- ³ Univ. Bordeaux, CNRS, ICMCB, UMR 5026, 336 00, Pessac, France
- ⁴ ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Nanoscience and Nanotechnology, Castelldefels, 088 60 Barcelona, Spain; <u>Sotirios.Christodoulou@alumni.icfo.eu</u> (S.C.)
- ⁵ Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 1414, 265 04 Patras, Greece
- * Correspondence: <u>pierre.dechambenoit@crpp.cnrs.fr</u> (P.D.); <u>rodolphe.clerac@crpp.cnrs.fr</u> (R.C.); <u>perlepes@patreas.upatras.gr</u> (S.P.P.); Tel: +33-556845671 (P.D.); +33-556845650 (R.C.); +30-2610-996730 (S.P.P.)
- ⁺ This article is dedicated to the memory of Professor Kyriakos Riganakos, an excellent academician, a great food chemistry scientist and a precious friend.

Received: 25 May 2020; Accepted: 5 July 2020; Published: date

Figure S1. Crystal structure of [Gd₂(NO₃)₄(L)₂(H₂O)] as found in **1**·2MeOH·2H₂O at 120 K. Thermal ellipsoids are depicted at 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S2. The molecule $[Tb_2(NO_3)_4(L)_2(H_2O)]$ that is present in the crystal structure of 2·2MeOH·1.5H₂O. Thermal ellipsoids are depicted at 50% probability level. Hydrogen atoms are omitted for clarity.

Figure S3. Spenocoronal and spherical capped square antiprismatic coordination geometries of Gd1 and Gd2, respectively, in the structure of 1·2MeOH·2H₂O. The plotted polyhedra represent the ideal, best-fit polyhedra using the program SHAPE.

Figure S4. Spenocoronal and spherical capped square antiprismatic coordination geometries of Tb1 and Tb2, respectively, in the structure of **2**·2MeOH·1.5H₂O. The plotted polyhedra represent the ideal, best-fit polyhedra using the program SHAPE.

Figure S5. Spenocoronal and spherical capped square antiprismatic coordination geometries of Er1 and Er2, respectively, in the structure of 4·3MeOH·0.5H₂O. The plotted polyhedra represent the ideal, best-fit polyhedra using the program SHAPE.

Figure S6. (Left) Field dependence of magnetization for 1·2MeOH·2H₂O at the temperatures indicated, scanning at 100 – 400 Oe·min⁻¹ for H < 1 T and 500 – 2500 Oe·min⁻¹ for H > 1 T. Solid lines are visual guides. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid line represents the best fit of the *M* vs. *H*/*T* data to the sum of two *S* = 7/2 Brillouin functions.

Figure S7. (Left) Field dependence of magnetization for 2.2MeOH·1.5H₂O at the temperatures indicated, scanning at 100 – 400 Oe·min⁻¹ for H < 1 T and 500 – 2500 Oe·min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S8. (Left) Field dependence of magnetization for 3-2.5MeOH at the temperatures indicated, scanning at $100 - 400 \text{ Oe} \cdot \min^{-1}$ for H < 1 T and $500 - 2500 \text{ Oe} \cdot \min^{-1}$ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S9. (Left) Field dependence of magnetization for 4.3MeOH $\cdot 0.5$ H₂O at the temperatures indicated, scanning at 100–400 Oe·min⁻¹ for H < 1 T and 500 – 2500 Oe·min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S10. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) parts of the ac susceptibility for 3.2.5MeOH collected at 2 K and varying dc fields. Solid lines are the best fits obtained with the Debye generalized model.

Figure S11. Field dependence of the parameters α (a), χ_0 and χ_∞ (b), ν (c) and $\chi_0-\chi_\infty$ (d) between 0 and 0.2 T deduced from the generalized Debye fit of the frequency dependence of the real (χ') and imaginary (χ'') components of the ac susceptibility at 2 K, shown in Figure S10, for **3**-2.5MeOH. Solid lines are visual guides.

Figure S12. Temperature dependence of the parameters α (a), χ_0 and χ_∞ (b), ν (c) and $\chi_0-\chi_\infty$ (d) between 1.8 and 8 K deduced from the generalized Debye fit of the frequency dependence of the real (χ') and imaginary (χ'') components of the ac susceptibility at 0.06 T, shown in Figure 8 of the main text, for **3**·2.5MeOH. Solid lines are visual guides.

Figure S13. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) parts of the ac susceptibility for 4·3MeOH·0.5H₂O collected at 2 K and varying dc fields. Solid lines are the best fits obtained with the Debye generalized model.

Figure S14. Field dependence of the parameters α (a), χ_0 and χ_∞ (b), ν (c) and $\chi_0-\chi_\infty$ (d) between 0 and 0.4 T deduced from the generalized Debye fit of the frequency dependence of the real (χ') and imaginary (χ'') components of the ac susceptibility at 2 K, shown in Figure S13, for 4·3MeOH·0.5H₂O. Solid lines are visual guides.

Figure S15. Temperature dependence of the parameters α (a), χ_0 and χ_∞ (b), ν (c) and $\chi_0-\chi_\infty$ (d) between 1.8 and 3 K deduced from the generalized Debye fit of the frequency dependence of the real (χ') and imaginary (χ'') components of the ac susceptibility at 0.1 T, shown in Figure 9 of the main text, for 4·3MeOH·0.5H₂O. Solid lines are visual guides.

Figure S16. Position of the ground-state magnetic anisotropy axes (dashed green bars) for the two Dy^{III} atoms in the molecule of 3.2.5MeOH.

Table S1. Continuous Shape Measures (CShM) values for the potential coordination polyhedra of Dy1 in the structure of complex **3**·2.5MeOH.

Ideal Coordination Polyhedron	CShM value ^a
Decagon (DP-10)	34.649
Enneagonal pyramid (EPY-10)	23.939
Octagonal bipyramid (OBPY-10)	16.083
Pentagonal prism (PPR-10)	10.318
Pentagonal antiprism (PARP-10)	10.299
Bicapped cube (BCCU-10)	9.688
Bicapped square antiprism (BCSAPR-10)	4.357
Metabidiminished icosahedron (MBIC-10)	6.864
Augmented tridiminished icosahedron (ATDI-10)	19.747
Sphenocorona (SPC-10)	2.573
Staggered dodecahedron (2:6:2)	4.106

^a The polyhedron with the smallest CShM value (in bold) is the real coordination polyhedron of the Dy1 center for the complex.

Ideal Coordination Polyhedron	CShM value ^a
Enneagon (EP-9)	36.250
Octagonal pyramid (OPY-9)	22.890
Heptagonal bipyramid (HBPY-9)	17.853
Triangular cupola (TC-9)	15.242
Capped cube (JCCU-9)	10.871
Spherical-relaxed capped cube (CCU-9)	9.032
Capped square antiprism (JCSAPR-9)	2.995
Spherical capped square antiprism (CSAPR-9)	1.759
Tricapped trigonal prism (JTCTPR-9)	4.508
Spherical tricapped trigonal prism (TCTPR-9)	2.832

Table S2. Continuous Shape Measures (CShM) values for the potential coordination polyhedra of Dy2 in the structure of complex 3.2.5MeOH.^{a.}

^a The polyhedron with the smallest CShM value (in bold) is the real coordination polyhedron of the Dy2 center for the complex.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).