

Towards Volatile Organoselenium Compounds with Cost-Effective Synthesis

Jaroslav Charvot¹, Daniel Pokorný¹, Milan Klikar¹, Veronika Jelínková² and Filip Bureš^{1,2,*}

- ¹ Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic; st41999@student.upce.cz (J.C.); st56842@student.upce.cz (D.P.); milan.klikar@upce.cz (M.K.)
- ² The Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic; 24579@mail.vstecb.cz
- * Correspondence: filip.bures@upce.cz; Tel.: +420-46-603-7099

Received: 25 September 2020; Accepted: 6 November 2020; Published: date

1. NMR Spectra of *i*Pr₃Si-SeH

Figure S1. 1H NMR (400 MHz, 25 °C, C6D6) spectrum of iPr3Si-SeH.

Figure S3. ²⁹Si-NMR (99 MHz, 25 °C, C6D6) spectrum of *i*Pr₃Si-SeH.

Figure S4. ⁷⁷Se-NMR (95 MHz, 25 °C, C₆D₆, gated) spectrum of *i*Pr₃Si-SeH (detail around 420 ppm as an inset).

2. NMR Spectra of PhMe₂Si-Se-SiMe₂Ph

Figure S5. 1H-NMR (400 MHz, 25 °C, C6D6) spectrum of PhMe2Si-Se-SiMe2Ph.

Figure S7. ²⁹Si-NMR (99 MHz, 25 °C, C6D6) spectrum of PhMe₂Si-Se-SiMe₂Ph.

Figure S9. ¹H NMR (400 MHz, 25 °C, C₆D₆) spectrum of *i*Pr₃Si-Se-SiMe₃.

Figure S11. ²⁹Si-NMR (99 MHz, 25 °C, C₆D₆) spectrum of *i*Pr₃Si-Se-SiMe₃.

Figure S12. ⁷⁷Se-NMR (95 MHz, 25 °C, C₆D₆) spectrum of *i*Pr₃Si-Se-SiMe₃.

Figure S13. GC/MS record of *i*Pr₃Si-SeH.

Figure S14. GC/MS record of PhMe₂Si-Se-SiMe₂Ph.

Abundance

Figure S15. GC/MS record of *i*Pr₃Si-Se-SiMe₃.

5. DSC Thermograms

^exo

Figure S20. TGA curve of PhMe2Si-Se-SiMe2Ph.

Figure S21. TGA curve of *i*Pr₃Si-Se-SiMe₃.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).