Supplementary Materials

Conformational restriction of histamine with a rigid bicyclo[3.1.0]hexane scaffold provided selective H₃ receptor ligands

Mizuki Watanabe^{1,*}, Takaaki Kobayashi¹, Yoshihiko Ito², Shizuo Yamada² and Satoshi Shuto^{1,3,*}

¹ Faculty of Pharmaceutical Sciences and ³Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan
² Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka 422–8526, Japan

*Corresponding authors.

E-mails: mwatanab@pharm.hokudai.ac.jp (M.W.) and shu@pharm.hokudai.ac.jp (S.S.)

Contents

The observed NOEs in compounds 6 and 7	S2
Chemical structure of thioperamide	S2
The most stable conformation of 4 and 6 (Figure S3)	S2
Synthetic procedures and characterization of the compounds	.S3–S5
Reference	S5
¹ H NMR spectra of compounds 6, <i>ent</i> -6, 7, and <i>ent</i> -7	S6–S9

Figure S1. The observed NOEs in compounds 6 and 7 (CDCl₃, 500 MHz) for the determination of the configuration of the C3-position. The imidazole structures were deleted from this figures.

Figure S2. Chemical structure of thioperamide, which was used as an control in the binding assay.

Figure S3. The most stable conformation of **4** (a) and **6** (b) by conformational search using MacroModel 10.9. (force field: MMFFs, solvent: H_2O); (c) Superimposition of the stable conformation of **4** and **6**. The chlorobenzyl moiety was replaced with a methyl group to simplify the structures.

Scheme S1. Reagents and conditions: (a) (1) TsCH₂NC, NaOEt, EtOH, 0 °C; (2) sat. NH₃/EtOH, 125 °C, sealed tube; (3) TrCl, Et₃N, CH₂Cl₂, 33% in 3 steps; (b) (1) HCO₂H, hexane (2) 4-chlorobenzyl amine, NaBH(OAc)₃, CH₂Cl₂, MS4Å; (3) Boc₂O, Et₃N, DMAP, MeOH; (4) aq. HCl, EtOH, reflux, 16% in 4 steps.

Scheme S2. Reagents and conditions: (a) $3HF \cdot Et_3N$, THF, 92%; (b) $MeOCH_2PPh_3Cl$, tBuOK, THF, 0 °C, 93%; (c) TsOH \cdot H₂O, MeOH, reflux, 63%; (d) SO₃ • pyridine, Et₃N, DMSO, 37% (*ent*-12) and 43% (*ent*-13); (e) (1) TsCH₂NC, NaOEt, EtOH, 0 °C; (2) sat. NH₃/EtOH, 125 °C, sealed tube; (3) TrCl, Et₃N, CH₂Cl₂, 59% (*ent*-14) and 18% (*ent*-S1) in 3 steps, respectively; (f) (1) HCO₂H, hexane (2) 4-chlorobenzyl amine, NaBH(OAc)₃, CH₂Cl₂, MS4Å; (3) Boc₂O, Et₃N, DMAP, MeOH; (4) aq. HCl, EtOH, reflux, 54% (*ent*-6) and 47% (*ent*-7) in 4 steps, respectively.

(1S,4R,5R)-4-Dimethoxymethyl-1-(1-triphenylmethyl-1H-imidazol-4-yl)bicyclo[3.1.0]hexane (S1).

S1 (58 mg, 0.12 mmol, 33% in 3 steps, pale yellow oil) was prepared from **13** (69 mg, 0.37 mmol) as described for the preparation of **14**. ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.31 (10 H, m, aromatic), 7.14–7.12 (6 H, m, aromatic), 6.52 (1 H, s, imidazole-5), 4.16 (1 H, d, J = 8.0 Hz, -CHC<u>H(OMe)₂)</u>, 3.39 (3 H, s, -OC<u>H₃</u>), 3.32 (3

H, s, $-OCH_3$), 2.63 (1 H, m, H-4), 2.05 (1 H, m, H-3a), 1.95 (1 H, dd, J = 12.6, 8.0 Hz, H-2a), 1.70 (1 H, m, H-2b), 1.60 (1 H, m, H-5), 1.10 (1 H, m, H-3b), 0.98 (1 H, dd, J = 8.0, 4.6 Hz, H-6a), 0.85 (1 H, dd, J = 4.6, 4.6 Hz, H-6b); ¹³C NMR (125 MHz, CDCl₃) δ 144.52, 142.47, 138.21, 129.78. 127.94 (Si-C), 127.92 (Si-C), 116.36, 107.69, 75.11, 53.18, 52.94, 42.52, 30.06, 27.54, 26.74, 23.62, 12.14; HRMS (ESI) calcd for C₃₁H₃₂N₂NaO₂ 487.2356, found 487.2340 [(M + Na)⁺].

(*1S*,4*R*,5*R*)-4-[*N*-(4-Chlorobenzyl)aminomethyl]-1-(1*H*-imidazol-4-yl)bicyclo[3.1.0]hexane dihydrochloride (**7**•2**H**C**I**).

7•2HCl (6 mg, 15 µmol, 16% in 4 steps, hygroscopic white solid) was prepared from **S1** (24 mg, 52 µmol) as described for the preparation of **6•2HCl**. $[\alpha]_D^{29} = +43.1^{\circ}$ (*c* 0.58, CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 8.78 (1 H, s, imidazole-2), 7.58 (2 H, d, *J* = 8.3 Hz, aromatic), 7.49 (2 H, d, *J* = 8.3 Hz, aromatic), 7.36 (1 H, s, imidazole-5), 4.28 (2 H, s, benzyl), 3.10 (2 H, d, *J* = 6.9 Hz, -CHC<u>H₂</u>N-), 2.84 (1 H, m, H-4), 2.18–2.14 (2 H, m, H-2a and H-3a), 1.99–1.89 (2 H, m, H-2b and H-5), 1.20–1.12 (2 H, m, H-3b and H-6a), 1.03 (1 H, m, H-6b); ¹³C NMR (125 MHz, CD₃OD) δ 138.26, 136.77, 134.71. 133.04, 131.17, 130.34, 116.37, 52.02, 51.32, 38.49, 31.84, 29.56, 26.47, 25.31, 12.43; HRMS (ESI) calcd for C₁₇H₂₁N₃Cl 302.1419, found 302.1410 [(M + H)⁺]. Anal. Calcd for C₁₇H₂₀N₃Cl•2.5HCl•0.1H₂O: C, 51.72; H, 5.85; N, 10.64. Found: C, 51.70; H, 5.85; N, 10.70.

(1R,5R)-1-Hydroxymethyl-bicyclo[3.1.0]hexan-4-one (ent-9).

*ent-***9** (307 mg, 2.43 mmol, 92%, colorless liquid) was prepared from *ent-***8** [1] (964 mg, 2.64 mmol) as described for the preparation of **9**. $[\alpha]_D^{210} = -4.2^\circ$ (*c* 1.06, CHCl₃); HRMS (ESI) calcd for C₂₃H₂₈NaO₂Si 387.1751, found 387.1748 [(M + Na)⁺].

(1R,5R)-1-Hydroxymethyl-4-methoxymethylenebicyclo[3.1.0]hexane (ent-10, E/Z mixture).

ent-10 (302 mg, 1.96 mmol, 93%, pale yellow oil) was prepared from *ent*-9 (265 mg, 2.10 mmol) as described for the preparation of 10. $[\alpha]_D^{21} = -46.6^\circ$ (*c* 1.06, CHCl₃); HRMS (ESI) calcd for C₉H₁₄NaO₂ 177.0886, found 177.0887 [(M + Na)⁺].

(1R,5S)-4-Dimethoxymethyl-1-hydroxymethylbicyclo[3.1.0]hexane (ent-11, diastereomixture).

ent-11 (811 mg, 4.35 mmol, 63%, pale yellow liquid) was prepared from *ent*-10 (1.06 g, 6.87 mmol) as described for the preparation of 11. $[\alpha]_D^{21} = -53.4^\circ$ (*c* 1.20, CHCl₃); HRMS (ESI) calcd for C₁₀H₁₈NaO₃ 209.1148, found 209.1149 [(M + Na)⁺].

(1R,4R,5S)-4-Dimethoxymethyl-1-formylbicyclo[3.1.0]hexane (ent-12, anti) and (1R,4S,5S)-4-Dimethoxymethyl-1-formylbicyclo[3.1.0]hexane (ent-13, syn).

ent-12 (64 mg, 0.35 mmol, 37%, *anti*, less polar, colorless oil) and *ent*-13 (75 mg, 0.41 mmol, 43%, *syn*, more polar, colorless oil) were prepared from *ent*-11 (175 mg, 0.94 mmol) as described for the preparation of 12 and 13. *ent*-12: $[\alpha]_D^{21} = +3.1^\circ$ (*c* 1.04, CHCl₃); HRMS (ESI) calcd for C₁₀H₁₆NaO₃ 207.0992, found 207.0988 [(M

+ Na)⁺]; *ent*-13: $[\alpha]_D^{21} = -72.1^\circ$ (*c* 1.00, CHCl₃); HRMS (ESI) calcd for C₁₀H₁₆NaO₃ 207.0992, found 207.1001 [(M + Na)⁺].

(1R, 4R, 5S)-4-Dimethoxymethyl-1-(1-triphenylmethyl-1H-imidazol-4-yl)bicyclo[3.1.0]hexane (ent-14). ent-14 (87 mg, 0.19 mmol, 59% in 3 steps, pale yellow oil) was prepared from ent-12 (59 mg, 0.32 mmol) as described for the preparation of 14. HRMS (ESI) calcd for C₃₁H₃₂N₂NaO₂ 487.2356, found 487.2372 [(M + Na)⁺].

(*1R*, *4R*, *5S*)-*4*-[*N*-(*4*-*Chlorobenzyl*)*aminomethyl*]-*1*-(*1H*-*imidazol*-*4*-*yl*)*bicyclo*[*3*.*1*.0]*hexane dihydrochloride* (*ent*-**6**•**2HCl**).

ent-6•2HCl (14 mg, 37 µmol, 54% in 4 steps, hygroscopic white solid) was prepared from *ent*-14 (32 mg, 68 µmol) as described for the preparation of 6•2HCl. $[\alpha]_D^{29} = -16.8^\circ$ (*c* 0.74, CH₃OH); HRMS (ESI) calcd for C₁₇H₂₁N₃Cl 302.1419, found 302.1438 [(M + H)⁺]. Anal. Calcd for C₁₇H₂₀N₃Cl•2.2HCl: C, 53.45; H, 5.86; N, 11.00. Found: C, 53.33; H, 5.85; N, 10.91.

(1R, 4S, 5S)-4-Dimethoxymethyl-1-(1-triphenylmethyl-1H-imidazol-4-yl)bicyclo[3.1.0]hexane (ent-S1). ent-S1 (33 mg, 0.071 mmol, 18% in 3 steps, pale yellow oil) was prepared from ent-13 (74 mg, 0.40 mmol) as described for the preparation of 14. HRMS (ESI) calcd for C₃₁H₃₂N₂NaO₂ 487.2356, found 487.2364 [(M + Na)⁺].

(*1R*,4*S*,5*S*)-4-[*N*-(4-Chlorobenzyl)aminomethyl]-1-(*1H*-imidazol-4-yl)bicyclo[3.1.0]hexane dihydrochloride (*ent*-7•2**HCl**).

ent-7•2HCl (12 mg, 32 µmol, 47% in 4 steps, hygroscopic white solid) was prepared from *ent*-S1 (31 mg, 67 µmol) as described for the preparation of 6•2HCl. $[\alpha]_D^{29} = -49.0^\circ$ (*c* 0.30, CH₃OH); HRMS (ESI) calcd for C₁₇H₂₁N₃Cl 302.1419, found 302.1400 [(M + H)⁺]. Anal. Calcd for C₁₇H₂₀N₃Cl•2HCl•0.3H₂O: C, 53.71; H, 5.99; N, 11.05. Found: C, 53.70; H, 5.91; N, 11.05.

Reference

 Kobayashi, T.; Suemasa, A.; Igawa, A.; Ide, S.; Fukuda, H.; Abe, H.; Arisawa, M.; Minami, M.; Shuto, S. Conformationally restricted GABA with bicyclo[3.1.0]hexane backbone as the first highly selective BGT-1 inhibitor. *ACS. Med. Chem. Lett.* 2014, *5*, 889–893. 6•2HCl

ent-6•2HCl

7•2HCl

ent-7•2HCl

