Supporting Information

Synthesis and Characterization of New Organic Dyes Containing the Indigo Core

Daniele Franchi 1,2,3, Massimo Calamante 1,2, Carmen Coppola 4,5, Alessandro Mordini 1,2,*,

Gianna Reginato ^{2,*}, Adalgisa Sinicropi ^{2,4,5} and Lorenzo Zani²

- ¹ Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Italy; daniele.franchi87@gmail.com (D.F.); mcalamante@iccom.cnr.it (M.C.)
- ² CNR-Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy; adalgisa.sinicropi@unisi.it (A.S.); lorenzo.zani@iccom.cnr.it (L.Z.)
- ³ Department of Chemistry, KTH, Teknikringen 30, 10044 Stockholm, Sweden
- ⁴ R²ES Lab, Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro, 2, 53100 Siena, Italy; carmen.coppola@student.unisi.it
- ⁵ CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy
- * Correspondence: alessandro.mordini@iccom.cnr.it (A.M.); gianna.reginato@iccom.cnr.it (G.R.)

Table of Contents

- 1. Computational details for compounds **5a**, **5b**, **5c**, **5d**, **6d** and **DF90**......S2
- 3. Copies of the ¹H and ¹³C NMR spectra of compounds **5a**, **5b**, **5c** and **DF90**S15

Computational Details

Figure S1. B3LYP/6-31G** optimized geometries in vacuo of KK, KE and EE tautomers of compounds 5a, 5b and 5c.

Figure S2. B3LYP/6-31G** optimized geometries in DCM of KK, KE and EE tautomers of compounds of 5a, 5b and 5c.

DF90 (in vacuo optimized geometries)

DF90 (in DCM optimized geometries)

Figure S3. B3LYP/6-31G** optimized geometries in vacuo and in DCM of KK, KE and EE tautomers of compound DF90.

Figure S5. B3LYP/6-31G** FMOs energies in DCM solution of tautomer KK of 5a, 5b, 5c, 5d and DF90.

 Table S1. B3LYP/6-31G** absolute and relative energies (kcal/mol) of KK, KE and EE tautomers of compounds 5a, 5b, 5c and DF90 computed *in vacuo* and DCM.

Molecule	Tautomer	Absolute energy in vacuo	ΔE	Absolute energy in DCM	ΔΕ
	KK	-1676035.507	0.00	-1676045.021	0.00
5a	KE	-1676025.916	+9.60	-1676034.216	+10.80
	EE	-1676002.483	+33.02	-1676010.483	+34.53
	KK	-1242060.895	0.00	-1242068.158	0.00
5b _	KE	-1242051.572	+9.32	-1242057.493	+10.66
	EE	-1242028.210	+32.67	-1242033.516	+34.64
	KK	-2269806.326	0.00	-2269820.066	0.00
5c	KE	-2269796.788	+9.54	-2269808.638	+11.43
	EE	-2269773.874	+32.45	-2269785.628	+34.44
	KK	-1980710.268	0.00	-1980725.508	0.00
DEOO	KE1	-1980701.877	+8.31	-1980715.832	+9.68
DF90 -	KE2	-1980700.304	+9.96	-1980714.280	+11.23
	EE	-1980678.398	+31.87	-1980692.148	+33.36

 Table S2. B3LYP/6-31G** absolute and relative^a stabilities (kcal/mol) of KK, KE and EE tautomers of compounds 5a and DF90 in vacuo.

Molecule	Tautomer	Absolute stability	Relative stability
	KK	-1241896.059	0.0
5a	KE	-1241886.569	+9.49
	EE	-1241863.825	+32.23
	KK	-1980229.065	0.0
DE00	KE1	-1980220.368	+8.70
DF 90	KE2	-1980219.076	+9.99
	EE	-1980197.583	+31.48

^aThe Gibbs free energy of the most stable tautomer is taken as the reference (0.0 kcal/mol).

 Table S3. B3LYP/6-31G* orbital energies of KK, KE and EE tautomers of compounds 5a, 5b, 5c and DF90 computed in DCM.

Molecule	Tautomer	HOMO-2	НОМО- 1	НОМО	LUMO	LUMO+1	LUMO+2	Δ(H-L)
	KK	-6,045	-5,962	-5,350	-2,932	-1,620	-0,885	2.418
5a	KE	-6,089	-6,026	-5,290	-3,124	-1,587	-0,895	2.166
	EE	-6,137	-5,851	-5,072	-3,674	-1,588	-0,958	1.398
	KK	-5.875	-5.814	-5.276	-2.871	-1.547	-0.835	2.405
5b	KE	-5.960	-5.880	-5.201	-3.063	-1.505	-0.843	2.138
	EE	-5.987	-5.758	-4.990	-3.593	-1.484	-0.897	1.397
	KK	-5,253	-4,847	-4,824	-2,799	-1,355	-0.593	2.025
5c	KE	-5,312	-4,862	-4,757	-2,989	-1,333	-0,600	1.768
	EE	-5,148	-4,966	-4,707	-3,479	-1,291	-0,618	1.228
	KK	-6,119	-5,374	-4,863	-3,114	-2,593	-1,382	1.749
DF90	KE1	-6,165	-5,395	-4,894	-3,190	-2,647	-1,369	1.704
	KE2	-6,114	-5,405	-4,796	-3,304	-2,639	-1,378	1.492
	EE	-5,837	-5,224	-4,943	-3,704	-2,641	-1,345	1.239

Table S4. B3LYP/6-31G* orbital energies of KK tautomer of compounds 5d and 6d in DCM.

Molecule	Tautomer	НОМО-2	HOMO- 1	номо	LUMO	LUMO+1	LUMO+2	Δ(H-L)
5d	KK	-5.282	-4.902	-4.885	-2.836	-1.416	-0.719	2.049
6d	KK	-5.909	-4.918	-4.906	-2.926	-1.615	-0.838	1.980

Molecule Tautome		Exe St	cited ates	λ^{a} max (nm)		Eexc	(eV)		f	Contribut	ion (%)
		\$	#	\$	#	\$	#	\$	#	\$	#
		1	1	532.68	604.24	2.32	2.05	0.54	0.54	98% H → L	100% H→L
		4	3	363.03	473.55	3.41	2.61	1.46	0.71	82% H-2 → L	99% H-2 → L
	КК	8	10	286.89	330.10	4.32	3.75	0.29	0.82	30% H-7→L 5% H-2→L 4% H-2→L+6	81% H-1 → L+1
	KE	1	1	593.70	704.80	2.08	1.76	0.45	0.45	89% H → L	99% H → L
		2	6	423.34	383.71	2.93	3.23	0.25	0.66	69% H-1 → L	97% H → L+1
_		4	9	378.27	338.88	3.27	3.65	0.90	0.09	66% H-2 → L	86% H-7 → L
5a		5	11	339.62	312.15	3.65	3.97	0.20	0.39	34% H-3 \rightarrow L 8% H-2 \rightarrow L+1 4% H \rightarrow L 58%	43% H-1→L+1 40% H→L+2
		0		512.79		5.90		0.30		H→L+1	
		1	1	972.54	1042.0 7	1.27	1.19	0.52	0.46	95% H→L	100% H→L
	EE	3	3	489.64	599.36	2.53	2.06	1.49	1.10	85% H-2 → L	96% H-2 → L
	EE —	13 11 14	13	288.21	334.82	3.70	3.70	0.18	0.17	43% H-1→L+1	64% H-9 → L
			11 14	11 1		329.10		3.76	'	0.78	15% H → L+6

Table S5. TD-DFT (\$: CAM-B3LYP/6-311++G** and #: B3LYP/6-311++G**) absorption maxima (λ^a_{max}), excitationenergies (E_{exc}), oscillator strenghts (f) and contribution (%) to the transition in DCM of KK, KE and EE tautomers of
compound 5a.

Molecule	Toutomor	Excite	ed States	λ^{a} max (nm)		Eexc	(eV)	1	f	Contril	bution (%)
WIDICCUIC	Tautomer	\$	#	\$	#	\$	#	\$	#	\$	#
	KK	1	1	537.19	609.29	2.30	2.03	0.55	0.58	98% H → L	100% H → L
		3	3	375.43	495.28	3.30	2.50	0.14	0.70	79% H-6 → L	100% H-2 → L
		4	10	374.21	334.63	3.31	3.70	1.33	0.83	75% H-2 → L	84% H-1 → L+1
	KE	1	1	600.60	715.12	2.06	1.73	0.46	0.48	88% H → L	99% H → L
		2 3	3	430.28	518.36	2.88	2.39	0.36	0.39	66% H-1 → L	81% H-2 → L
		4	8	385.36	382.34	3.21	3.24	0.81	0.68	56% H-2 → L	96% H → L+1
5b		5	12	344.76 314.21	314.21	3.59	3.94	0.15	0.28	23% H-4→L 19% H→L+1	40% H-8→L 4%
		6		314.69		3.93		0.46		65% H → L+1	H-9→L
		1	1	975 26	1044.77	1.07	1.18	0.55	0.51	95%	100% H→L
	FE		3	975.20	622.60	1.27	1.99	0.55	1.10	H→L	96% H-1→L
		3	9	502.66	392.89	2.47	3.15	1.51	0.09	84% H-2 → L	94% H-6 → L
		6	16	359.71	328.22	3.44	3.77	0.03	0.99	82% H-5 → L	73% H-1 → L+1

Table S6. TD-DFT (\pm CAM-B3LYP/6-311++G^{**} and \pm B3LYP/6-311++G^{**}) absorption maxima (λ^{a}_{max}), excitation energies (E_{exc}), oscillator strenghts (f) and contribution (%) to the transition in DCM of KK, KE and EE tautomers of compound **5b**.

Malaanla	Tautome	Excite	ed States	λ ^a max	(nm)	Eexc	(eV)	t	f	Contribu	tion (%)
Molecule	r	\$	#	\$	#	\$	#	\$	#	\$	#
		1	1	532 61	759.60	2 3 2	1.63	0.72	0.86	90%	99% H → L
		1	3	552.01	593.75	2.32	2.08	0.72	0.32	H-1 → L	99% H-2 → L
		3	18	426.02	333.56	2.91	3.71	1.33	0.51	74% H → L	58% H → L+4
	KK	9	24	311.70	316.43	3.97	3.91	1.48	0.21	27% H-1→L+1 17% H→L	28% H→L+7 18% H→L+7
		15	25	280.55	316.40	4.41	3.91	0.32	0.26	10% H-1→L+13 7% H-1→L+10	26% H-1→L+7 18% H→L+8
		1	1	599.40	865.60	2.06	1.43	0.56	0.77	62%	92% H→L
KE		3		653.93		1.89		0.16	п-2 7 L	98% H-2 → L	
	KE	6	11	329.57	400.65	3.76	3.09	1.39	0.24	26% $H \rightarrow L+1$ 7% $H-4 \rightarrow L$ 7% $H \rightarrow L$	84% H-1→L+1
50		11	28	305.25	315.22	4.06	3.93	0.37	0.22	15% H-1→L 15% H-14→L	88%
		13		282.75		4.38		0.33		$\begin{array}{c} 23\% \\ H \rightarrow L + 13 \\ 12\% \\ H \rightarrow L + 18 \end{array}$	
		1	1	981.33	1205.0 9	1.26	1.02	0.80	1.51	62% H → L	100% H→L
		3	3	597.41	903.99	2.07	1.37	1.38	0.16	48% H-2→L	100% H-2→L
			5		514.58		2.40		0.53	34% H → L	51% H-4 → L
											64% H → L+2
	EE	5	24	403.68	345.30	3.07	3.59	0.48	0.65	51% H-4 → L	66% H→L+3
											86% H→L+4
	_	14	29	308.08	320.16	4.02	3.87	1.05	0.46	37% H-1→L+1 8% H-1→L+7	62% H-3→L+1

Table S7. TD-DFT (\$: CAM-B3LYP/6-311++G** and #: B3LYP/6-311++G**) absorption maxima (λ^{a}_{max}), excitationenergies (E_{exc}), oscillator strenghts (f) and contribution (%) to the transition in DCM of KK, KE and EE tautomers of
compound 5c.

S8

Molecule	Tautomor	Excite	ed States	λ ^a ma	x (nm)	Eexc	(eV)	1	f	Contrib	oution (%)
WIDICCUIC	Tautomer	\$	#	\$	#	\$	#	\$	#	\$	#
		1	1	542 90	856.55	2.28	1.44	0.66	0.32	80%	99% H → L
		1	2	542.90	645.14	2.20	1.92	0.00	0.41	H-1 → L	97% H-1 → L
	1/1/	3	10	413.86	405.06	2.99	3.06	1.03	0.42	67% H-2 → L	78% H→L+2
	KK	12	26	297.69	315.36	4.16	3.93	0.23	0.23	22% H \rightarrow L+1 9% H \rightarrow L+4 8% H-1 \rightarrow L+2	92% H→L+8
DF 90		1	1	587 87	881.81	2 1 2	1.40	0.55	0.43	84%	99% H → L
		1	2	382.82	691.58	2.12	1.79	0.55	0.62	H-1 → L	97% H-1 → L
	VF1	1	10	405 74	406.29	3.05	3.05	0.72	0.38	55% H_1 → I+1 -	86% H-2 → L+1
	KE1	-	11	-05.7-	399.63	5.05	3.10	0.72	0.17	11-1 7 L † 1	88% H→L+2
	-	11	25	300.23	314.00	4.12	3.95	0.40	0.22	26% H→L+1 21% H→L+2	93% H→L+7

Table S8 (to be continued). TD-DFT (\$: CAM-B3LYP/6-311++G** and #: B3LYP/6-311++G**) absorption maxima (λ^{a}_{max}),excitation energies (E_{exc}), oscillator strenghts (f) and contribution (%) to the transition in DCM of KK, KE and EEtautomers of compound **DF90**.

Molecule	Tautomor	Excite	ed States	λ^{a} ma	x (nm)	Eexc	(eV)		f	Contribut	tion (%)
Willecule	Tautomer	\$	#	\$	#	\$	#	\$	#	\$	#
			1		1019.03		1.21		0.42	560/	100% H → L
		1	2	633.30	724.02	1.96	1.71	0.57	0.11	H-1→L	99% H-1 → L
			3		651.60		1.90		0.18		98% H→L+1
	KF2	5	10	393.19	414.89	3.15	2.99	0.98	0.67	46% H-3→L	86% H→L+2
	KE 2	11		307.49 281.77		4.03		0.22		21% H→L+1 7% H-9→L	84%
		14	25		318.42	4.40	3.89	0.29	0.22 -	18% $H \rightarrow L+12$ 14% $H \rightarrow L+14$	H → L+7
DF90		1	1	0.01.47	1170.17	1.26	1.05	0.75	1.20	51%	95% H → L
		1	2	901.47	944.89	1.20	1.31	0.73	0.18	H→L 92% H→L	92% H → L
		3	5	620.10	571.95	1.99	2.17	1.09	0.72	40% H-1→L 39% H→L	81% H-3 → L
	EL	4	9	457.18	449.22	2.71	2.76	0.84	0.29	54% H-3 → L	96% H-2 → L+1
			26		315.34		3.93		0.24	15% H-11 → L	57% H-2 → L+2
		18 28	28	294.14	309.56	4.21	4.00	0.19	0.15	9% H→L+4 6% H-14→L	80% H → L+6

Table S8 (continued). TD-DFT (\$: CAM-B3LYP/6-311++G^{**} and #: B3LYP/6-311++G^{**}) absorption maxima (λ^{a}_{max}), excitation energies (E_{exc}), oscillator strengths (f) and contribution (%) to the transition in DCM of KK, KE and EE tautomers of compound **DF90**.

Malaaula	Tautomor	Excit	ed States	λ ^a max	x (nm)	Eexc	(eV)		f	Contribut	ion (%)
WIOIECule	Tautomer	\$	#	\$	#	\$	#	\$	#	\$	#
		1	1	532.68	746.44	2.32	1.62	0.69	0.76	93% H-2 → L	99% H → L
		3	3	419.97	595.84	2.95	2.08	1.35	0.36	74% H → L	99% H-2 → L
		7	7	215 (2	436.81	2.02	2.83	1 45	0.62	20% H-1→L+1	93% H-6 → L
		1	10	315.62	410.25	5.92	3.02	1.45	0.50	2% H-1 → L+3	91% H-6 → L
51	1717	12	16	305.43	345.48	4.05	3.58	0.60	0.51	32% H-6→L 17% H-1→L+1	47% H-8 → L
50	KK	13	20	299.98	339.94	4.13	3.64	0.21	0.18	40% H→L+5 29% H-1→L+6	42% H→L+5 15% H-1→L+6
		21	21		339.85		3.64		0.78	42% H→L+6 27% H-1→L+5	51% H→L+6 27% H-1→L+6
		14	22	299.89	338.85	4.13	3.65	1.02	0.11	38% H-16→L 12% H-7→L+1	45% H→L+2 13% H-8→L
		1	1	420.20	775.72	2.00	1.59	1.05	0.59	70%	99% H → L
	VV	1	3	429.29	501.13	2.88	2.47	1.05	0.30	H-4 → L	96% H-4 → L
6d	KK	7 -	15		349.88	2.00	3.54	1 2 1	0.71	25%	60% H→L+2
			21	51/.14	339.03	3.90	3.65	- 1.31	0.67	H-1 → L+1	52% H→L+6

Table S9. TD-DFT (\pm CAM-B3LYP/6-311++G^{**} and \pm B3LYP/6-311++G^{**}) absorption maxima (λ^{a}_{max}), excitation energies (E_{exc}), oscillator strenghts (f) and contribution (%) to the transition in DCM of KK tautomer of compounds **5d** and **6d**.

Spectroscopic and Electrochemical Measurements

Figure S6. Tauc plots for the CH₂Cl₂ solutions of compounds 6a-d and 5a-c.

Figure S7. Tauc plots for the EtOH solutions of compounds 6a,c,d and 5a-c.

Copies of the NMR spectra of compounds 5a, 5b, 5c and DF90

Compound 5a

Compound **5b**

Compound 5c

Compound DF90

