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Abstract: In this work, one of the most prevalent polypharmacology drug-drug interaction events
that occurs between two widely used beta-blocker drugs—i.e., acebutolol and propranolol—with the
most abundant blood plasma fibrinogen protein was evaluated. Towards that end, molecular docking
and Density Functional Theory (DFT) calculations were used as complementary tools. A fibrinogen
crystallographic validation for the three best ranked binding-sites shows 100% of conformationally
favored residues with total absence of restricted flexibility. From those three sites, results on both
the binding-site druggability and ligand transport analysis-based free energy trajectories pointed
out the most preferred biophysical environment site for drug-drug interactions. Furthermore,
the total affinity for the stabilization of the drug—drug complexes was mostly influenced by steric
energy contributions, based mainly on multiple hydrophobic contacts with critical residues (THR22:
P and SER50: Q) in such best-ranked site. Additionally, the DFT calculations revealed that the
beta-blocker drug-drug complexes have a spontaneous thermodynamic stabilization following the
same affinity order obtained in the docking simulations, without covalent-bond formation between
both interacting beta-blockers in the best-ranked site. Lastly, experimental ultrasound density and
velocity measurements were performed and allowed us to validate and corroborate the computational
obtained results.

Keywords: drug-drug interactions; beta-blocker drugs; polypharmacology; molecular docking; DFT;
ultrasound measurements

1. Introduction

Computational polypharmacology drug—drug interaction (DDI) studies are essential in rational
drug-design and development [1-7]. Yet the exhaustive exploration of drug-drug side effects by
experimental techniques remains a great challenge for the pharmaceutical industry owing to the
involved costs and time. For example, beta-blocker DDI events constitute one of the most prevalent
side effects associated with complications in several pharmaceutical therapies such as those employed
to treat cardiovascular diseases. From the pharmacodynamic point of view, the DDI events refer to the
simultaneous interactions of more than one drug (belonging to the same or different pharmacological
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groups) in the same molecular binding site of a given molecular target [2,8-10]. Polypharmacology
DDI facets can affect millions of patients each year and apparently, the most feasible approach to
address them is to use computational methods [4-6]. In fact, advanced computational methods such as
machine learning, molecular dynamics, pharmacophore modeling, and molecular docking techniques
have become powerful in silico tools at the initial stages of rational drug design [11-17]. Currently,
the main limitation of these methods is to cope with the mechanistic interpretation of DDI phenomena
at the atomic level [11-14]. Indeed, computational polypharmacology involves the characterization of
DDI across multiple scales and organization levels by integrating drug specific binding properties [7].
Nevertheless, advanced molecular docking simulations combined with Density Functional Theory
(DFT) calculations can be applied efficiently to model DDI events on the relevant binding sites of a
given protein with atomic precision. Specifically in DDI studies, molecular docking simulations allow
one to identify the stable drug—-drug complexes by firstly predicting the feasible binding-sites of a target
protein [13,17], followed by establishing from those, the best-ranked drug—drug binding configurations
as well as their orientations within the best-ranked binding-sites along with the assessment of their
binding affinity [11,18-20].

During the ligand-binding processes, it is common to find propensity of the ligands to interact
with multiples binding sites within the same protein. The greater or lesser specificity of a given ligand
to a particular binding site relies on the affinity at the biophysical environment where the interaction
takes place, and the latter can be assessed by the druggability degree (D) of the binding site [18-20].
Dy represents a quantitative estimation of the maximum intrinsic affinity of a given binding site of
the protein to bind one or more drugs (ligands). Notice, however, that several pockets may have the
ability to bind more than one drug enabling the occurrence of pharmacodynamics DDI, when partial
or total overlapping of the drugs occurs at the same biophysical environment of a given binding site of
the protein.

Despite the existence of great advances in computational pharmacology, how DDI phenomena can
modulate the adverse effects at the molecular and atomistic level are still ignored. Previous experimental
studies show that beta-blocker drug interactions can induce multiple adverse effects [21-23]. Particularly,
when the beta-blockers acebutolol (A) and propranolol (P) are simultaneously administered in the
bloodstream, they can induce different clotting perturbations due to interactions with proteins [24,25].
The most abundant protein circulating in the bloodstream plasma is fibrinogen, a protein with a
molecular weight of ~340 kDa depending on Ay and Bg chains and the y-y and «-o crosslinking
chains content [26]. From a structural and functional point of view, fibrinogen is a soluble glycoprotein
with a central nodule (E-region) comprising several cavities and tunnels, which facilitate the ions,
water solvent, and ligand transport, and in turn, its E-region has the maximum responsibility for
the fibrin polymerization during the clotting process [27-31]. Therefore, the binding site localized
in the most central part of the E-region of fibrinogen protein exhibits the greatest propensity for the
occurrence of pharmacodynamic DDI leading to most of the side-effects among A and P beta-blockers.

In this work, we propose for the first time a combination of computational modeling approaches,
based on molecular docking simulations and DFT calculations, along with experimental validation
to study the drug—drug binding interactions between the beta-blockers A and P with the fibrinogen
E-region (receptor).

2. Results and Discussion

One of the most important steps in computational rational drug-design is the precise prediction
and characterization of the biological target structure [32]. A deep knowledge of its three-dimensional
structure, flexibility properties, and residues composition of its catalytic binding site is crucial to
understand the phenomena of ligand—protein interactions with relevance from the pharmacological
point of view [33-35]. As referred before, during the ligand-binding processes in a given protein
target, it is very common to find propensity of the ligand to interact with multiples catalytic binding
sites (tiny cavities and tunnels) in the same protein [11-17]. Indeed, the greater or lesser specificity
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and selectivity of the ligand will be decided by the affinity at these biophysical environments where
the interactions take place. Particularly, the DDI phenomena are crucial to prevent side effects and
ensure the effectiveness and safety of drugs [1-7]. In this work, the study of polypharmacology
DDI between A and P beta-blockers is tackled considering the most relevant fibrinogen E-region
binding sites. Towards such purpose, we performed a pocket ranking of fibrinogen E-region binding
sites by assessing their highest druggability Dg [36], as defined in the Material and Methods section
(see Equation (8)). Notice that the higher Dy values are the maximum intrinsic affinity of the predicted
binding sites of fibrinogen E-region with the ability to simultaneously bind the acebutolol and
propranolol beta-blockers [36].

2.1. Prediction of the Binding Sites for Fibrinogen

Firstly, we present the predictions of the best-ranked catalytic binding sites of receptor fibrinogen
obtained using the machine learning technique 3D-DCNN [32]. The 3D-DCNN algorithm performs a
Delaunay triangulation with weighted points based on the computational geometric concept of the
“alpha sphere” center [32,36,37]. An alpha sphere is a sphere which contains no internal atom and
in turn, links four atoms on its border. In other words, the four atoms are at an equal distance to the
alpha sphere center [32,36,37]. Then, the algorithm can detect plausible fibrinogen binding pockets by
summing up all alpha sphere centers and later delimiting the access to cavities by scanning the van der
Waals surfaces in the fibrinogen E-region. The procedure includes all the depth concave regions of
fibrinogen that are directly associated with a high probability to ligand binding (higher Dg values) and
exclude all the convex parts associated to low druggability [18-20]. The 3D-DCNN results showed that
from a total of ten predicted binding sites in the fibrinogen E-region, the three best-ranked sites are the
following ones depicted in Figure 1, namely: site 1 (Dg = 0.81) > site 2 (Dg = 0.54) > site 3 (Dg = 0.39).

A) (B) E-region best-ranked binding sites (D) Druggability degree (Dg)
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Figure 1. (A) Details on the molecular structure of fibrinogen protein with the relevant regions,
such as the two C-terminal portions of the carbohydrate-linking coiled-coil-like chains (y-module and
-module) and the funnel hydrophobic cavity thrombin binding-domain (E-region, PDB ID: 1JY2 with
1.4 A of resolution), the latter highlighted with the light-blue rectangle. (B) 3D-DCNN prediction of
the three most relevant fibrinogen E-region binding-pockets (site 1, site 2, and site 3) depicted as van
der Waals surfaces. (C) Representation of the binding-site topology linked to catalytic active sites,
depicted as volumetric orange regions. (D) Prediction of the corresponding D for the best three
catalytic binding sites of the fibrinogen E-region, depicted as orange transparent hull surfaces. Therein,
the alpha sphere centers for predictions are shown as small red points within each site and surrounding
target residues (yellow colored).
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Let us now proceed to the 3D X-ray crystallographic structure validation of the fibrinogen binding
sites. Figure 2 shows the Ramachandran plots for its three best-ranked binding sites. These plots
contain a 2D-projection on the plane obtained from the 3D-crystallographic binding sites, pertaining
to all their possible residues conformations according to the dihedral angles (Psi (i) vs. Phi (¢))
around the peptide bond of such residues. The allowed torsion values for the 1 vs. ¢ dihedral angles,
placed within the Ramachandran colored purple contour, are identified as conformationally favored
residues, otherwise, these are considered as sterically disallowed residues [38]. This validation has
paramount importance in order to avoid the presence of potential false positives in the docking results
coming from the target residues forming the E-region binding sites.
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Figure 2. Ramachandran diagrams obtained for the best-ranked fibrinogen binding sites: (A) site 1,
(B) site 2, and (C) site 3. For visualization purposes, these are also 3D-displayed in the upper right
corner (light blue) of each panel. All the possible combinations of torsion dihedral angles Psi (1)) vs.
Phi (¢) are shown. Note the total absence of Ramachandran outlier residues for the three sites analyzed,
usually located outside the Ramachandran colored purple contour, if any.

As can be seen in Figure 2, our results show that 100% of the residues belonging to the three
validated binding sites can be categorized as conformationally favored residues with total absence
of restricted flexibility. This fact clearly prevents the presence of potential false positives results in
the modeling of the beta-blocker DDI systems, as well as ensuring the quality of our results from
the conformational point of view. Additionally, it is important to note that in most docking studies,
the Ramachandran validation is absent or in some cases inappropriately applied over all the protein.
In this work, the Ramachandran X-ray crystallographic validation was performed for only the clusters
of residues composing the relevant fibrinogen E-region binding sites (sites 1, 2, and 3), then allowing us
to obtain a more adjusted evaluation of the conformational integrity of the target-residues potentially
involved in DDL

2.2. Identification of Tunnels for the Fibrinogen Binding Sites

Fibrinogen E-region binding-sites are highly complex systems containing a large and variety
number of tunnels, clefts, grooves, protrusions, and empty spaces in the interior of the tangled funnel



Molecules 2020, 25, 5425 5 of 28

hydrophobic cavity formed by the y-y and -« crosslinking from Ax and B chains. These chains
are located in the two outer sides of the binding sites for thrombin, which allow the supercoiling of
protofibrils in the fibrinogen molecule during critical stages of the blood coagulation process [26-29].
Under the presence of ligands such as the A and P here studied, critical binding residues can be affected
by modifications in the symmetry architecture of the Bf-y/BB-y dimeric domain of E-region. In fact,
it is well known that many (3-adrenoreceptor blocking agents can affect the parameters of the blood
coagulation such as fibrinogen concentration and activity when co-administered intravenously [24].

Let us now then focus our attention on the structural prediction and characterization of the tiny
cavities (tunnels) composing the catalytic residues with the highest relevance-based druggability.

From the structural point of view, the tunnels are defined as entangled and small sub-cavities
occupying the internal volume of the aforementioned binding sites, which selectively delimit the
ligand transport to them, and usually present a narrower access determining the catalytic properties of
the binding sites of the fibrinogen E-region. The specific functions of the tunnels include: (i) exchange
of solutes, ions, and water between the tiny cavities; (ii) leading the transport of reaction intermediates
between two distinct active sites; and (iii) maintaining the conditions of conformational and geometric
complementarity for binding physiological substrates. Moreover, the residues forming the tunnel are
considered as promising hotspots with high ligand-binding propensity [36]. Thus, taking into account
the complexity of the tunnel hydrophobic cavity of the fibrinogen E-region [26-29], evaluating the
catalytic function of fibrinogen residues on its detected tunnels is considered to be more informative
than that of traditional predicted topological cavities.

According to this and by resorting to Caver software [36], we identified at least two tunnels
geometrically interconnected for each predicted catalytic binding-site (sites 1-3), sharing catalytic
binding residues (see Figure 3).
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Figure 3. On the left, van der Waals surface representation of the three best-ranked fibrinogen
binding-sites, namely: (A) site 1, (B) site 2, and (C) site 3. Therein, red and blue regions represent
acid and basic residues, respectively. On the right, (D-F) representation of the different tiny
cavities such as tunnels detected for each predicted fibrinogen binding site with the corresponding
surrounding target-residues.

It is important to highlight here that binding sites with high druggability comprise target-residues
displaying higher tolerance for deep environments such as: CYS, ALA, ILE, LEU, MET, PHE,
VAL, and TRP. The latter in turn directly influence the ligand binding properties of the established
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protein-ligand complexes (A + P/fibrinogen)—i.e., their specificity, enantioselectivity, inhibition
constants, and thermodynamic stability [39,40]. As mentioned before, we also identified the
“worst fibrinogen binding site” to be used as reference control denoting the absence of beta-blocker
drug—drug interactions. For this instance, a small region formed by two different tunnels located in
opposite crystallographic planes of the fibrinogen E-region was identified and showed to have the
lowest value of druggability degree (Dg = 0.08). More details concerning the worst fibrinogen binding
site can be found in Figure S1 of the Supplementary Material.

2.3. Calculation of Energetic Contributions for Binding Affinity

Moving on to the docking experiments, now we will focus our attention on the study of potential
DDI phenomena between A and P beta-blockers with the receptor fibrinogen E-region. Since several
tunnels from the three binding sites were detected in the fibrinogen E-region (Figure 3), we established
three pocket ranking prioritization criteria. The first one is the mutual overlap criterion (MOc) [37],
which considers a given binding site likely relevant for DD], if partial or total ligand-overlapping exists
at the same crystallographic plane or biophysical environment in that site. Additionally, it considers
the site that is likely relevant, if at least > 50% of the ligand atoms are within 3 A of at least one
alpha sphere. The second criterion pertains to the ligand-docking complexes with spontaneous
thermodynamic process (AGping < 0 kcal/mol). With regard to this criterion, as already referred to,
the docking simulation results are categorized as energetically unfavorable when the Gibbs free energy
of the formed complexes is AGping = 0 kcal/mol, pointing either to extremely low or complete absence
of binding affinity, otherwise they are categorized as having medium to high docking affinity [41,42].
Finally, the third criterion relates to the high depth of the target-residues of relevant binding sites.
The depth is defined as the distance of any atom in a given residue to its closest water molecule from
virtual bulk solvent [39,40]. In this instance, it is important to note that the cited crystallographic water
molecules were removed from the binding sites before starting the molecular docking simulations
during the step of receptor preparation (see Materials and Methods section).

Several factors can influence computational polypharmacology DDI studies. Amongst others are
the protein’s crystallographic quality, its flexibility properties, the pharmacological relevance of the
catalytic residues involved in the polypharmacology interactions, the physico-chemical properties of the
interacting ligands, and the presence of different conformations within the binding sites. Particularly,
the thermodynamic factors are crucial to tackle the polypharmacology DDI mechanisms. To address
the latter, we carried out a ligand transport analysis for the obtained DDI complexes between the
beta-blockers A and P with the three best-ranked binding-sites. The LTA-approach executes an iterative
docking algorithm which simultaneously scans the binding-energy trajectory vs. tunnel radius under
spatially restrained conditions, considering the same biophysical environment for both beta-blockers
to every slice of the binding sites (see Figure 4).

In general terms, the obtained beta-blocker binding energy trajectories fit with a spontaneous
thermodynamic process (AGping < 0 kcal/mol), therefore suggesting the formation of stable beta-blocker
drug-drug complexes in the three predicted fibrinogen binding sites. According to this, the modeling
results on the throughput tunnel parameter did not show significant differences between the three
best-ranked binding sites. In fact, the estimated T values from the predicted tunnels were high and
very close to each other (i.e., Tsite 1-tunnel 2] = 0.90, Tsite 2-tunnel 1] = 0.95, and T'sjte 3-tunnel 1] = 0.96),
indicating that the three binding sites display a similar performance for the transport of both
beta-blockers. Concerning this, note that T values close to 1 reflect a high probability of these tunnels
for the simultaneous transport of beta-blocker ligands increasing the probability of DDI. However,
considering the obtained AGying values from the LTA-analysis, one can clearly distinguish that the
DDI phenomenon hierarchically follows the order: site 1 > site 2 > site 3. In the case of the trajectories
through the binding site 1, the obtained binding energy profiles for both beta-blockers suggest the
formation of a DDI complex with a high stability with a range of AGping energy starting from —5.8 to
—7.40 kcal/mol. Additionally, the interaction affinity soared significantly in the binding site 1 around
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the tunnel radius (=2.83 A) until its critical value (=2.4 A) for both beta-blockers, which fits with
the maximum of drug-drug coupling interaction near to the narrowest part of the binding site 1.
After this, the drug-drug trajectories became abruptly independent for both beta-blockers. Interestingly,
beta-blocker A continued interacting at site 1 and increased its binding affinity from —7.40 kcal/mol
until a maximum value of AGyping = —7.70 kcal/mol. In contrast, P showed several peaks of significant
loss of affinity in the energy range of —7.40 and —6.5 kcal/mol in that site. According to the binding
trajectory of P, several factors are likely to explain its behavior, such as rotational and repulsive forces
linked to different binding modes, as well as clashes of P with the residues surrounding tunnels 1
and 2 of site 1. In fact, these likely induce a relative loss of the P affinity under the influence of A at
the same biophysical environment. Recent experimental evidence using small-angle X-ray scattering
(SAXS) also suggests that P affects the fibrinogen protein in a more significative way than A. However,
we firmly believe that A induces a reversible loss of P affinity [43], which can be verified in the range
of 7-9 A for the isolated trajectory of P (see Figure 4D).

@ S site2 ©

-

i — Ebound b ®) ¥ ®)... E bound
p Drug-Dr ——E bound oun
Drug-Drug | - Tunnel radius . ;'D'“g D'.“g —Tmentes] W I | — Tunnel radius
Interaction 1:2 < Interaction

=

= . l 4Propranolol g / = =
= 2 = ; Propranolol % ] <
= E ; P 2

< = = < = °
< § > =, s
= ® =2 4 g £
E| C - b £ < 3
Ze { ] = - . &
U o =2 3 : s ]
3 B g g 2 =

Fgs g &
Acebutolol ane s
Acebutolol
/ Drug-Drug
,1’J ] ~~ Interaction
Trajectory (A) Trajectory (A) Trajectory (A)

Figure 4. On the top, van der Walls surface representation for the best drug-drug interaction (DDI)
systems forming stable docking complexes with the fibrinogen E-region binding sites. (A) A plus P at
site 1; (B) A plus P at site 2; and (C) A plus P at site 3. On the bottom, panels (D-F) show the individual
Gibbs free energy profiles (AGpinq) from both beta-blockers plotted as a function of the trajectory and
the fibrinogen tunnel radius across the predicted catalytic sites. Therein, the corresponding energy
profile of A and P is depicted in red and blue solid lines, respectively. The transparent blue rectangle
with the black arrow in each panel indicates the occurrence of DDI events—i.e., A and P interacting
at the same biophysical environment in sites 1, 2, and 3. For comparison purposes, please refer to
Figure S2, where the LTA results for the worst fibrinogen binding site are shown.

Instead, the obtained trajectories for A and P in sites 2 and 3 exhibited a non-continuous DDI
profile (i.e., regions where the binding trajectories are independent or non-associated) with an average
affinity around —5.22 kcal/mol. In both these sites, a similar behavior happened in the first steps of the
beta-blocker transport around tunnel radius ~3.5 A. In addition, one can detect the absence of DDI
trajectories between 0.5-1.4 A and 0.2-0.5 A for sites 2 and 3, respectively. In site 2, the absence of
DDI trajectories may be associated with the reduction in the A affinity (AGyping ranges from —5.2 to
—4.9 kcal/mol) and, in site 3, with the reduction in P affinity (AGping ranges from —5.5 to —4.9 kcal/mol).
So, this suggests that these differences between the beta-blocker trajectories could be attributed to
their transport through different tunnels, and the depth of the surrounding target-residues composing
the tunnels of both sites. From the 2 A trajectory for both beta-blockers in the binding sites 2 and
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3, one can see the absence of DDI in a large part of the transport of these beta-blockers associated
to a loss of P affinity, may be due to the presence of A interacting simultaneously with the same
target-residues (vide infra), clearly affecting the thermodynamic stabilization of P interactions in such
sites. It is important to note that in the binding sites 2 and 3, the apparent similarity of the beta-blocker
drug-drug trajectories could be attributed to a quasi-symmetrical architecture of these sites with respect
to the main center of tunnel-hydrophobic cavity (site 1) in the fibrinogen E-region [26]. In addition,
we checked the mutual overlap criterion by performing a control of simulation experiment based
on the LTA approach for the worst fibrinogen binding site (Dg = 0.08) [36,37]. In doing so, it was
corroborated that the beta-blocker trajectories for A and P do not intercept during the passage through
this site (see Figure S2). This result is of great theoretical relevance because it serves as a reference to
identify the total absence of DDI patterns when compared to the interactions in sites 1, 2, and 3.

Following this idea, to verify the presence or absence of DDI for beta-blockers A and P at the same
biophysical environment in the best-ranked fibrinogen binding sites, the corresponding 3D-ligand plot
diagrams [44,45] were determined and are shown in Figure 5.
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Figure 5. Representation of 3D-lig-plots diagrams for the best beta-blocker drug-drug binding-poses.

(A) A plus P at site 1; (B) A plus P at site 2; and (C) A plus P at site 3 (A displayed in red color and P in
blue). Therein, the atoms from target-residues colored in green correspond to potential hotspots for

maximum drug-drug interactions between both beta-blockers in each fibrinogen binding site evaluated.

As can be seen, the A molecule involves a greater number of target-residues compared to P,
covering a greater area in the biophysical environment shared by both beta-blockers during the
docking interactions in the three binding sites. In all the cases, the best drug—drug binding pose
(A plus P) showed an extended shape to interact with the three fibrinogen sites. Additionally,
considering the approximate lengths of both molecules (A: =16.1 A, and P: ~4.8 A), this suggests that
the pharmacodynamic DDIs are mostly influenced by the contribution of the atoms from beta-blocker
A, since it displayed a greater number of hydrophobic contacts with binding residues following the
“mutual overlap criterion” cited above.

An overview of the results revealed that the most relevant beta-blocker DDIs are the hydrophobic
(N---C---C)-backbone side chain non-covalent interactions [46,47]. A greater number of these pertain to
binding site 1 when compared to sites 2 and 3, which show a similar proportion. Thus, the presence
of multiples hydrophobic (N--C--C)-backbone side chain non-covalent interactions between the
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beta-blockers (A > P) with the fibrinogen binding sites promote thermodynamic destabilizing effects on
the residue site-chain packing [46,47], inducing local perturbations in the flexibility and ligand-binding
properties of those binding sites (site 1 > site 2 > site 3). Furthermore, other detected relevant interactions
for these beta-blockers are an electrostatic (attractive interaction) between the electron-acceptor (N*)-(A)
atom with two (O7)--6-GLU60: chain Q (site 2) and a strong hydrophobic 7.7 stacking interaction
between the naphthalene moiety belonging to P with the aromatic heterocyclic N-indole moiety-TRP44:
chain Q (site 3), which can influence the stabilization of the A molecule that shares the same binding
residue (TRP44: chain Q) through hydrophobic interactions with the benzene ring that is part of that
aromatic heterocyclic N-indole moiety.

Another aspect deserving special attention for targeting the beta-blocker DDI is the
formation of a stable multicomponent docking complex that follows a recognized heterogeneous
Monod-Wyman-Changeux Allosteric Transition model (HMWC-AT) [48-50], which depends on the
fractional occupancy parameter (Jsit.) as a measure of the affinity constant (K;) or degree of saturation
from the different binding sites [48-50]. The HMWC-AT model is related to the cases where two or
more ligands interact with different binding sites of a given target-protein, but where just one affinity
(AGyping) per ligand is attributable [49]. In this context, the fractional occupancy for a given fibrinogen
binding site forming a multicomponent complex with two different ligands (A and P) can be defined
per binding site as follows:

[_i (IAIKE H(1+|A|I<R>) ; (IPIKF TT (1+|P|I<R))}
6site = % 1 — ) 7
,[Il<1+|xlll<?) [Il<1+|xz|1<,-’<> [[ (1+c1|X1|1<R) H (14ciIXoIKR)
. ” (1)
L[ L (clAIKE TT (1+cj1AIKT) ] [ Y (GIPIKR H(HC;IPIKf))]
+ i=1 j#i = j#i

11 n Vl2
_H1(1+IAIKF) ,Hl(1+|P|I<§) H (1+clAIKR) H1(1+c[|1>|1<{<)
1= 1= = =

In this equation, the first ligand (Acebutolol: A) interacts with the n; fibrinogen binding sites
(n1: sites 1, 2, or 3), and the second ligand (Propranolol: P) simultaneously interacts with the same #;
fibrinogen binding sites (1,: sites 1, 2, or 3), but with different affinity (K; or K;) and both with the best
Dg. Furthermore, X; and X, denote the ligand concentration of the evaluated beta-blockers, and the
parameter L is an isomerization constant of the fibrinogen E-region formed by A, and Bg chains
with pseudo-allosteric behavior. This parameter is obtained by the ratio: L = |Ty|/|Lo|, which describes
the equilibrium between the high-affinity relaxed conformation state (Rg) and the low-affinity tensor
conformation state (Tj) for the three best-ranked fibrinogen binding sites [48-51]. In this context,
the different affinity (K;) is represented in the high-affinity R-state like KF for both beta-blockers, and the
c parameter indicates how much the equilibrium between T and R states changes under beta-blocker
interactions [50-52]. The value of Dg & AGmax (Fibrogen site) is a function directly associated to the
fractional occupancy parameter (Ogjte), Nnamely: Ogite 1 = 0.81 > Ogjte 2 = 0.54 > Ogite 3 = 0.39.

Let us now begin by ascertaining the total binding affinity (AGtT)in 4)» as well as its thermodynamic
contributions (AGGauss1, AGGauss2 AGrepulsiorv AGH-bond/ AGhydrophobicz and AG;ot; see Equations (11)
and (12) in the Materials and Methods section). Additionally, the frequencies (k-occurrences) of affinities
were evaluated by assuming that the ligand binding occurs in the high-affinity relaxed conformation
state (Rp) in the three best-ranked binding sites (site 1 > site 2 > site 3). The results of this analysis are
shown in Figure 6.

An analysis of the results depicted in Figure 6 revealed that the most dominant energy contributions
for the total binding affinity AGgin 4 of the beta-blocker DDI systems are the pair of steric Gaussian
molecular mechanism distance-dependent terms (Gauss2 > Gauss1) [53]. In particular, the Gauss2
energetic terms provide relevant information about the influence of attractive binding energies of
the beta-blockers system with the three fibrinogen binding sites (site 1 > site 2 ~ site 3). These show
the presence of the strongest interactions based on non-covalent hydrophobic and non-electrostatic
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attractive energy contributions between the A and P hydrophobic atoms making the DDI system.
This indicates that the great influence exerted by the Gauss2 energy [53] is due to the formation of
temporary dipoles (fluctuating dipole-induced dipole) with electron cloud overlap between both
beta-blockers. It is well-known that this phenomenon can induce random fluctuations of electron
density and non-zero instantaneous dipole moments in all the interacting atoms, therefore leading to
a significantly increase in the total affinity when both beta-blockers interact at the same biophysical
environment in the fibrinogen E-region binding site. Particularly, based on the Gauss2 attractive energy
contributions, the narrowest pocket seen in the case of the binding site 1 appeared to favor a steeper
stabilization of the drug-drug system when compared to binding sites 2 and 3. Indeed, the later sites
presented a greater number of tunnels and binding interaction surfaces that decrease the probability
of drug-drug interactions based on their frequency (k-occurrences). These conclusions match up
with the previous results obtained by the ligand transport approach [54], where very close values of
maximum affinity were found for sites 2 and 3 compared to the first-ranked binding site 1. In addition,
the hydrogen-bond interactions contribute to the stabilization of the beta-blocker drug—drug complexes
in the system but show less impact on its total affinity, which display similar interaction values for the
three catalytic active sites studied. On the other hand, from a quantitative point of view, the energetic
contributions related to repulsive and rotational forces showed a similar behavior for the three binding
sites. So, repulsive and rotational forces are thought to have low relevance for the stabilization of the
beta-blocker drug—drug complexes in the fibrinogen E-region binding sites evaluated. Furthermore,
the energetic contributions of the beta-blockers A and P with the “worst fibrinogen binding site” were
used as a control simulation experiment for comparison purposes (see Figure S3).
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Figure 6. Graphical breakdown of the different binding energy contributions of the total binding
affinity (AGIZin 4) with the corresponding values obtained from the simultaneous interaction of both

beta-blockers with the fibrinogen E-region binding sites. (A) A and P at site 1 (AGgin 4="770 kcal/mol);
(B) A and P at site 2 (AGgin q =630 kcal/mol); and (C) A and P at site 3 (AGtT)i]n 4 =650 kcal/mol).

Therein, different colors were used to distinguish the type of thermodynamic contribution, namely:
attractive energy dispersion based on two Gaussian functions (Gauss1 and Gauss2 in blue and green,
respectively), repulsion energy (red), hydrophobic energy (light blue), hydrogen bond energy (purple),
rotational energy (yellow), and total affinity (black). (D) Frequency distribution of the total binding
energies, in which the x-axis pertains to the drug-drug total affinities (AGIZirl 4) and the y-axis to their
frequencies of occurrence (k-occurrences), obtained from both the docked drug—drug poses (blue bars)
and the undocked drug-drug poses (pink bars).
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On the other hand, the results shown in Figure 6D corroborate that the beta-blocker DDI events
present a higher prevalence in the fibrinogen E-region site 1 compared to sites 2 and 3, based on counting
the binding affinity frequencies (k-occurrences) [54]. In fact, the calculated values of k-occurrences in
site 1 (k = 100) were significantly higher compared to those in sites 2 and 3 (k = 10-13), suggesting the
high propensity of the fibrinogen E-region binding site 1 for DDI events [53]

To complement the previous analysis, we carried out additional control simulation experiments in
order to identify which specific atom, or set of atoms, of the beta-blockers could present the maximum
energy contribution to the individual binding affinities (AGSin 40" AGgin 4), taking into account again the
same thermodynamic energy contributions. To this end, a per atom energy contribution analysis was
performed separately for each beta-blocker (see Figure 7). In fact, such analysis allows a more detailed
evaluation of the contribution of the individual atoms of the beta-blockers interacting separately with
the fibrinogen E-region binding sites [33,34,41,42,55,56].
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Figure 7. Graphical representation based on the beta-blocker per atom energy contributions to
the individual binding affinity (AG{?irl q Or AGgin 4) in the three best-ranked binding sites. On the
top, energy contributions for each atom of A interacting with the three best-ranked binding sites:
(A) A-oxygen-(2)-atom/site 1, (B) A-oxygen-(2)-atom/site 2, and (C) A-oxygen-(1)-atom/site3. On the
bottom, energy contributions for each atom of P interacting with the three best-ranked binding sites:
(D) P-C-atoms (C2, C3, C4)/site 1, (E) P-N-atom/site 2, and (F) P-N-atom/site 3. Please note that therein
the symbol (#) x-axis is only used for labeling purposes and does not fit with the atomic position in the
beta-blocker molecular structures.

As can be observed, for molecule A, the largest energetic contribution was given by the H-bond
interaction generated by the A (H)---O-atom-(#2), with an oxo-group with electron-acceptor properties
that interacted with the (H)-THR22: chain P:CA in binding site 1 (Figure 7A). In site 2, the highest
energetic contribution for molecule A was supplied by means of H-bond interaction between the
(H)-axial-(#2) of the (OH)-hydroxyl group of A, which exhibited electron-donor properties to interact
with the (H)--ASP78: chain O: CA (Figure 7B). In the case of site 3, the atomic energy contribution
was provided by the H-bond interaction between the (H)---O-atom-(#1)-A, which interacted with the
(H)-axial-(#2) of the (OH)-HIS74 hydroxyl group in a similar way to the previous interaction in chain

O (Figure 7C). The maximum per atom energetic contributions for the A molecule to AGb q Were then
provided by hydrogen bond interactions, these being remarkably close in the three fibrinogen E-region
binding sites (AGH-pond * —0.8 kcal/mol).
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Regarding the P molecule, the maximum per atom energy contribution to the individual AG{;. was
ind

provided by a triad of C-atoms: C-atom (#2) > C-atom-(#1) ~ C-atom-(#3) in order of influence, with the
SER50:chain Q:CA interacting through the hydrophobic (N---C---C)-backbone and site chain (based on
the attractive Gauss2 energy of ca. —0.5 kcal/mol) in site 1 (Figure 7D), and also inducing hydrophobic
clashes. In binding site 2, the most relevant atomic energy contribution of the P molecule was
provided by means of AGH.pong interaction between the electron-acceptor (H)---N-acylated-atom-(#1)
of P, which interacted with the (H)--N-atom of the ASN30: chain S:CA (Figure 7E). Lastly, in site
3, the most significant energetic contribution to AG{:in 4 was led by AGH.pond involving the same
electron-acceptor (H)---N-acylated-atom-(#1) in the P molecule, which interacted with the (H)-atom
linked to the (H)---O-CYS39: chain Q: CA (Figure 7F). These two lasts per atom energetic contributions
of the P molecule interacting with sites 2 and 3 exhibited remarkably close values of AGppond
(=—0.5 kcal/mol). Additional details such as control simulation experiments for the “worst fibrinogen
binding site” are provided in Figure 54 of the Supplementary Material.

Let us now assess the perturbations in the depth profiles of target residues making relevant tunnels
(THR22:P, SER50: Q/sitel, ASP78:0, ASN 30:S/site2 and HIS 74:0, CYS39: Q/site3) that interacted with
the beta-blocker ligand atoms previously identified, with the maximum per atom energy contribution
to the individual binding affinities [39,40,44] (see Figure 8).

o
. [)l'.{])l‘ﬂllﬂlo]

R
l
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2, 2 g,
g = =
= S o
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Q. . 7.0 — after SR .
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4 4 & 3 § 3 &8 &8 2 8% & 8 & & & & % & & & & 6 8 & & & o9 &
Chains Chains Chains
Figure 8. On the top, for each beta-blocker, critical target-residues interacting with the

ligand atoms that showed the maximum atom energy contribution to the individual binding
affinity. (A) THR22:P_sitel/(A)-oxygen-(2)-atom and SER50_sitel: Q/(P)-C-atoms_ (C2, C3, C4);
(B) ASP78:0_site2/(A)-oxygen-(2)-atom and ASN30:S/(P)-N-atom; (C) HIS74:0_site3/(A)-oxygen-(1)-atom
and CYS39: Q_site3/(P)-N-atom. On the bottom, (D-F) correspond to the depth profiles (Dj ;] vs. chains)
for the critical target-residues linked to their corresponding side-chains into the relevant tunnels. Therein,
the amplitude of the depth peaks was evaluated before (green dashed lines) and after beta-blocker
interactions (red solid lines).

According to the results shown in Figure 8 (panels: D-F), the relationship between the
pharmacodynamic drug—drug interactions and the perturbations on the depth values for the revealed
target-residues of A-A and P-P could be modeled by incorporating the latter into Equation (12)
shown in the Material and Methods section, leading to expressions for DirHr22--sER50], DASP78.-ASN30]/

Q 0
9sers0” 1Asp7s’
qPOHS7 " and qu539)’ derived from the distance matrix between the 20 standard amino acids,

and Dypis74..cyszo)- In those expressions, it appears the g7 descriptor (i.e., q?HRZZ,

s
TAsN30”
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which depends on the frequency of the target residues in a certain position for a given chain (c).
Asreferred to in that section, this descriptor might be used as an adjusted residue-binding probability to
establish the quasi-sequence-position-order descriptor J; [39,40,44], which depends of the position (i and
i + d) and the frequency-based occurrence of the target residues in the chain sequence. In this context,
for each target residue type, the depth descriptor 4 is defined by means of the following Equation:

c f7

q; J) = 20 I | i—target =12..,20 )
Y fr+w Y 1y
i=1 d=1
in which 7, is defined as follows:
N—d ”
Tqg = Z (di,[i+d]) |[d = 1,2,..., Lmax 3)
i=1

In Equation (2), f, stands for the normalized frequency-based occurrence of the target residue
analyzed (i.e., THR22: P, SER50: Q/site 1, ASP78:0, ASN30:S/site 2 and HIS74:0, CYS39: Q/site 3),
and w is a weighting factor (w = 0.1). In Equation (3), the parameter 7; stands for the d-th rank
sequence-order-coupling descriptor based on the C-(c)-distances (d; |;;4]) between the two neighbors
most contiguous residues around the target-residue at the position (i, i + d), and Lnax for the maximum
length of the chain (c), where the fibrinogen target-residues are included. Then, one can estimate
the residue depth-perturbations after the beta-blocker interactions (J%) by correcting this descriptor
with an adjusted residue-binding probability under the influence or binding perturbation with the
beta-blocker ligands (liggpiocker: A and P)—i.e., site 1: ]gHR22 /A ]SQER50 7 site 2: ]gsws A ]f\SNso >
and site 3: ]13157 4/ A IgY539 /p- From the results shown in Figure 8 (panels D, E, and F), it can be seen that,
in general terms, the beta-blocker drug—drug interactions induced a decrease in the residue depth values
(Dye,i7) of approximately 1-2 A for the target-residues analyzed. Such results, therefore, suggest that the
simultaneous interactions of both beta-blockers can induce loss of coupling between the target-residues
(i.e., changes in the parameter 7,), leading to anisotropic changes in the C-(«x)-distances of the interacting
target residues from their equilibrium coordinates, and depth-perturbations (i.e., displacements)
measured by the D|.;; parameter. Additionally, these molecular changes could significantly affect the
substrate-specificity for thrombin—the natural ligand substrate of the fibrinogen E-region, and flexibility
properties of the fibrinogen binding sites [39,40,44] (see Figure 9).

As can be seen, the fibrinogen site 1 led preferably to beta-blocker DDIs considering that the
modifications in the residue depth profiles (THR22:P, SER50: Q) were more pronounced compared to
those on site 2 (ASP78:0, ASN30:S) and site 3 (HIS 74:0, CYS 39: Q) after these occurred. Furthermore,
considering the different fibrinogen target-chains c, one can see that tunnel 2 at fibrinogen site 1 was
the most preferred biophysical environment for the beta-blocker drug—drug interactions. Indeed,
tunnel 2 at site 1 showed the highest relevance involving all the fibrinogen target-chains (N, O, P, Q,
R, S) with c[site 1] = 6 compared with that at tunnel 1 of sites 2 and 3 that display medium relevance
(Crsite 2] = C[site 3] = 3) and involving only the chains O, Q, and S. Additionally, the occurrence of the
beta-blocker DDI phenomena was more likely at site 1 than sites 2 and 3 since it obeys a tighter
relationship with Dg, Smax, and Dy (see Figure S5).

From the polypharmacology point of view, these results have a remarkable value since they
match with previous in vitro evidence, which suggest that modifications in the residue depth profile
can significantly affect several binding properties of the catalytic sites such as substrate-specificity,
enantioselectivity, inhibition constants (K;), and thermodynamic-stability of the protein-ligand
complexes [39,40].
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Figure 9. On the top, graphical representation of the beta-blocker binding ability for critical fibrinogen
target-residues based on the depth quasi-sequence-position-order descriptor (J;). (A) THR22:P, SER50:
Q; (B) ASP78:0, ASN30:S; and (C) HIS74:0, CYS39:Q. Orange and red colored regions depict high
binding ability for the beta-blockers, while blue ones show low binding ability. On the bottom,
3D-surface maps of the quasi-sequence-order-coupling descriptor (7,) as a function of residue depth
Dy, vs. maximum solvent accessibility. The simulation conditions considered to study the depth
perturbation on the aforementioned target-residues are: (D) unoccupied site 1 (tunnel 2); (E) unoccupied
site 2 (tunnel 1); and (F) unoccupied site 3 (tunnel 1). (G-I) The later panels refer to the last simulation
condition considered—that is, the study of the residue depth perturbations of the aforementioned
target-residues under the influence of drug—drug interactions with both beta-blockers A plus P. Therein,
the color bar on the right of each map represents the residue depth perturbations based on the values
of descriptor 74, which range from weak (blue) to strong (orange/red) ones.

2.4. DFT Modeling of Beta-Blocker Drug-Drug Binding Systems

In order to further characterize the structural and electronic properties of the most stable
beta-blocker drug-drug binding configurations, a DFT study was then carried out [57]. We started by
evaluating the structural and electronic properties of the isolated beta-blockers A and P (see Figure 10).

To do so, we calculated the electronic levels of the isolated beta-blockers with the corresponding
local charge densities plots for the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) [58,59]. These molecular orbitals ascertain the way the molecule
interacts with other species and allow one to predict the nature of its reactivity, physical, and structural
properties. In particular, the HOMO-LUMO energy gap can be used as a metric of the stability of
interactions established by such beta-blockers [60].

Here, it should be noted that local charge density plots allow us to identify relevant target-atoms
potentially involved in the beta-blocker DDI from an electronic point of view [58,61]. For molecule A,
the obtained HOMO-LUMO energy gap difference (AHL) was 3.10 eV, and, as can be seen, the density of
charges in the HOMO level was essentially placed in the N-atom, while in the LUMO level, those were
more concentrated in the (sp?)-C-atoms of the aromatic ring, including the O-atom from one part of this
molecule. On the other hand, the obtained HOMO-LUMO gap in the case of molecule P was 2.30 eV,
with the HOMO level more concentrated in the N-atom and O-atom, while its LUMO level covered the
(sp?)-C-atoms from the naphthalene-moiety.
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Figure 10. Representation of the electronic energy levels and local charge density plots with the
corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) levels (4.3 x 1073 /A3 iso-surface) for the optimized beta-blocker ligands obtained by Density
Functional Theory (DFT) calculations. (A) Beta-blocker A and (B) beta-blocker P. In the lower right
corner, the atom types of the beta-blockers are depicted, namely: C-atoms (dark gray), O-atoms (red),
N-atoms (blue), and H-atoms (light gray).

Then, we carried out DFT calculations for all the potential conformations adopted by the
beta-blockers during the pharmacodynamic interactions, according to the ligand binding conformations
and thermodynamic stability. To do so, the most stable drug—drug binding configurations of the
beta-blockers were identified following several criteria for their prioritization based on the following
DFT obtained results: drug-drug energy of binding (Ep), drug—drug inter-atomic distances of binding
(da-p) for the molecules A and P, and the HOMO-LUMO energy difference gap (AHL) of each modeled
system (see Table 1). In so doing, the fifteen most stable drug-drug binding configurations from a total

of forty modeled configurations were found (see Figure 11).

Table 1.

Energy of binding (Ep), lowest B-blocker inter-atomic distance of interaction (d4_p),
and HOMO-LUMO gap (AHL) obtained for the fifteen most stable configurations of beta-blocker DDI
systems ordered according to their pharmacodynamic relevance (DFT results obtained by modeling
DDI in the absence of fibrinogen E-region molecule).

Ranking Configuration |Ep| (eV) AHL (eV) d A_p(A)
1 XII 2.40 2.02 1.84 (O-H)
2 v 2.36 2.11 1.64 (O-H)
3 I 1.99 1.87 1.59 (N-H)
4 XIII 1.99 2.26 1.77 (H-O)
5 X1V 1.99 2.15 2.08 (N-H)
6 XI 1.97 1.63 1.59 (O-H)
7 VI 1.92 1.90 2.25 (N-H)
8 vl 1.88 2.13 2.09 (H-H)
9 X 1.84 2.29 2.12 (O-H)
10 VIII 1.83 2.30 1.80 (H-O)
11 111 1.82 222 2.07 (H-H)
12 I 1.76 1.47 1.84 (O-H)
13 X 1.71 2.20 2.10 (O-H)
14 \Y 1.67 1.97 2.52 (C-H)
15 XV 1.67 2.21 1.91 (H-H)
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Figure 11. DFT results for the fifteen most stable thermodynamically drug—drug binding configurations
(from I to XV) adopted by the beta-blockers A and P during the pharmacodynamic interactions
(i.e., modeled in the absence of fibrinogen E-region). The beta-blocker atoms are depicted as ball and
sticks and colored as follows: dark gray (C-atoms), red (O-atoms), blue (N-atoms), and light gray
(H-atoms).

The binding energy |Ep|-based distance is considered the most relevant DFT result to tackle the DDI
between both beta-blockers. It is important to note here that the DDI phenomena strongly depend on
the best thermodynamic stability of the configuration binding-poses adopted by the beta-blockers in the
binding site 1. Regarding this, the DFT results point out that the best-ranked configuration binding-pose
was achieved by configuration XII, which presented the highest drug-drug binding-energy value
|Ep| = 2.40 eV, with an HOMO-LUMO difference gap of AHL =2.02 eV associated to an inter-atomic
distance of interaction (d(O--H)a_p) = 1.84 A, established between the O-atom of molecule A and
the H-atom of molecule P. Short inter-atomic distances such as O--H between molecules A and P in
this configuration favor the non-covalent stabilization of the DDI system, forming a (O---H)-dipole
induced-dipole interaction without involving the sharing of electrons. Details on this analysis are
shown in Figure 12.
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Figure 12. (A) Representation of the best-ranked drug-drug binding configuration XII formed by the A
+ P/fibrinogen complex in the fibrinogen E-region binding site 1. (B) Topological representation of the
tunnel 2 (colored green) containing the best-ranked drug-drug binding configuration XII for molecules
A + P interacting simultaneously at the same biophysical environment (ball and sticks representation)
in binding site 1 (surrounding shaded orange region). (C) Energy levels and iso-surfaces of the local
charge electronic density and total charge density plots obtained for the best-ranked drug-drug binding
configuration XII (A + P). The electronic levels are depicted as solid lines with the HOMO-LUMO
energy difference gap (AHL), and the density plots are shown, using orbital charge density iso-surfaces
of 0.002 eV/A3. The A and P atoms are depicted as ball and sticks and colored as follows: dark gray
(C-atoms), red (O-atoms), blue (N-atoms), and light gray (H-atoms).

These DFT results go along with the previous docking results, since configuration XII is part of
the clustered docking poses that exhibit higher frequency values for DDI in the fibrinogen E-region site
1 (i.e., at site 1 k occurrences = 100) as referred to before (see Figure 6D). Additionally, configuration XII
exhibits a greater structural overlap between the aromatic moieties (i.e., benzene and naphthalene)
compared with the remaining configurations (Figure 11). Interestingly, the second-best ranked
drug-drug binding configuration corresponds to configuration IV, which present a slightly lower-energy
value (|Ep| = 2.36 eV) compared to the former one (XII), but in contrast, it shows a lower value for
the inter-atomic distance O--H (d (O--H)a_p = 1.64 A). Additionally, the slightly difference of 0.04 eV
obtained for configuration IV in relation to the best drug—drug binding configuration XII (|E;| = 2.36 eV)
may be explained by the presence of structural overlapping parallel geometry between the aromatic
benzene ring of A and the naphthalene-moiety of P. This clearly indicates potential influence of the
m—7t stacking in the stabilization of the beta-blocker DDI in this case.

In this context, by analyzing the worst-ranked configuration XV with |E,| = 1.67 eV, one can observe
a clear separation of the aforementioned aromatic-moieties, which are oriented in a different plane
(please refer to Figure 11). Furthermore, the presence of (3-blocker inter-atomic distance of interaction
da-p(H-H) = 1.91 A and HOMO-LUMO difference AHL = 2.21 eV could negatively influence the
stabilization of configuration XV, and thus decrease the DDI phenomena in the fibrinogen E-region site
1 compared to the best-ranked drug—drug binding configurations (XII > IV) (see Table 1).

Considering the electronic properties for the best-ranked configuration (XII) in the fibrinogen
E-region (binding site 1), one can note locally concentrated charges in the LUMO of A mainly placed
on the (sp?)-C-atoms of the aromatic benzene-ring and covering partially the O-atom that forms the
oxo-moiety in the A molecule. This fact could significantly weaken the H-bond electron-acceptor
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properties of the oxo-moiety that interacts with the (H)-atom of the regulatory residue THR22:
chain P:CA in the fibrinogen binding site 1. Therefore, in this way, it will affect the stabilization of
the A-fibrinogen docking complex as well as significantly the pharmacological activity of the A when
beta-blocker P interacts in the same biophysical environment (site 1). Regarding the HOMO, the local
charge density of configuration XII is spread on the N-atoms simultaneously for both beta-blockers.
However, the latter does not involve relevant interacting-atoms for stabilizing the A + P/fibrinogen
complex in site 1. On the other hand, the results concerning the total charge density plots [52]
showed that the charges were localized on the separated beta-blockers only without charge lines
intercepting both molecules, thus confirming the absence of DDI under a covalent regime between
the beta-blockers A and P. Additionally, the obtained DFT results for the binding energies (|E;|) for all
the configurations of (A + P) were smaller than 2.50 eV indicating that the interactions occur without
chemical bonds [58,59]. Furthermore, the total charge density plots show that the geometric structure
and inter-atomic bond-distances are similar to the ones of the original isolated molecules, suggesting
that the beta-blocker DDI in site 1 could be more intense mimicking traditional pharmacodynamic
DDI phenomena.

2.5. Experimental Validation

Let us first discuss the critical aggregation concentrations (cac), which are defined as the
concentration from which occurs the aggregate formation and strongly depends on the total
concentration of the beta-blocker species present in the system (i.e., A and P). Herein, the cac
values were obtained from breaks in plots of velocity vs. concentration of beta-blockers drug mixture in
aqueous solutions. Variations of the cac with temperature for different molar ratios of the P/A mixtures
were plotted (see Figure S6). Each plot appears to follow a U-shaped curve with a minimum at a
certain temperature. Based on the Regular Solution Theory, it is possible to obtain §, the dimensionless
intra-aggregate interaction parameter [62], which is related with the drug—-drug interactions in the
mixed aggregates and can be interpreted in terms of an energetic parameter that represents the excess
Gibbs free energy of mixing: § = Na (W11 + Wy — 2W1p), in which W11 and W, are the energies of
interaction between molecules in the pure state and W is the interaction between the two beta-blockers.
The value of § can be obtained from the experimental values plotted in Figure 56, by means of the
Equations below.

X2 In [a1 emem /(X1 emey )]

(1-X1)%In [(1 =) emem/ (1 - X1) emey))]

=1 (4)

~Infag emem /(X1 cmey )]
(1-X;)?

Obviously, the g values depend on the temperature and mixing ratio of A plus P. For a mixing

©)

concentration ratio of 0.5 (1:1), which mimics the multicomponent docking complex formed by the
two -blockers ligands, the obtained values range from —0.41 to —0.89 kBT or equivalently —0.26 to
—0.55 kcal/mol. Although the experimental values are quantitatively different to the theoretically
obtained, from the qualitative point of view, this evidence fits with the phenomenological interpretation
involved. In fact, negative § values indicate attractive synergic interactions, so both beta-blockers must
attract each other in aqueous solutions [62,63].

On the other hand, density and ultrasound velocity measurements were included to obtain the
adiabatic compressibility using the Laplace Equation:

1(V 1073
ks = ——=|==| = — 6
s V( oP ) s  pu? (©)
where V, P, and S refer to volume, pressure, and entropy, respectively. kg is the adiabatic compressibility
coefficient, expressed in Pa~! when the ultrasound velocity u is expressed in cm s~ and the density
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in g cm™ [64]. The isentropic apparent molal compressibility (Kp) can be calculated from the
following Equation:
103 (ks — k2)
m pPo
The plots of Ky, as a function of the total concentration and the drug-drug mixing ratio of A plus P
can be found in Figure S7. Changes in the apparent molar compressibility of the aggregation processes
were all negative, confirming the predominant role of the increase in hydrophobic hydration in the

K, = +K vV, 7)

association of the monomers of the evaluated beta-blocker drugs [65,66]. The large increment in the
compressibility is a consequence of vertical stacking of the molecules in the aggregate with the polar
groups and the side chains arranged around the periphery of the stack. This type of association has
been suggested for phenothiazine and other drugs based on NMR experimental studies.

3. Materials and Methods

General Workflow

To begin with, the protein receptor file—i.e., fibrinogen E-region—was withdrawn from the Protein
Data Bank [67], PDB ID: 1JY2 with 1.4 A of resolution and more than 98% similarity with the human
fibrinogen E-region [26]. Then, the E-region PDB structure was prepared using the AutoDock Vina
software [68], by including titration of the protonation states using the PROPKA 3.1 utility tool [69],
followed by the addition of missing atoms with an overall optimization of the H-network employing
its implemented PDB2PQR 2 algorithm. Next, the ligands (beta-blocker drugs) were obtained from
the PubChem Substance and Compound databases [70]—i.e., A: hydrochloride molecule (PubChem
CID:1978; MF: C13H3N2054) and P: hydrochloride molecule (PubChem CID:62882; MF: C14H,CL,O5),
and optimized using the semiempirical AM1 method implemented in MOPAC [71].

The following fifth-step procedure was adopted for addressing the study of the drug interactions
between the beta-blockers A and P with the fibrinogen E-region binding-sites (see Figure 13).

Computational Approaches

Stepl: Prediction of the best-ranked
fibrinogen binding sites.

+ DeepSite (3D-DCNN) tool.
+ Ramachandran validation.
Step 2: Detection of tunnels for the

fibrinogen binding sites.

* Ligand Transport Analysis (LTA).
* 3D-Lig-Plot Interaction Diagrams.

Step 3: Calculation of energetic contributions for total binding affinity
for DDI systems for beta-blockers ( A and P).

AGLy =AGg, +AGE, @ Calculation of depth profiles of target-residues.

Step 4: DFT modeling of DDI
systems

g

Step 5: Experimental Validation.

Figure 13. General workflow adopted in this study.

Step 1: Prediction of the binding sites for fibrinogen. This proceeds as follows.

(i) Predict the binding sites for the fibrinogen E-region by applying an appropriate machine
learning framework.
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(i) Select from the fibrinogen E-region binding sites found, the three best-ranked ones based on
their highest druggability. For comparison purposes, ascertain as well the undruggable or
“worst fibrinogen E-region binding site” to be used as reference control denoting absence of
drug-drug interactions.

(iii) Validate the three best-ranked binding sites found by examining their Ramachandran plots.

Step 2: Identification of tunnels for the fibrinogen binding sites. Detect the tunnels or tiny
cavities of the three best-ranked binding sites found, followed by a ligand transport analysis for the
beta-blockers A and P on those, and inspection of 3D interaction diagrams for their target-residues.

Step 3: Calculation of energetic contributions for binding affinity. Ascertain the energetic
contributions for the total binding affinity from beta-blocker DDI systems on the three best-ranked
fibrinogen E-region binding sites and evaluate in addition their binding relevance before as well as
after the beta-blocker DDI.

Step 4: DFT modeling of beta-blocker drug—drug binding systems. Evaluate the configurations
of the best-ranked beta-blocker drug-drug binding systems, using DFT calculations.

Step 5: Experimental validation. Assess the reliability of the computational results by resorting
to ultrasound density and velocity measurements.

Step 1: Prediction of the binding sites for fibrinogen. The task here is to predict the binding
sites of the fibrinogen E-region, prior to the docking simulations. This was accomplished by applying
the 3D DeepSite Convolutional Neural Networks (3D-DCNN) tool [32]. The latter considers all the
crystallographic descriptors of a given binding site such as van der Waals surface of the fibrinogen
cavities using a validated deep-learning neural network algorithm. Herein, the characterization and
ranking of the predicted binding sites were established by considering the ability of these sites to
simultaneously bind both beta-blocker drugs A and P at the same biophysical environment [18-20].

Then, the cartesian coordinates obtained from the volumetric maps of the fibrinogen binding sites
were used to set up the docking box simulation for each fibrinogen E-region binding site. For site
1, the details of the box-simulation are: grid box-size with volume V = 559 A3 (X=64 A, Y=52A,
Z =52 A) centered at X = 13.6 A, Y =-1.10 A, Z=12.0 A; whereas for site 2, these are: grid box-size
with volume V=475 A3 (X =24 A, Y =24 A, Z =24 A) centered at X =28.6 A, Y =2.80 A, Z = 16.0 A;
and for site 3: grid box-size with volume V = 545 A3 (X =128 A, Y=28A,7=28 A) centered at
X=02A,Y=-84A,7 =57 A. Finally, for the “worst fibrinogen binding site”, these are: grid box-size
with volume V=500 A3 (X =28 A, Y =28 A, Z =28 A) centered at X =386 A, Y =13.1 A, Z =31.1 A.
For this instance, an exhaustiveness docking parameter equal to 100 was used in all the cases [72].

To establish the relevance of each catalytic binding site, the druggability (Dg) was estimated as the
maximum energy variation of the fibrinogen E-region binding-sites affinities under beta-blocker drug
interactions. Dy is defined as follows:

Asite—druglike

Dg ~ —AGmax (Fibr . site) ~ =) (7) ANon-polar site X +C (8)

Smax site
where AGax (Fibr . site) is similar to Dyg [19], more commonly used in rational drug design to represent
the maximum intrinsic affinity of the fibrinogen catalytic binding site, which fits to a linear-correlation
between the binding-site surface area and the beta-blocker molecular weights under DDI conditions.
Then, y (=0.024 kcal/mol) stands for a constant related to solvent surface tension in the fibrinogen
binding site, which depends on the surface curvature r (i.e., concave surface) of the fibrinogen binding
site. The ANon-polar site cOTTesponds to an approximation of the beta-blockers desolvation components,
whereas the Agite-druglike to the drug-like size (*300 Az). The Spax site depicts the normalized maximum
solvent-accessible surface area of the fibrinogen site evaluated, and C is an empirical parameter that
largely discriminates druggable from undruggable binding-sites when it is ca. zero [18-20].
Validation of the fibrinogen binding sites. To validate the 3D X-ray crystallographic structure of
the predicted best-ranked fibrinogen E-region binding sites—namely: sites 1, 2, and 3—a Ramachandran
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diagram analysis Psi (1) vs. Phi (¢) was carried out [38]. Here, it should be noted that Ramachandran
diagrams may prevent obtaining false positives from docking complexes by confirming the absence of
restricted-flexibility in the target-residues making up the fibrinogen E-region binding sites.

Step 2: Identification of tunnels for the fibrinogen binding sites. Detection of tunnels for each
fibrinogen E-region binding site was performed using the Caver 1.0 software [36]. One of the most
relevant tasks here is to appropriately select the tunnel starting point residues, which are typically
placed within the active site. For this purpose, we considered the three fibrinogen binding sites
with the highest Dy values, and redundant tunnels were removed in order to set the starting point
residues, namely: at site 1: N:48 N:49 N:50 N:51 P:19 P:20 P:21 P:22 O:81 O:83 O:84 O:85 O:86 Q:48
Q:49 Q:50 Q:51 S:19 S:20 S:21 S:22 R:81 R:83 R:84 R:85 R:86; at site 2: O:76 O:78 O:79 Q:54 Q:57 Q:60
Q:61 S:26 5:29 S5:30 S:33 S:34; and at site 3: N:54 N:57 N:60 N:61 P:26 P:29 P:30 O:64 P:33 R:76 R:78 R:79.
The algorithm implemented in this software allows us to calculate the geometry of a given binding
site and the target-residues composing the tunnel, as well as searching the tunnel pathways with the
minimal radius and the lowest cost based on a Voronoi tessellation procedure [38]. In all the cases,
the particular detection parameters applied here are minimum probe radius = 0.9 A, shell depth = 4 A,
shell radius = 3 A, clustering threshold = 3.5 A, maximal distance = 3 A, and desired radius = 5 A.

Beta-blocker ligand-transport analysis. Afterwards, we carried out a ligand transport analysis
(LTA) on the previously detected tunnels using the CaverDock software [54]. The LTA algorithm is able
to generate the trajectories from the individual free binding energy (AGpinq) by performing an iterative
docking of the beta-blockers (A or P) to every slice of the tunnel. In so doing, we employed the partially
restrained AutoDock Vina scoring function [65] that considers two relevant parameters—i.e., (i) the
discretization delta that defines the distance between two slices centers of the tunnel, and (ii) the
calculation mode that defines which ligand restraints will be set as rotation restriction coupled with
backtracking to ensure a forward continuous movement. For that, the beta-blocker free binding energy
trajectories were set as default parameters, which is strongly recommended in pharmacodynamic DDI
studies [54,68].

In addition, to evaluate the efficiency of the simultaneous transport of the beta-blockers A and P
through the different tunnels, the biophysical throughput parameter (T) was estimated according to
Equation (9). The throughput of a given pathway can adopt the form of the equation below when the
ligand transport trajectory has continuous variation through the tunnel radius [54].

T — ¢ ™" )

In this Equation, L represents the total path length with radius 7, the function r(l) defines the
largest radius for absence of collisions or steric clashes along the beta-blocker drug—drug trajectories,
and n € N, though its default value is n = 2 for tunnels with relatively large width. Here, the “cost”
is obtained by numerically integrating the exponent using the trapezoidal rule with a uniform grid,
a minimum number of trapezoids (=8), and a minimum grid distance (=0.1 A). As such, the T values
range from 0 to 1 [54].

Analysis of 3D interaction diagrams. To evaluate the relevant beta-blocker DDI between A
plus P with the fibrinogen E-region, 3D interaction diagrams were plotted and analyzed using the
ezCADD software [44,45]. This software determines the non-covalent intermolecular interactions
in each receptor-ligand complex. Then, its utility tool named ezLigPlot automatically represents
schematic 3D-interaction diagrams for the van der Waals hydrophobic, H-bond, cation-7, and m—m
stacking interactions if any, along with the corresponding interatomic distances for all the docking
complexes [44,45].

Step 3: Calculation of energetic contributions for binding affinity. The total binding affinity for
the beta-blockers drug-drug/fibrinogen E-region complexes was computed as the sum of the individual
binding energies of the beta-blockers A and P (AG{?in qand AG}I;irl 4) in the three best-ranked fibrinogen
E-region binding sites (from now on, denoted as sites 1, 2, and 3). To this end, the empirical force-field
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parameters of the Autodock Vina scoring function were used to ascertain the effect of the different
thermodynamic contributions on the total binding affinity [41,42,49,55,56]. That is, the individual
binding energies were obtained by summing up the different contributions, as shown below for
e.g., the beta-blocker acebutolol (A)—Equation (10), and then added together to gather the total binding

affinity (AG], ,; Equation (11)).
A _ A A A A A A
AGbincl - AGGaussl + AGGaussZ + AGrepulsion + AGH—bond + AGhydrophobic + AGrO’f (10)
T _ A P
AGping = AGing + AGping a1

Notice that in Equation (10), the steric interaction-based Vina scoring function is calculated
using three terms—i.e., two attractive Gaussian functions distance dependent terms (AGg,yss1 and
AGgGauss2), and one repulsive parabolic interaction term (AGrepusion)—which reproduce the canonical
Lennard—Jones interaction shape of beta-blockers with fibrinogen [41,42,49,55,56,73]. The AGH-bond
term accounts for the pair of donor and acceptor hydrogen-bonds. The fourth term AGhydrophobic aims
at evaluating the non-covalent van der Waals interactions [33-35]. Lastly, the AGt term holds for the
number of rotatable bonds/torsions in the beta-blocker ligands.

The total binding affinity is, therefore, used to quantify the DDI when both beta-blockers interact
simultaneously at the same biophysical environment and crystallographic plane of the three best-ranked
fibrinogen E-region binding sites. When AGgin 4> Okcal/mol, it is classified as energetically unfavorable,
pointing either to extremely low or complete absence of affinity of the formed complexes, otherwise
it is categorized as medium to high binding affinity. Additional details about the thermodynamic
force field parameters of the Autodock Vina scoring function used in this work can be seen in [33-35].
An additional control simulation experiment was carried out to evaluate the maximum per atom-energy
contribution to the individual binding affinity of the A and P separately in the three best-ranked
fibrinogen E-region binding sites.

Depth profiles of fibrinogen target-residues. In order to evaluate the binding relevance of
the beta-blocker DDI, we performed a depth profile analysis of the target-residues (i) including the
target-chains (c) making the tunnels [37,39,40,74]. To this end, the residue depth is represented by the
Dy ;] parameter, defined according to the general following Equation in compact notation:

D[c,i] = H[l - H(l - Eif)} X Smax (12)

c Cc

where g%, known as the depth quasi-sequence-order descriptor, represents an adjusted binding
probability-based weighted average derived from the distance matrix between the twenty
standard amino-acids, and displays a linear correlation with the maximum solvent accessibility
Smax—i.e., the percentage of predicting cavity waters to be displaced from the cited critical
residues i in the main-chains ¢ [37,39,40,74]. Additionally, the 4} descriptor is a function of the
quasi-sequence-position-order descriptor (J;), so-called conservation score, which is related to the
position and occurrence of the residue i in the sequence of the chain. More details about these
descriptors are discussed in the former section.

It is also important to highlight that the D|., ;| parameters for two different chains are independent
from each other. Our hypothesis here is that the depth profile of target-residues (i) surrounding tunnels
can significantly modulate the beta-blocker drug—drug interactions. Following this idea, in the present
work, three categories were defined to evaluate the binding relevance of the fibrinogen target-chains,
taking into account the number of chains (c) composing the tunnels involved in the beta-blocker DD],
namely: ¢ = 6 (highest relevance), ¢ = 34 (medium relevance), and ¢ = 1-2 (low relevance).

Step 4: DFT modeling of beta-blocker drug-drug binding systems. A DFT study of the
configurations for the best-ranked beta-blocker drug-drug binding complexes was performed [75].
To this end, the Kohn-Sham Equations were solved with numerical atomic orbitals using the SIESTA
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code [57,76]. Specifically, the Kohn—-Sham orbitals are expanded in a finite basis set of numerical
pseudoatomic orbitals, the latter being described by double-zeta polarization (DZP) functions [77].
Correlation energies were set by the local density approximation (LDA), as proposed by Perdew and
Zunger [77]. In fact, the LDA approach has been shown to be more suitable than the generalized
gradient approximation (GGA) to study weakly interacting systems with the presence of 7-7 stacking
interactions [78].

Improved Troullier—-Martins pseudopotentials were used to describe the interactions between the
core and the valence electrons [58,59,61], and for the molecular orbitals a localized DZP polarization
basis set was implemented. For all the beta-blocker DDI systems, a cutoff value of 200 Ry was used to
represent the charges density in the grid integration. The optimization of the systems’ structure was
performed by a conjugate gradient method, the beta-blocker atomic positions being fully relaxed until
the remaining forces acting on them dropped below 0.05 eV/A.

The DFT-binding energies (E,) between the beta-blockers A and P were calculated according to
the following Equation [58,59,61]:

E, = _(E [A + P}total —-E [A] —-E [P]) (13)

where E [A + PJ,, stands for the total DFT energy of the beta-blocker drug-drug system, and E [A]
or E [P] for that of the isolated beta-blocker molecules A or P, respectively.

Step 5: Experimental validation. To validate our theoretical results on beta-blocker DDI,
the ultrasound velocities and densities were continuously, simultaneously, and automatically measured
by using a DSA 5000 Anton Paar density and sound velocity analyzer. This method allows the
determination of the concentration of two or more component solutions using the most accurate results
of density for interacting components such as beta-blocker DDI at the same time and experimental
conditions. This equipment possesses a vibrating tube for density measurements and a stainless-steel
cell connected to a sound velocity analyzer with a resolution of +107® g cm™3 and 1072 m s7},
respectively. Both the speed of sound and density are extremely sensitive to the temperature, so this
was kept constant within +1073 K through a Peltier system. The reproducibility of the densities and

ultrasounds measurements is +107° g cm =3 and 1072 ms™!, respectively.

4. Conclusions

In this paper, we presented for the first time a combination of molecular docking and DFT
results of the pharmacodynamic DDI between two beta-blockers (A and P) on the relevant catalytic
binding-sites of the fibrinogen E-region. Those results showed that the three most relevant fibrinogen
E-region binding sites exhibit from high to low druggability in the order: site 1 (Dg = 0.81) > site
2 (Dg = 0.54) > site 3 (Dg = 0.39), as well as complying with the mutual overlap criterion for being
the best-ranked binding-sites, in contrast with the “worst fibrinogen binding site” with Dg = 0.08.
Furthermore, the crystallographic validation based on Ramachandran diagrams shows that 100%
of the catalytic binding residues associated with the transport of both beta-blockers were correctly
categorized as conformationally favored residues with total absence of residues with restricted
flexibility, thus confirming to be not false positives docking results. Furthermore, the binding free
energy trajectories and total affinity obtained for the best-ranked beta-blocker drug—drug docking
complexes revealed a spontaneous thermodynamic stabilization following the site-affinity order: site 1
> site 2 > site 3. The most dominant energy contributions to the total affinity of the DDI complexes
(beta-blocker drug-drug/fibrinogen E-region) were provided by the pair of steric distance-dependent
interactions (Gauss2 > Gaussl). In addition, the 3D-lig-plot interaction diagrams for the beta-blocker
DDIs showed that the complex drug-drug stabilization was mostly influenced by the contributions of
a high number of hydrophobic atoms (acebutolol > propranolol) in the fibrinogen site 1 (tunnel 2).
Additionally, the later site was identified as the most preferred biophysical environment for beta-blocker
DDiIs involving all chains (N, O, P, Q, R, S) of the fibrinogen E-region structure and target residues
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with high depth-values. Along with these findings, the DFT results demonstrated that the best-ranked
drug—drug configuration binding-pose (configuration XII) in the fibrinogen E-region binding site 1
does not involve the formation of covalent bonds between both beta-blockers. In addition to this,
the experimental results supported the occurrence of hydrophobic DDIs between A and P. Indeed,
the obtained values for the intra-aggregate parameter corroborate the docking results, and the adiabatic
compressibilities match well with the DFT results suggesting that the coupling between aromatic
moieties of both beta-blockers is key during the interaction process. Here, it should be stressed that in
spite of DFT calculations based on the LDA approach being able to provide computationally efficient
access to many ground-state properties of fairly large-size systems, in particular of those involving m—m
interactions, their inability to accurately describe nonlocal dispersion forces is well known. Therefore,
it is likely that a dispersion-corrected DFT approach will be needed for accurately describing the
non-covalent interactions of the present beta-blockers. Efforts to address such limitation are currently
underway in our research group.

In sum, the present work opens new perspectives in computational polypharmacology modelling
of DDI, which can help to avoid the toxicological effects associated to the concomitant administration
of beta-blockers. Moreover, the relevant mechanistic information gathered shall speed up decision
making in rational drug-design.

Supplementary Materials: The following are available online, Figure S1: Prediction of the worst catalytic
binding site of fibrinogen E-region; Figure S2: Cartoon representation of beta-blocker interactions in the worst
catalytic binding site of fibrinogen E-region; Figure S3: Graphical breakdown of the different binding energy
contributions of beta-blocker interactions in the worst catalytic binding site of fibrinogen E-region; Figure 54:
Representation of the per atom energy contributions of beta-blocker interactions in the worst catalytic binding site
of fibrinogen E-region; Figure S5: Druggability-depth-maximum solvent accessibility relationship of the critical
target-residues of fibrinogen E-region binding sites (sites 1, 2, and 3), Figure S6: Critical aggregation concentrations;
Figure S7: Graphical representation of the apparent molal compressibility (K) vs. total concentration; Figure S8:
Representation of the van der Waals surface for the predicted fibrinogen E-region binding sites with the
corresponding tunnels.
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