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Optical Characterization 18 

Figure S1 shows (a) optical transmittance T and (b) absorptance A as a function of wavelength λ 19 
and photon energy E, respectively, for photochromic GdHO samples (clear state) deposited at 20 
pressures P ranging from 1.5 to 5.8 Pa. As P increases, T increases in the visible regime between 400 21 
and 700 nm (a) and the absorption edge, located at shorter wavelengths, shifts towards higher 22 
energies (b). 23 

 
Figure S1. Transmittance (a) and absorptance (b) of photochromic gadolinium oxyhydride films 24 
reactively sputtered at deposition pressures between 1.5 and 5.8 Pa. 25 

Figure S2 shows the difference in (a) transmittance ΔT, (b) absorptance ΔA and (c) reflectance 26 
ΔR for films deposited at different P before and after illumination. The absorption edge shifts 27 
towards shorter wavelengths with increasing P indicating a widening of the bandgap (bandgap 28 
energies are tabulated in Table S1). Egdir increases from 2.8 to 3.7 eV as P increases from 1.5 to 5.8 Pa.  29 

 30 

Table S1. Bandgap values of samples deposited between 1.5 Pa and 5.8 pa.; where Egdir refers to the 31 
energy of the direct bandgap. 32 
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Sample Deposition 
pressure (Pa) 

Film Thickness 
(nm) 

Egdir 

(eV) 
GdH3   2.4[1] 
GdHO 1.5 616 2.8 

 2.0 575 3.0 
 2.8 550 3.1 
 3.8 525 3.3 
 5.8 540 3.7 

Gd2O3   5.4[2] 
 33 
Figure S2 (d) shows the absorptance averaged between 550 nm and 1000 nm in the clear Aclear 34 

and photodarkenened Adark states, as well as the photochromic response |ΔA| as a function of 35 
deposition pressure. The photochromic response decreases as P increases (e.g., P = 1.5 Pa, |ΔA| = 47 36 
% and P = 5.8 Pa, |ΔA| ≈ 0 %). These results, which are consistent with previous reports [3], are 37 
attributed to the increase of oxygen content in the films prepared at larger P, resulting in higher 38 
porosity [4], favoring thus the exchange of hydrogen and oxygen once the samples are removed 39 
from the sputtering chamber and exposed to ambient conditions [5]. 40 

 41 

 
Figure S2. Change in (a) transmittance, (b) reflectance and (c) absorptance of samples plotted versus 42 
wavelength, deposited between 1.5 Pa and 5.8 Pa before and after 60 minutes of illumination. (d) 43 
Absorptance and photochromic response, averaged between 550-1000 nm, of samples plotted versus 44 
pressure. 45 

Composition analysis 46 

Figure S3 (a and b) shows normalized and interpolated maps of the O and H content as a 47 
function of deposition pressure and depth. C impurities of up to 4 at. % are not indicated. All the 48 
majority elements (i.e., Gd, O and H) are uniformly distributed throughout the films, except at the 49 
surface, where an oxygen-rich layer (within 5-10 nm) is found.  The increase in deposition pressure 50 
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leads to stronger oxidation and decrease of hydrogen content. This effect can be attributed to 51 
variations of the porosity of the films [4]. The replacement of H atoms by O atoms during the 52 
oxidation process is suggested by the anti-correlation in the O and H content (Figure S3). Typical 53 
uncertainties - statistical and systematic - involved in this measurement, especially towards lighter 54 
elements as H, are discussed in detail using similar system elsewhere [6]. 55 

 56 

 
Figure S3. Depth profiles of (a) hydrogen and (b) oxygen plotted versus deposition pressure 57 
deduced from Tof-E ERDA coincidence spectra (not whown). 58 

59 
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