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Abstract: A Ce(IV)-catalyzed three-component reaction between chalcones, anilines and β-ketoesters
followed by a microwave-assisted thermal cyclization afforded 1,3-diaryl-1,2-dihydroacridin-
9(10H)-ones. Their microwave irradiation in nitrobenzene, acting both as solvent and oxidant,
afforded fully unsaturated 1,3-diarylacridin-9(10H)-ones, which combine acridin-9-(10H)one
and m-terphenyl moieties. Overall, the route generates three C-C and one C-N bond and has the
advantage of requiring a single chromatographic separation.

Keywords: multicomponent reactions; dihydroarenes; acridines; terphenyls

1. Introduction

The 9-acridone heterocyclic system is present in diverse alkaloid structures such as melicopicine,
melicopidine and eroxantine [1], which have been isolated from Melicopoe fareana, Sarcomelicope follicularis
and Evodia xanthoxyloids, respectively. Furthermore, the 9-acridone framework can be considered a
privileged structures in the field of drug discovery as many derivates of this scaffold have shown
a great variety of biological activities, such as antimalarial [2], antibacterial [3], antileishmanial [4],
antiviral [5], anti-inflammatory and anti-neurodegenerative [6]. Additionally, it is well known that
the planarity of these compounds allows them to act as insert in DNA and RNA, making them good
candidates for their use as antitumor agents [7,8]. In Figure 1 we summarize some acridone structures
that have shown interesting biological activities. For example, I has shown a good antimalarial activity,
II displayed cholinesterase inhibition activity, which has great relevance in Alzheimer’s disease,
acronicyne III and compounds IV have antineoplastic properties. Furthermore, due to their high
fluorescence quantum yields, these molecules are attracting great attention in several technological
fields, such as the development of luminescent probes and photoluminescent materials [9–12].
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Figure 1. Selected bioactive 9-acridones.
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The most common synthetic access to 9-acridones involves the formation of the nitrogen ring
from N-phenylanthranilic acid derivatives obtained via Jourdan–Ullmann couplings and heterocycle
formation by the use of strong acids or catalyzed by metals [13–15] (Scheme 1a). An alternative approach
reported by Larock and coworkers is based on the nucleophilic coupling of anthranilate with benzyne,
which is formed in situ from a trimethylsilylphenyl triflate and cesium fluoride (Scheme 1b) [16].
Silva et al. described a new synthetic approach for the synthesis of 2,3-diarylacridin-9-ones, with a
Heck coupling reaction between a substituted styryl and quinolone moiety as key synthetic step,
followed of oxidative cyclization promoted by iodine (Scheme 1c) [17]. Deng research group described
a synthetic alternative, in which the merged system is generated in the last reaction step, by oxidative
cyclization of o-arylamino benzophenones (Scheme 1d) [18].
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Scheme 1. Main reported synthetic approaches to acridin-9-ones. Methods based on: (a) Jourdan-Ullmann
coupling; (b) reactions of anthranilic esters with arynes; (c) iodine-promoted oxidative cyclizations;
(d) oxidative cyclizations of o-arylamino benzophenones.

In spite of significant progress in the chemistry of this heterocyclic framework [19,20],
some structural types of 9-acridones of potential interest in fields such as medicinal chemistry
and materials chemistry have received little attention owing to limitations in the existing synthetic
methodology. In particular, 1,3-diphenylacridin-9-ones are unknown in the literature despite the
fact that they combine the acridone framework with an additional attractive structural fragment,
namely m-terphenyl, which is important in materials science due to its high fluorescence [21] and also
shows a variety of pharmacological activities [22–25]. In this article we describe our work towards
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addressing this synthetic challenge according to the strategy summarized in Scheme 2, which combines
a multicomponent reaction with a 6π thermal electrocyclic reaction and a dehydrogenation step.Molecules 2020, 25, x FOR PEER REVIEW 3 of 16 
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Scheme 2. Our planned route to 1,3-diarylacridin-9-ones.

2. Results and Discussion

The route started with the synthesis of functionalized dihydroterphenyl derivatives from
chalcones, anilines and β-ketoesters (Scheme 3), using a Ce(IV) ammonium nitrate (CAN)-catalyzed
three-component protocol previously described by our group [26]. These reactions proceeded generally
in good yields (Table 1) and allowed the introduction of sterically and electronically diverse substituents
at both phenyl radicals, as well as some heteroaryls (compounds 1j and 1k). The presence of the N-aryl
side branch, which could contain either electron-releasing or electron-withdrawing groups, was the
basis for the subsequent electrocyclic cyclization step.
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Table 1. Results of the multicomponent reaction leading to dihydroterphenyl derivatives 1.

Compound Ar1 Ar2 R 1 Yield, % 1

1a Ph Ph H 83
1b Ph Ph 4-NMe2 90
1c Ph Ph 4-F 77
1d Ph Ph 4-Cl 75
1e Ph Ph 4-Br 72
1f Ph Ph 3,5-Cl2 54
1g Ph Ph 3,5-Me2 90
1h Ph 4-NO2C6H4 H 82
1i 4-BrC6H4 Ph H 80

1j
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The next step was to establish the reaction conditions for the cyclization of compounds 1 to
the dihydroacridone derivatives 2. These cyclizations are mainly described in the literature from
carboxylic acids or aldehydes [27,28], which would require an additional step in our synthetic sequence.
Based on the hypothesis that under thermal conditions the unsaturated β-aminoester moiety would
provide an α-iminoketene intermediate I with loss of methanol, partially supported by the work
of Wentrup et al. on the synthesis of 1-azafulven-6-one from pyrrole 2-carboxylic acid under flash
vacuum pyrolysis [29,30], we decided to explore the ring-closing reaction of compounds 1 via a 6π
electrocyclization reaction (Scheme 4). Based on our previous experience on microwave-enhanced
cyclization reactions [30,31], we investigated the reactivity of the model compound 1a under microwave
conditions, which have not been previously reported for the synthesis of acridones, although they
have been used in the classical Gould-Jacobs synthesis of 4-quinolones from anilines and ethyl
ethoxymethylenemalonate [32–34], as shown in Scheme 4a. After a brief study of the parameter
set, we found the optimal reaction conditions, which involved heating up to 250 ◦C for 90 min,
using dimethylformamide as a solvent and an irradiation power of 200 W. The reaction was then
concentrated and the residue was crushed with diethyl ether to furnish compound 2a in 94% yield.
In view of this excellent result, we extended the scope of this reaction to the full dihydroacridine
library, with no clear-cut substituent effects being observed (Scheme 4b and Table 2). Compound 2h,
containing a nitro group at para position of the Ar2 ring, could not be isolated due its aromatization
to 3h under the cyclization reaction conditions. This can be due to the ability of the aromatic nitro
group to participate as an intermediate in single electron-transfer processes, which facilitate molecular
oxygen-promoted dehydrogenation reactions [35].
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Table 2. Results of the synthesis of 1,3-diaryl-1,2-dihydroacridin-9(10H)-one derivatives 2.

Compound Ar1 Ar2 R Yield, % 1

2a Ph Ph H 94
2b Ph Ph 7-NMe2 96
2c Ph Ph 7-F 86
2d Ph Ph 7-Cl 75
2e Ph Ph 7-Br 77
2f Ph Ph 6,8-Cl2 83
2g Ph Ph 6,8-Me2 82
2h Ph 4-NO2C6H4 H 0 1

2i 4-BrC6H4 Ph H 95

2j

Molecules 2020, 25, x FOR PEER REVIEW 5 of 16 

 

Table 2. Results of the synthesis of 1,3-diaryl-1,2-dihydroacridin-9(10H)-one derivatives 2. 

Compound Ar1 Ar2 R Yield, % 1 

2a Ph Ph  H 94 

2b Ph Ph 7-NMe2 96 

2c Ph Ph 7-F 86 

2d Ph Ph 7-Cl 75 

2e Ph Ph 7-Br 77 

2f Ph Ph 6,8-Cl2 83 

2g Ph Ph 6,8-Me2 82 

2h Ph 4-NO2C6H4 H 0 1 

2i 4-BrC6H4 Ph H 95 

2j 
 

Ph H 94 

2k 
  

H 92 

2l 4-MeOC6H4 Ph H 77 

2m 4-ClC6H4 Ph H 86 

2n 2,4-(MeO)2C6H3 4-MeOC6H4 H 85 

2o 4-ClC6H4 4-ClC6H4 H 42 
1 Compound 2h was aromatized to 3h under the reaction conditions in 86% overall yield. 

Finally, we investigated the aromatization of compounds 2 to the corresponding 1,3-

diarylacridin-9-ones 3 (Scheme 5). The optimization of the reaction conditions was carried out on 

compound 2a as substrate and several dehydrogenating agents were tested. Palladium supported on 

carbon, manganese oxide in toluene at reflux conditions were tried without success. N-

bromosuccinimide was also used tried as an aromatizing agent via halogenation-elimination [31] but 

these conditions also failed. DDQ in toluene (at room temperature, 120 min) and nitrobenzene 

(microwave, 250 °C, 90 min) were successful dehydrogenating reagents but the latter gave a higher 

yield and allowed a simpler purification process, as the reaction mixture could be purified by 

concentration in vacuo followed by trituration of the residue with diethyl ether to give the purified 

product by simple filtration. These conditions were applied to the whole compound library, with the 

results shown in Table 3. 

 

Scheme 5. Aromatization of compounds 2, with nitrobenzene having the dual role of solvent and 

oxidizing reagent. 

  

N
H

Ar2

Ar1

O

R1

N
H

Ar2

Ar1

O

R1

Nitrobenzene, MW, 
250 °C, 90 min

2 3

Ph H 94

2k

Molecules 2020, 25, x FOR PEER REVIEW 5 of 16 

 

Table 2. Results of the synthesis of 1,3-diaryl-1,2-dihydroacridin-9(10H)-one derivatives 2. 

Compound Ar1 Ar2 R Yield, % 1 

2a Ph Ph  H 94 

2b Ph Ph 7-NMe2 96 

2c Ph Ph 7-F 86 

2d Ph Ph 7-Cl 75 

2e Ph Ph 7-Br 77 

2f Ph Ph 6,8-Cl2 83 

2g Ph Ph 6,8-Me2 82 

2h Ph 4-NO2C6H4 H 0 1 

2i 4-BrC6H4 Ph H 95 

2j 
 

Ph H 94 

2k 
  

H 92 

2l 4-MeOC6H4 Ph H 77 

2m 4-ClC6H4 Ph H 86 

2n 2,4-(MeO)2C6H3 4-MeOC6H4 H 85 

2o 4-ClC6H4 4-ClC6H4 H 42 
1 Compound 2h was aromatized to 3h under the reaction conditions in 86% overall yield. 

Finally, we investigated the aromatization of compounds 2 to the corresponding 1,3-

diarylacridin-9-ones 3 (Scheme 5). The optimization of the reaction conditions was carried out on 

compound 2a as substrate and several dehydrogenating agents were tested. Palladium supported on 

carbon, manganese oxide in toluene at reflux conditions were tried without success. N-

bromosuccinimide was also used tried as an aromatizing agent via halogenation-elimination [31] but 

these conditions also failed. DDQ in toluene (at room temperature, 120 min) and nitrobenzene 

(microwave, 250 °C, 90 min) were successful dehydrogenating reagents but the latter gave a higher 

yield and allowed a simpler purification process, as the reaction mixture could be purified by 

concentration in vacuo followed by trituration of the residue with diethyl ether to give the purified 

product by simple filtration. These conditions were applied to the whole compound library, with the 

results shown in Table 3. 

 

Scheme 5. Aromatization of compounds 2, with nitrobenzene having the dual role of solvent and 

oxidizing reagent. 

  

N
H

Ar2

Ar1

O

R1

N
H

Ar2

Ar1

O

R1

Nitrobenzene, MW, 
250 °C, 90 min

2 3

Molecules 2020, 25, x FOR PEER REVIEW 5 of 16 

 

Table 2. Results of the synthesis of 1,3-diaryl-1,2-dihydroacridin-9(10H)-one derivatives 2. 

Compound Ar1 Ar2 R Yield, % 1 

2a Ph Ph  H 94 

2b Ph Ph 7-NMe2 96 

2c Ph Ph 7-F 86 

2d Ph Ph 7-Cl 75 

2e Ph Ph 7-Br 77 

2f Ph Ph 6,8-Cl2 83 

2g Ph Ph 6,8-Me2 82 

2h Ph 4-NO2C6H4 H 0 1 

2i 4-BrC6H4 Ph H 95 

2j 
 

Ph H 94 

2k 
  

H 92 

2l 4-MeOC6H4 Ph H 77 

2m 4-ClC6H4 Ph H 86 

2n 2,4-(MeO)2C6H3 4-MeOC6H4 H 85 

2o 4-ClC6H4 4-ClC6H4 H 42 
1 Compound 2h was aromatized to 3h under the reaction conditions in 86% overall yield. 

Finally, we investigated the aromatization of compounds 2 to the corresponding 1,3-

diarylacridin-9-ones 3 (Scheme 5). The optimization of the reaction conditions was carried out on 

compound 2a as substrate and several dehydrogenating agents were tested. Palladium supported on 

carbon, manganese oxide in toluene at reflux conditions were tried without success. N-

bromosuccinimide was also used tried as an aromatizing agent via halogenation-elimination [31] but 

these conditions also failed. DDQ in toluene (at room temperature, 120 min) and nitrobenzene 

(microwave, 250 °C, 90 min) were successful dehydrogenating reagents but the latter gave a higher 

yield and allowed a simpler purification process, as the reaction mixture could be purified by 

concentration in vacuo followed by trituration of the residue with diethyl ether to give the purified 

product by simple filtration. These conditions were applied to the whole compound library, with the 

results shown in Table 3. 

 

Scheme 5. Aromatization of compounds 2, with nitrobenzene having the dual role of solvent and 

oxidizing reagent. 

  

N
H

Ar2

Ar1

O

R1

N
H

Ar2

Ar1

O

R1

Nitrobenzene, MW, 
250 °C, 90 min

2 3

H 92

2l 4-MeOC6H4 Ph H 77
2m 4-ClC6H4 Ph H 86
2n 2,4-(MeO)2C6H3 4-MeOC6H4 H 85
2o 4-ClC6H4 4-ClC6H4 H 42

1 Compound 2h was aromatized to 3h under the reaction conditions in 86% overall yield.

Finally, we investigated the aromatization of compounds 2 to the corresponding 1,3-diarylacridin-
9-ones 3 (Scheme 5). The optimization of the reaction conditions was carried out on compound
2a as substrate and several dehydrogenating agents were tested. Palladium supported on carbon,
manganese oxide in toluene at reflux conditions were tried without success. N-bromosuccinimide
was also used tried as an aromatizing agent via halogenation-elimination [31] but these conditions
also failed. DDQ in toluene (at room temperature, 120 min) and nitrobenzene (microwave, 250 ◦C,
90 min) were successful dehydrogenating reagents but the latter gave a higher yield and allowed
a simpler purification process, as the reaction mixture could be purified by concentration in vacuo
followed by trituration of the residue with diethyl ether to give the purified product by simple filtration.
These conditions were applied to the whole compound library, with the results shown in Table 3.
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To summarize, we have developed a method that affords 9-acridone derivatives containing an
embedded m-terphenyl substructure with the generation of two rings, three carbon-carbon and one
carbon-nitrogen bonds (Scheme 6). This process provides a very efficient access in two steps to
1,2-dihydroacridin-9-one derivatives, which are almost unknown in the literature [36] and not at all
with the 1,3-diaryl substitution found in compounds 2. Our method also allows the efficient synthesis
of the fully unsaturated compounds 3 by adding a simple dehydrogenation step to the sequence.

One important aspect of our method is its relevance in terms of sustainability. On one hand,
atom economy is high (e.g., 81% for 2a and 80% for 3a); on the other, the use of organic solvents
is minimized by the fact that the second and third steps of the route yield products with sufficient
purity to allow purification by simple precipitation, thus avoiding the waste generation associated to
chromatographic processes.
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Table 3. Results of the aromatization of compounds 2.

Compound Ar1 Ar2 R Oxidant Yield, %

3a Ph Ph H Pd/C 0
MnO 0
NBS 0
DDQ 56

C6H5NO2 82
3b Ph Ph 7-NMe2 C6H5NO2 80
3c Ph Ph 7-F C6H5NO2 85
3d Ph Ph 7-Cl C6H5NO2 78
3e Ph Ph 7-Br C6H5NO2 80
3f Ph Ph 6,8-Cl2 C6H5NO2 78
3g Ph Ph 6,8-Me2 C6H5NO2 76
3h Ph 4-NO2C6H4 H C6H5NO2 86 1

3i 4-BrC6H4 Ph H C6H5NO2 79

3j
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3. Materials and Methods

3.1. General Experimental Information

All reagents and solvents were of commercial quality and were used as received. Reactions were
monitored by TLC analysis, on Merck silica gel-G aluminum plates with fluorescent indicator.
Melting points were measured in open capillary tubes and are uncorrected. A CEM Discover microwave
synthesizer with microwave power maximum level of 300 W and microwave frequency of 2455 MHz
was employed for the microwave-assisted reactions. The 1H-NMR, 13C-NMR and CH-correlation
spectra were recorded on a Bruker (Avance) 250 MHz or 500 MHz NMR instrument maintained by
the CAI de Resonancia Magnética Nuclear, Universidad Complutense, using CDCl3, d6-DMSO or
CD3OD as solvents and residual non-deuterated solvents as internal standards. Topspin (Bruker) or
Mestrenova (Mestrelab) software packages were used throughout for data processing; chemical shifts
are given in parts per million (δ-scale) and coupling constants are given in Hertz. Subjective 13C-NMR
assignments are based on 2d_NMR experiments for representative compounds, summarized in the
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Supporting Information. Combustion microanalyses were performed by the CAI de Microanálisis
Elemental, Universidad Complutense, on a Leco 932 CHNS analyzer. IR spectra were recorded on
a Perkin Elmer Paragon 1000 FT-IR instrument using thin films placed on a KBr disk, which were
obtained by evaporation of organic solvent solution of the compounds.

3.2. General Procedure for the Synthesis of 2,4-Diaryl-2,3-dihydroanthranilates 1

To a stirred solution of ethyl acetoacetate (311.0 to 974.8 mg, 2.39 to 7.49 mmol) and aniline (281.3
to 906.8 mg, 3.02 to 9.74 mmol, 1.3 eq) in ethanol (5 mL) was added CAN (65.5 mg, 0.12 mmol, 5 mol%).
Stirring was continued for 30 min at room temperature. The appropriate chalcone (730 mg to 2.0 g,
2.63 to 8.24 mmol, 1.1 eq) was then added to the stirred solution and the mixture was heated under
reflux for 8 h. After completion of the reaction, as indicated by TLC, the mixture was dissolved in ether
(30 mL), washed with water, brine, dried (anhydrous Na2SO4) and the solvent was evaporated under
reduced pressure. The final products were purified by flash silica column chromatography eluting with
a petroleum ether-ethyl acetate mixture (9/1, v/v). Compounds 1a–k were known in the literature [26].
Characterization data for new compounds are given below (see Supplementary Materials). Compound
numbering used in the assignment of 13C-NMR signals is also given.Molecules 2020, 25, x FOR PEER REVIEW 8 of 16 
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(C-5′), 144.0 (C-1″′), 143.7 (C-1″), 139.8 (C-1′), 131.8 (C-1), 129.3 (C-4″), 128.9 (C-5″′ and 3″′), 128.8 (C-2″ 

and C-6″), 128.8 (C-3″ and C-5″), 128.4 (C-3 and 5), 126.0 (C-2, C-4 and C-6), 124.1 (C-4″′), 123.4 (C-2″′ 

and 6″′)), 118.1 (C-6′), 94.7 (C4′), 59.6 (CH3-CH2O), 36.5 (C-3′), 34.6 (C-2′), 14.6 (CH3-CH2O). Anal. Calc. 

for C27H24O2NCl C, 75.43; H, 5.63; N, 3.26. Found C, 75.39; H, 5.54; N, 3.26. 

Ethyl 2″,4,4″-trimethoxy-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1″-terphenyl]-4′-carboxylate (1n). 

Prepared from 1.0 g (3.35 mmol) of the corresponding chalcone. Yield: 1.1 g (2.31 mmol, 69%) as a pale 

yellow solid (Mp: 110 °C. IR (cm−1): 3260, 2952, 2838, 2115, 1737, 1640.1H-NMR (250 MHz, CDCl3) δ 10.82 

(s, 1H), 7.35 (dd, J = 8.4, 7.2 Hz, 2H), 7.28–7.16 (m, 4H), 7.11 (d, J = 7.3 Hz, 1H), 6.92 (dd, J = 8.0, 0.7 Hz, 

1H), 6.83–6.77 (m, 2H), 6.58 (d, J = 2.9 Hz, 1H), 6.39 (d, J = 8.2 Hz, 2H), 4.25 (dt, J = 8.0, 1.2 Hz, 1H), 4.22–

4.04 (m, 2H), 3.79 (s, 6H), 3.70 (s, 3H), 3.21 (ddd, J = 16.6, 8.3, 2.9 Hz, 1H), 2.87 (dd, J = 16.7, 1.7 Hz, 1H), 

1.22 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz, CDCl3) δ 170.7 (CO), 161.2 (C-4), 158.7 (C-4″), 158.1 (C-6″), 

151.8 (C5′), 143.7 (C-1″′), 140.4 (C-1′), 137.8, 130.0 (C1, C1′, C1″ or C1″′), 129.3 (C-6, 2, 5″′ and 2″′), 128.8 

(C-1 and C-2″), 123.7 (C-4″′), 123.6 (C-2″′ and 6″′), 123.3 (C-1″), 119.9 (C-6′), 113.6 (C-3 and C-5), 104.6 (C-

3″), 99.2 (C-5″), 95.3 (C4′), 59.6 (CH3-CH2O), 55.8 (MeO), 55.7 (MeO), 55.6 (MeO), 36.9 (C-3′), 36.5 (C-2′) 

14.5 (CH3-CH2O). Anal. Calc. for C30H31O5N C, 74.21; H, 6.44; N, 2.88. Found C, 73.89; H, 6.24; N, 2.90. 

Ethyl 4,4″-dichloro-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1″-terphenyl]-4′-carboxylate (1o). Prepared from 

730 mg (2.63 mmol) of the corresponding chalcone. Yield: 720 mg (1.55 mmol, 59%) as a yellow solid. 

Mp: 142 °C. IR (cm−1): 3219, 3056, 2976, 1898, 2099, 1639. 1H-NMR (250 MHz, CDCl3) δ 10.83 (s, 1H), 7.49–

7.15 (m, 13H), 6.70 (d, J = 2.8 Hz, 1H), 4.38 (dd, J = 8.5, 1.7 Hz, 1H), 4.30–4.10 (m, 2H), 3.28 (ddd, J = 16.6, 

8.5, 2.9 Hz, 1H), 2.95 (dd, J = 16.6, 1.8 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz, CDCl3) δ 170.3 

(CO), 151.4 (C-5′), 143.7 (C-1″′), 142.9 (C-1″), 139.9 (C-1′), 138.4 (C-1), 134.9 (C-4), 132.2 (C-4″), 129.6 (C-

3″′ and C-5″′), 129.2 (C-2″ and 6″), 129.0 (C-3 and 5), 128.6 (C-3″ and 5″), 127.4 (C-2 and C-6), 124.5 (C-

4″′), 123.6 (C-2″′ and 6″′), 118.7 (C-6′), 95.1 (C-4′), 59.9 (CH3-CH2O), 36.7 (C-2′), 34.8 (C-3′), 14.8 (CH3-

CH2O). Anal. Calc. for C27H23O2NCl2 C, 69.83; H, 4.99; N, 3.02. Found C, 69.51; H, 4.86; N, 3.02. 

4.3. General Procedure for the Synthesis of 1,3-Diaryl-1,2-dihydroacridin-9(10H)-ones 2 

A microwave tube containing a solution of the suitable compound 1 (150 to 474 mg, 0.3 to 1.0 

mmol) in dimethylformamide (3 mL), was closed and placed in the cavity of a CEM Discover focused 

Ethyl 4”-methoxy-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1”-terphenyl]-4”-carboxylate (1l). Prepared from
1.78 g (7.45 mmol) of the corresponding chalcone. Yield: 2.7 g (6.26 mmol, 84%) as a yellow solid.
Mp 105 ◦C. IR (cm−1): 3237, 3053, 2984, 2108, 1736, 1639. 1H-NMR (250 MHz, CDCl3) δ 10.64 (s, 1H),
7.27–7.15 (m, 6H), 7.12–7.07 (m, 2H), 7.06–6.99 (m, 3H), 6.70–6.62 (m, 2H), 6.56 (d, J = 2.8 Hz, 2H), 4.21
(dd, J = 8.5, 1.7 Hz, 1H), 4.03 (m, 2H), 3.64 (s, 3H), 3.11 (ddd, J = 16.6, 8.4, 2.9 Hz, 1H), 2.87 (dd, J = 16.6,
1.7 Hz, 1H), 1.10 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz, CDCl3) δ 170.3 (CO), 156.0 (C-4”), 151.0 (C-5′),
144.1 (C-1”′), 140.0 (C-1′), 140.0 (C-1), 137.1 (C1”), 129.2 (C-5”′ and 3”′), 128.6 (C-3 and 5), 128.5 (C-2”
and C-6”), 128.3 (C-4), 125.9 (C-6 and C-2), 123.8 (C-4”′), 123.2, (C-6”′ and 2”′)118.0 (C6′), 113.5
(C-3”and C-5”), 95.7 (C-4′), 59.5(CH3-CH2O), 55.2 (MeO), 36.0 (C-3′), 34.8 (C-2”), 14.5 (CH3-CH2O).
Anal. Calc. for C28H27O3N: C, 79.03; H, 6.40; N, 3.29. Found C, 78.83; H, 6.18; N, 3.09.

Ethyl 4”-chloro-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1”-terphenyl]-4′-carboxylate (1m). Prepared from
2.0 g (8.24 mmol) of the corresponding chalcone. Yield: 2.7 g (6.26 mmol, 76%) as a yellow solid. Mp:
120 ◦C. IR (cm−1): 3224, 3038, 2974, 2098, 1734, 1640. 1H-NMR (250 MHz, CDCl3) δ 10.76 (s, 1H),
7.38–7.06 (m, 14H), 6.64 (d, J = 2.8 Hz, 1H), 4.35–4.26 (m, 1H), 4.22–3.98 (m, 2H), 3.21 (ddd, J = 16.7, 8.6,
2.9 Hz, 1H), 2.92 (dd, J = 16.7, 1.7 Hz, 1H), 1.16 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz, CDCl3) δ 170.2
(CO), 151.5 (C-5′), 144.0 (C-1”′), 143.7 (C-1”), 139.8 (C-1′), 131.8 (C-1), 129.3 (C-4”), 128.9 (C-5”′ and
3”′), 128.8 (C-2” and C-6”), 128.8 (C-3” and C-5”), 128.4 (C-3 and 5), 126.0 (C-2, C-4 and C-6), 124.1
(C-4”′), 123.4 (C-2”′ and 6”′)), 118.1 (C-6′), 94.7 (C4′), 59.6 (CH3-CH2O), 36.5 (C-3′), 34.6 (C-2′), 14.6
(CH3-CH2O). Anal. Calc. for C27H24O2NCl C, 75.43; H, 5.63; N, 3.26. Found C, 75.39; H, 5.54; N, 3.26.

Ethyl 2”,4,4”-trimethoxy-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1”-terphenyl]-4′-carboxylate (1n). Prepared
from 1.0 g (3.35 mmol) of the corresponding chalcone. Yield: 1.1 g (2.31 mmol, 69%) as a pale yellow
solid (Mp: 110 ◦C. IR (cm−1): 3260, 2952, 2838, 2115, 1737, 1640.1H-NMR (250 MHz, CDCl3) δ 10.82
(s, 1H), 7.35 (dd, J = 8.4, 7.2 Hz, 2H), 7.28–7.16 (m, 4H), 7.11 (d, J = 7.3 Hz, 1H), 6.92 (dd, J = 8.0, 0.7 Hz,
1H), 6.83–6.77 (m, 2H), 6.58 (d, J = 2.9 Hz, 1H), 6.39 (d, J = 8.2 Hz, 2H), 4.25 (dt, J = 8.0, 1.2 Hz, 1H),
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4.22–4.04 (m, 2H), 3.79 (s, 6H), 3.70 (s, 3H), 3.21 (ddd, J = 16.6, 8.3, 2.9 Hz, 1H), 2.87 (dd, J = 16.7, 1.7 Hz,
1H), 1.22 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz, CDCl3) δ 170.7 (CO), 161.2 (C-4), 158.7 (C-4”), 158.1
(C-6”), 151.8 (C5′), 143.7 (C-1”′), 140.4 (C-1′), 137.8, 130.0 (C1, C1′, C1” or C1”′), 129.3 (C-6, 2, 5”′ and
2”′), 128.8 (C-1 and C-2”), 123.7 (C-4”′), 123.6 (C-2”′ and 6”′), 123.3 (C-1”), 119.9 (C-6′), 113.6 (C-3 and
C-5), 104.6 (C-3”), 99.2 (C-5”), 95.3 (C4′), 59.6 (CH3-CH2O), 55.8 (MeO), 55.7 (MeO), 55.6 (MeO), 36.9
(C-3′), 36.5 (C-2′) 14.5 (CH3-CH2O). Anal. Calc. for C30H31O5N C, 74.21; H, 6.44; N, 2.88. Found C,
73.89; H, 6.24; N, 2.90.

Ethyl 4,4”-dichloro-5′-(phenylamino)-2′,3′-dihydro-[1,1′:3′,1”-terphenyl]-4′-carboxylate (1o). Prepared from
730 mg (2.63 mmol) of the corresponding chalcone. Yield: 720 mg (1.55 mmol, 59%) as a yellow solid.
Mp: 142 ◦C. IR (cm−1): 3219, 3056, 2976, 1898, 2099, 1639. 1H-NMR (250 MHz, CDCl3) δ 10.83 (s, 1H),
7.49–7.15 (m, 13H), 6.70 (d, J = 2.8 Hz, 1H), 4.38 (dd, J = 8.5, 1.7 Hz, 1H), 4.30–4.10 (m, 2H), 3.28 (ddd,
J = 16.6, 8.5, 2.9 Hz, 1H), 2.95 (dd, J = 16.6, 1.8 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). 13C-NMR (63 MHz,
CDCl3) δ 170.3 (CO), 151.4 (C-5′), 143.7 (C-1”′), 142.9 (C-1”), 139.9 (C-1′), 138.4 (C-1), 134.9 (C-4), 132.2
(C-4”), 129.6 (C-3”′ and C-5”′), 129.2 (C-2” and 6”), 129.0 (C-3 and 5), 128.6 (C-3” and 5”), 127.4 (C-2
and C-6), 124.5 (C-4”′), 123.6 (C-2”′ and 6”′), 118.7 (C-6′), 95.1 (C-4′), 59.9 (CH3-CH2O), 36.7 (C-2′),
34.8 (C-3′), 14.8 (CH3-CH2O). Anal. Calc. for C27H23O2NCl2 C, 69.83; H, 4.99; N, 3.02. Found C, 69.51;
H, 4.86; N, 3.02.

3.3. General Procedure for the Synthesis of 1,3-Diaryl-1,2-dihydroacridin-9(10H)-ones 2

A microwave tube containing a solution of the suitable compound 1 (150 to 474 mg, 0.3 to
1.0 mmol) in dimethylformamide (3 mL), was closed and placed in the cavity of a CEM Discover
focused microwave oven. The reaction mixture was heated with a maximum power of 200 W and a
temperature gradient was programmed to achieve 250 ◦C starting from room temperature over 5 min.
Then temperature was kept constant at 250 ◦C, by microwave irradiated for 90 min. The reaction
mixture was cooled to room temperature and the solvent was removed under reduced pressure.
The crude mixture was washed with cool chloroform (3 mL) and the precipitate obtained was filtered to
obtain the desired product. Compound 2h was not obtained and its dehydrogenation derivative 3h was
isolated instead. Compound numbering used in the assignment of 13C-NMR signals is given below.
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1,3-Diphenyl-1,2-dihydroacridin-9(10H)-one (2a). Prepared from compound 1a (396 mg, 1.0 mmol). Yield: 

328 mg (0.94 mmol, 94%); pale yellow solid. Mp: 287–288 °C. IR νmax (film): 3064, 3027, 2874, 1623, 1572, 

1541 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.83 (s, 1H), 8.06 (dd, J = 8.1, 1.1 Hz, 1H), 7.68–7.60 (m, 1H), 

7.59–7.52 (m, 3H), 7.48–7.36 (m, 3H), 7.33–7.23 (m, 2H), 7.23–7.14 (m, 3H), 7.14–7.07 (m, 1H), 6.89 (d, J = 
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13C-NMR (63 MHz, DMSO-d6) δ 174.3 (CO), 145.3 (C-15), 144.5 (C-19), 143.6 (C-3), 139.3(C-12), 138.8 (C-

19), 131.4 (C-9), 129.1 (C-22), 128.9 (C-21), 128.6 (C-17), 127.1 (C-16), 126.1 (C-18), 125.5 (C-20), 125.1 (C-

7), 125.0 (C-11), 122.8 (C-10), 118.0 (C-8), 117.2 (C-4), 113.7 (C-14), 34.0 (C-1), 33.8 (C-2). Anal. Calc. for 

C25H19NO (M = 349.42): C, 85.93; H, 5.48; N, 4.01; found: C, 85.96; H, 5.52; N, 4.07. 

7-(Dimethylamino)-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2b). Prepared from compound 1b (439 mg, 

1.0 mmol). Yield: 377 mg, (0.96 mmol, 96%); yellow solid. Mp: 299–300 °C. IR νmax (film): 2863, 2788, 

1612, 1566, 1473 cm−1. 1H-NMR (500 MHz, DMSO-d6) δ 11.67 (s, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 

9.1 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.40–7.34 (m, 1H), 7.27 (dd, J = 9.1, 2.9 Hz, 1H), 7.22 (d, J = 7.3 Hz, 

3H), 7.14 (t, J = 7.5 Hz, 2H), 7.11–7.05 (m, 1H), 6.86 (d, J = 2.7 Hz, 1H), 4.63 (d, J = 8.2 Hz, 1H), 3.25 (ddd, 

J = 17.1, 8.4, 2.7 Hz, 1H), 3.07 (d, J = 16.3 Hz, 1H), 2.94 (s, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 174.2 

(CO), 147.7 (C-7), 145.8 (C-15), 145.0 (C-19), 142.8 C10, 139.8 (C-14), 132.2 (C-3), 129.7 (C-22), 129.7 (C-

21), 128.8 (C-17), 127.9 (C-16), 127.1 (C-18), 126.7 (C-20), 126.2 (C-7), 120.2 (C-9), 119.8 (C-8), 118.3 (C-4), 

113.0(C-12), 105.4 (C-11), 41.4 (Me2N), 34.8(C-1), 34.8 (C-2). Anal. Calc. for C27H24N2O (M = 392.49): C, 

82.62; H, 6.16; N, 7.14; found: C, 82.59; H, 6.13; N, 7.17. 

7-Fluoro-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2c). Prepared from compound 1c (414 mg, 1.0 

mmol). Yield: 316 mg (0.86 mmol, 86%); pale yellow solid. Mp: 294–295 °C. IR νmax (film): 2939, 2856, 

2647, 1628, 1581 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.99 (s, 1H), 7.72 (dd, J = 9.5, 2.8 Hz, 1H), 7.68–

7.51 (m, 5H), 7.49–7.37 (m, 3H), 7.26–7.16 (m, 2H), 7.15–7.08 (m, 2H), 6.90 (d, J = 2.6 Hz, 1H), 4.62 (d, J = 

7.5 Hz, 1H), 3.33–3.23 (m, 1H), 3.10 (dd, J = 17.4, 1.3 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 173.5 (CO), 

158.2 (d, J = 484.0 Hz) (C-10), 145.7 (C-5), 144.3 (C-7), 143.8 (C-15), 138.7 (C-19), 136.0 (C-3), 129.2 (C-12), 

128.9 (C-21), 128.1(C-22), 127.0 (C-17), 126.2 (C-20), 126.1 (C-16), 125.5 (C-18), 120.6 (d, J = 51.6 Hz) (C-9), 

120.0 (C-8), 117.0 (C-4), 113.1 (C-14), 109.0 (d, J = 50.4 Hz) (C-11), 33.9(C-1), 33.8 (C-2). Anal. Calc. for 

C25H18FNO (M = 367.41): C, 81.72; H, 4.94; N, 3.81; found: C, 81.68; H, 4.93; N, 3.76. 

7-Chloro-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2d). Prepared from compound 1d (430 mg, 1.0 

mmol). Yield: 288 mg, (0.75 mmol, 75%); pale yellow solid. Mp: 275–276 °C. IR νmax (film): 3060, 2923, 

2887, 1620, 1542 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 12.01 (s, 1H), 7.99 (d, J = 2.3 Hz, 1H), 7.67 (dd, J 

= 8.8, 2.4 Hz, 1H), 7.62–7.54 (m, 3H), 7.49–7.35 (m, 4H), 7.20 (dd, J = 10.5, 7.4 Hz, 4H), 7.14–7.08 (m, 1H), 

6.88 (d, J = 2.5 Hz, 1H), 4.58 (d, J = 7.5 Hz, 1H), 3.27 (d, J = 8.3 Hz, 1H), 3.09 (d, J = 16.5 Hz, 1H). 13C-NMR 

(63 MHz, DMSO-d6) δ 173.1 (CO), 146.0 (C-5), 144.2 (C-7), 138.7 (C-15), 137.9 (C-19), 131.5 (C-17), 129.2 

(C-12), 129.0 (C-3), 128.1 (C-9), 127.4 (C-22), 127.0 (C-21), 126.1 (C-17), 126.0 (C-16), 125.6 (C-18), 124.0 

1,3-Diphenyl-1,2-dihydroacridin-9(10H)-one (2a). Prepared from compound 1a (396 mg, 1.0 mmol). Yield:
328 mg (0.94 mmol, 94%); pale yellow solid. Mp: 287–288 ◦C. IR νmax (film): 3064, 3027, 2874, 1623,
1572, 1541 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.83 (s, 1H), 8.06 (dd, J = 8.1, 1.1 Hz, 1H), 7.68–7.60
(m, 1H), 7.59–7.52 (m, 3H), 7.48–7.36 (m, 3H), 7.33–7.23 (m, 2H), 7.23–7.14 (m, 3H), 7.14–7.07 (m, 1H),
6.89 (d, J = 2.6 Hz, 1H), 4.61 (d, J = 7.7 Hz, 1H), 3.25 (ddd, J = 17.7, 7.7, 2.6 Hz, 1H), 3.08 (dd, J = 17.4, 1.3
Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 174.3 (CO), 145.3 (C-15), 144.5 (C-19), 143.6 (C-3), 139.3(C-12),
138.8 (C-19), 131.4 (C-9), 129.1 (C-22), 128.9 (C-21), 128.6 (C-17), 127.1 (C-16), 126.1 (C-18), 125.5 (C-20),
125.1 (C-7), 125.0 (C-11), 122.8 (C-10), 118.0 (C-8), 117.2 (C-4), 113.7 (C-14), 34.0 (C-1), 33.8 (C-2). Anal. Calc.
for C25H19NO (M = 349.42): C, 85.93; H, 5.48; N, 4.01; found: C, 85.96; H, 5.52; N, 4.07.

7-(Dimethylamino)-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2b). Prepared from compound 1b (439
mg, 1.0 mmol). Yield: 377 mg, (0.96 mmol, 96%); yellow solid. Mp: 299–300 ◦C. IR νmax (film): 2863,
2788, 1612, 1566, 1473 cm−1. 1H-NMR (500 MHz, DMSO-d6) δ 11.67 (s, 1H), 7.55 (d, J = 7.2 Hz, 2H),
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7.46 (d, J = 9.1 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.40–7.34 (m, 1H), 7.27 (dd, J = 9.1, 2.9 Hz, 1H), 7.22 (d,
J = 7.3 Hz, 3H), 7.14 (t, J = 7.5 Hz, 2H), 7.11–7.05 (m, 1H), 6.86 (d, J = 2.7 Hz, 1H), 4.63 (d, J = 8.2 Hz, 1H),
3.25 (ddd, J = 17.1, 8.4, 2.7 Hz, 1H), 3.07 (d, J = 16.3 Hz, 1H), 2.94 (s, 6H). 13C-NMR (126 MHz, DMSO-d6)
δ 174.2 (CO), 147.7 (C-7), 145.8 (C-15), 145.0 (C-19), 142.8 C10, 139.8 (C-14), 132.2 (C-3), 129.7 (C-22), 129.7
(C-21), 128.8 (C-17), 127.9 (C-16), 127.1 (C-18), 126.7 (C-20), 126.2 (C-7), 120.2 (C-9), 119.8 (C-8), 118.3 (C-4),
113.0(C-12), 105.4 (C-11), 41.4 (Me2N), 34.8(C-1), 34.8 (C-2). Anal. Calc. for C27H24N2O (M = 392.49): C,
82.62; H, 6.16; N, 7.14; found: C, 82.59; H, 6.13; N, 7.17.

7-Fluoro-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2c). Prepared from compound 1c (414 mg, 1.0 mmol).
Yield: 316 mg (0.86 mmol, 86%); pale yellow solid. Mp: 294–295 ◦C. IR νmax (film): 2939, 2856, 2647,
1628, 1581 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.99 (s, 1H), 7.72 (dd, J = 9.5, 2.8 Hz, 1H), 7.68–7.51
(m, 5H), 7.49–7.37 (m, 3H), 7.26–7.16 (m, 2H), 7.15–7.08 (m, 2H), 6.90 (d, J = 2.6 Hz, 1H), 4.62 (d, J = 7.5
Hz, 1H), 3.33–3.23 (m, 1H), 3.10 (dd, J = 17.4, 1.3 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 173.5 (CO),
158.2 (d, J = 484.0 Hz) (C-10), 145.7 (C-5), 144.3 (C-7), 143.8 (C-15), 138.7 (C-19), 136.0 (C-3), 129.2 (C-12),
128.9 (C-21), 128.1(C-22), 127.0 (C-17), 126.2 (C-20), 126.1 (C-16), 125.5 (C-18), 120.6 (d, J = 51.6 Hz)
(C-9), 120.0 (C-8), 117.0 (C-4), 113.1 (C-14), 109.0 (d, J = 50.4 Hz) (C-11), 33.9(C-1), 33.8 (C-2). Anal.
Calc. for C25H18FNO (M = 367.41): C, 81.72; H, 4.94; N, 3.81; found: C, 81.68; H, 4.93; N, 3.76.

7-Chloro-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2d). Prepared from compound 1d (430 mg, 1.0
mmol). Yield: 288 mg, (0.75 mmol, 75%); pale yellow solid. Mp: 275–276 ◦C. IR νmax (film): 3060, 2923,
2887, 1620, 1542 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 12.01 (s, 1H), 7.99 (d, J = 2.3 Hz, 1H), 7.67 (dd,
J = 8.8, 2.4 Hz, 1H), 7.62–7.54 (m, 3H), 7.49–7.35 (m, 4H), 7.20 (dd, J = 10.5, 7.4 Hz, 4H), 7.14–7.08 (m,
1H), 6.88 (d, J = 2.5 Hz, 1H), 4.58 (d, J = 7.5 Hz, 1H), 3.27 (d, J = 8.3 Hz, 1H), 3.09 (d, J = 16.5 Hz, 1H).
13C-NMR (63 MHz, DMSO-d6) δ 173.1 (CO), 146.0 (C-5), 144.2 (C-7), 138.7 (C-15), 137.9 (C-19), 131.5
(C-17), 129.2 (C-12), 129.0 (C-3), 128.1 (C-9), 127.4 (C-22), 127.0 (C-21), 126.1 (C-17), 126.0 (C-16), 125.6
(C-18), 124.0 (C-20), 122.8 (C-11), 120.5 (C-8), 117.0 (C4), 114.1 (C14), 33.9 (C1), 33.8 (C2). Anal. Calc.
for C25H18ClNO (M = 383.87): C, 78.22; H, 4.73; N, 3.65; found: C, 78.18; H, 4.75; N, 3.61.

7-Bromo-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2e). Prepared from compound 1e (474 mg, 1.0
mmol). Yield: 330 mg, (0.77 mmol, 77%); pale yellow solid. Mp: 269–270 ◦C. IR νmax (film): 3060, 2899,
2803, 1619, 1540 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 12.02 (s, 1H), 8.15 (d, J = 2.3 Hz, 1H), 7.79 (dd,
J = 8.8, 2.3 Hz, 1H), 7.56 (t, J = 8.9 Hz, 3H), 7.48–7.35 (m, 3H), 7.21 (t, J = 8.8 Hz, 2H), 7.13 (dd, J = 6.5,
4.7 Hz, 2H), 6.89 (d, J = 2.2 Hz, 1H), 4.61 (d, J = 7.8 Hz, 1H), 3.27 (d, J = 8.4 Hz, 1H), 3.10 (d, J = 17.4 Hz,
1H). 13C-NMR (63 MHz, DMSO-d6) δ 173.0 (CO), 146.0 (C-5), 144.2 (C-7), 138.7 (C-15), 138.2 (C-19),
134.1 (C-9), 131.6 (C-12), 129.2 (C-3), 129.0 (C-11), 128.1 (C-21), 127.2 (C-17 and C-22), 127.0 (C-20), 126.4
(C-16), 126.2 (C-18), 125.6 (C-8), 120.7 (C-10), 120.6 (C-8), 115.4 (C4), 114.2 (C14), 33.9 (C1), 33.8 (C2).
Anal. Calc. for C25H18BrNO (M = 428.32): C, 70.10; H, 4.24; N, 3.27; found: C, 70.06; H, 4.28; N, 3.21.

6,8-Dichloro-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2f). Prepared from compound 1f (464 mg, 1.0
mmol). Yield: 347 mg, (0.83 mmol, 83%); yellow solid. Mp: 199–200 ◦C. IR νmax (film): 3255, 3058,
2896, 1628, 1579 cm−1. 1H-NMR (250 MHz, CDCl3-d6) δ 8.38 (s, 1H), 7.46–7.32 (m, 5H), 7.26 (s, 1H),
7.22–7.05 (m, 4H), 6.49 (d, J = 2.7 Hz, 1H), 6.41 (d, J = 1.7 Hz, 1H), 6.18 (d, J = 1.8 Hz, 1H), 4.70 (d,
J = 7.8 Hz, 1H), 3.30 (ddd, J = 17.3, 8.7, 2.7 Hz, 1H), 3.12 (dd, J = 17.4, 1.5 Hz, 1H). 13C-NMR (63 MHz,
CDCl3-d6) δ 179.0 (CO), 152.7 (C-7), 146.4 (C-5), 143.6(C-11), 143.4(C-9), 142.2 (C-15), 139.0 (C-19), 129.0
(C-3), 128.7(C-10), 128.3 (C-17 and 22), 127.1 (C-21), 126.5(C-12), 125.7 (C-20 and C-18), 116.6 (C-4),
114.9 (C14), 110.2 (C-14, 102.0 (C-8), 101.1 (C-14), 35.0 (C1), 34.6 (C2). Anal. Calc. for C25H17Cl2NO (M
= 418.31): C, 71.78; H, 4.10; N, 3.35; found: C, 71.82; H, 4.16; N, 3.31.

6,8-Dimethyl-1,3-diphenyl-1,2-dihydroacridin-9(10H)-one (2g). Prepared from compound 1g (424 mg, 1.0
mmol). Yield: 310 mg, (0.82 mmol, 82%); pale yellow solid. Mp: 275–276 ◦C. IR νmax (film): 3238, 3079,
2955, 2918, 1621, 1585 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.46 (s, 1H), 7.57–7.49 (m, 2H), 7.39 (td,
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J = 8.1, 2.4 Hz, 3H), 7.20 (dt, J = 5.6, 2.9 Hz, 3H), 7.17–7.06 (m, 4H), 6.84 (d, J = 2.6 Hz, 1H), 6.79 (s, 1H),
4.52 (d, J = 10 Hz), 3.31–3.16 (m, 1H), 3.02 (d, J = 17.3 Hz, 1H), 2.75 (s, 3H), 2.35 (s, J = 5.7 Hz, 3H).
13C-NMR (63 MHz, DMSO-d6) δ 176.8 (CO), 144.7 (C-7), 144.4 (C-9), 142.2 (C-5), 141.1 (C-15), 140.3
(C-12), 139.0 (C-3), 138.9 (C-19), 128.9 (C-17), 128.0 (C-21), 127.1 (C-22), 126.9 (C-16), 125.9 (C-20), 125.4
(C-18), 121.4 (C-10), 117.1 (C-12), 115.5 (C-4), 114.6 (C-14), 34.4 (C-1), 33.9 (C-2), 23.2 (Me), 21.1 (Me).
Anal. Calc. for C27H23NO (M = 377.48): C, 85.91; H, 6.14; N, 3.71; found: C, 85.86; H, 6.16; N, 3.67.

3-(4-Bromophenyl)-1-phenyl-1,2-dihydroacridin-9(10H)-one (2i). Prepared from compound 1i (474 mg, 1.0
mmol). Yield: 407 mg, (0.95 mmol, 95%); yellow solid. Mp: 317–318 ◦C. IR νmax (film): 2774, 1631,
1578, 1487 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.85 (s, 1H), 8.06 (d, J = 7.3 Hz, 1H), 7.68–7.59 (m,
3H), 7.53 (t, J = 8.2 Hz, 3H), 7.36–7.05 (m, 6H), 6.91 (d, J = 2.5 Hz, 1H), 4.60 (d, J = 7.9 Hz, 1H), 3.31–3.20
(m, 1H), 3.03 (d, J = 16.8 Hz, 1H). 13C-NMR (126 MHz, DMSO-d6) δ 174.1 (CO), 144.2 (C-5), 143.8 (C-15),
143.0 (C-7), 139.1 (C-3), 137.9 (C-19), 131.6 (C-21), 131.0 (C-9), 127.7 (C-17), 127.3 (C-16), 126.7 (C-20),
125.7 (C-12), 124.9 (C-18), 124.8 (C-11), 122.4 (C-10), 121.9 (C-22), 117.7 (C-8), 117.7 (C4), 113.7 (C14),
33.6 (C1), 33.6 (C2). Anal. Calc. for C25H18BrNO (M = 428.32): C, 70.10; H, 4.24; N, 3.27; found: C,
70.07; H, 4.26; N, 3.23.

1-Phenyl-3-(thiophen-2-yl)-1,2-dihydroacridin-9(10H)-one (2j). Prepared from compound 1j (402 mg, 1.0
mmol). Yield: 334 mg, (0.94 mmol, 94%); orange solid. Mp: 304–305 ◦C. IR νmax (film): 3068, 2923, 1619,
1572 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.82 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.64 (dd, J = 11.2, 5.9
Hz, 2H), 7.53 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 3.4 Hz, 1H), 7.35–7.06 (m, 7H), 6.86 (s, 1H), 4.61 (br s, 1H),
3.21 (br s, 2H). 13C-NMR (63 MHz, DMSO-d6) δ 174.4 (CO), 162.7 (C-5), 144.7 (C-15), 143.7(C-3), 143.1
(C-7), 139.6 (C-19), 139.5 (C-9), 131.7 (C-22), 128.9 (C-17), 128.4 (C-21), 128.4 (C-12), 127.4 (C-20), 127.1
(C-16), 126.4 (C-11), 125.4 (C-18), 123.1 (C-10), 118.3 (C-4), 115.0 (C-8), 114.1 (C14), 34.1 (C1), 34.0 (C2).
Anal. Calc. for C23H17NOS (M = 355.45): C, 77.72; H, 4.82; N, 3.94; found: C, 77.67; H, 4.84; N, 3.91.

1,3-Di(furan-2-yl)-1,2-dihydroacridin-9(10H)-one (2k). Prepared from compound 1k (375 mg, 1.0 mmol).
Yield: 303 mg (0.92 mmol, 92%); pale yellow solid. Mp: 282–283 ◦C. IR νmax (film): 3066, 2911, 1621,
1562 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.84 (s, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 1.6 Hz,
1H), 7.63 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.43 (s, J = 0.9 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 6.95
(d, J = 3.4 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.62 (dd, J = 3.4, 1.8 Hz, 1H), 6.19 (dd, J = 3.1, 1.8 Hz, 1H),
5.76 (d, J = 3.2 Hz, 1H), 4.62 (d, J = 7.4 Hz, 1H), 3.16 (dd, J = 17.1, 1.1 Hz, 1H), 2.91 (ddd, J = 17.1, 8.0,
2.5 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 173.8 (CO), 156.3 (C-15), 152.2 (C-5), 145.1 (C-19), 143.5
(C-22), 141.5 (C-18), 139.3 (C-7), 134.1 (C-3), 131.4 (C-9), 125.1 (C-12), 125.0 (C-11), 122.8 (C-10), 118.0
(C4), 112.5(C-8), 112.5 (C-21), 111.4 (C-20), 111.4 (C-14), 110.2 (C-17), 105.1 (C-16), 28.7 (C1), 28.2 (C2).
Anal. Calc. for C21H15NO3 (M = 329.35): C, 76.58; H, 4.59; N, 4.25; found: C, 76.53; H, 4.62; N, 4.28.

3-(4-Methoxyphenyl)-1-phenyl-1,2-dihydroacridin-9(10H)-one (2l). Prepared from compound 1l (200 mg,
0.47 mmol); yield: 76 mg (0.20 mmol, 43% yield). yellow solid Mp: 242 ◦C. IR νmax (film): 3391, 2990,
2770, 2106, 1607. 1H-NMR (250 MHz, DMSO-d6) δ 11.87 (s, 1H), 8.08 (dd, J = 8.1, 1.4 Hz, 1H), 7.68–7.53
(m, 4H), 7.48–7.37 (m, 3H), 7.29 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 7.17–7.08 (m, 2H), 6.90 (d, J = 2.5 Hz, 1H),
6.78–6.65 (m, 2H), 4.57 (d, J = 7.8 Hz, 1H), 3.63 (s, 3H), 3.32–3.19 (ddd, J = 17.0, 8.3, 2.5 Hz, 1H), 3.10–3.01
(d, J = 17.0 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 174.7 (CO), 157.9(C-22), 145.7 (C-5), 143.8 (C-15),
139.6 (C-7), 139.1 (C-3), 136.7 (C-9), 131.7 (C-19), 129.4 (C-20), 129.3 (C-17), 128.3 (C-16 and C-18), 125.8
C-12), 125.4 (C-11), 123.1 (C-10), 118.3 (C-8), 117.4 (C4), 114.5 (C-21), 113.7 (C14), 55.2 (OMe), 34.4 (C1),
33.3 (C2). Anal. Calc. for C26H21O2N C, 82.30; H, 5.58; N, 3.69. Found C, 80.91; H, 5.47; N, 3.85.

3-(4-Chlorophenyl)-1-phenyl-1,2-dihydroacridin-9(10H)-one (2m). Prepared from compound 1m (300 mg,
0.7 mmol); yield: 140 mg (0.4 mmol, 52% yield). Brown solid Mp: 278 ◦C. IR νmax (film): 3252, 3056,
2874, 2765, 2107, 1700, 1620. 1H-NMR (250 MHz, DMSO-d6) δ 11.90 (s, 1H), 8.06 (dd, J = 8.1, 1.4 Hz,
1H), 7.69–7.51 (m, 5H), 7.50–7.37 (m, 3H), 7.29 (m, 2H), 7.20 (m, 2H), 6.90 (d, J = 2.5 Hz, 1H), 4.59
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(d, J = 8.1 Hz, 1H), 3.24 (dd, J = 8.5, 2.3 Hz, 1H), 3.07 (dd, J = 17.6, 1.4 Hz, 1H). 13C-NMR (63 MHz,
DMSO-d6) δ 174.6 (CO), 145.6 (C-5), 144.0 (C-15), 143.8 (C-7), 139.6 (C-3), 139.0 (C-9), 131.8(C-19), 131.0
C-22), 129.5 (C-21), 129.3 (C-17), 129.3 (C-20 y C-16), 128.3 (C-11), 125.9 (C-12), 125.4 (C-18), 123.2 (C-10),
118.4 (C-8), 117.5 (C4), 113.6 (C14), 34.0 (C1), 33.6 (C2). Anal. Calc. for C25H18ONCl C, 78.22; H, 4.73;
N, 3.65. Found C, 76.03; H, 4.85; N, 3.97.

3-(2,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-1,2-dihydroacridin-9(10H)-one (2n). Prepared from compound
1n (150 mg, 0.3 mmol); 58 mg (0.13 mmol, 44% yield). Yellow solid Mp: 168 ◦C. IR νmax (film): 3214, 3066,
2932, 2829, 2118, 1603. 1H-NMR (250 MHz, DMSO-d6) δ 12.14 (s, 1H), 8.15–8.07 (m, 1H), 7.65 (dd, J = 6.2,
1.5 Hz, 2H), 7.37–7.28 (m, 1H), 7.24 (dd, J = 8.5, 1.8 Hz, 1H), 7.20–7.11 (m, 2H), 6.86 (d, J = 2.4 Hz, 1H), 6.75
(dd, J = 8.9, 2.5 Hz, 2H), 6.66–6.60 (m, 1H), 6.57 (d, J = 2.4 Hz, 1H), 4.52 (d, J = 7.7 Hz, 1H), 3.81 (s, 3H),
3.79 (s, 3H), 3.66 (s, 3H), 3.28–3.17 (m, 1H), 2.92 (d, J = 17.3 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 161.4
(CO), 158.7 (C-22), 157.9 (C-18 and C-20), 145.6 (C-5), 144.7 (C-7), 139.5 (C-3), 136.6 (C-15), 131.7 (C-9),
129.6 (C-16), 128.4 (C-12), 125.2 (C-20), 125.0(C-11), 121.8 (C-8), 118.6 (C-17),118.4 (C4), 114.0 (C-21), 113.6
(C14), 105.6 (C-19), 99.3 (C-21′), 56.0 (OMe), 55.7 (OMe), 55.3 (OMe), 36.3 (C2), 33.5 (C1). Anal. Calc. for
C28H25O4N C, 76.52; H, 5.73; N, 3.19. Found C, 75.31; H, 5.67; N, 3.38.

1,3-Bis(4-chlorophenyl)-1,2-dihydroacridin-9(10H)-one (2o). Prepared from compound 1o (173 mg,
0.3 mmol); 34 mg (0.08 mmol, 27% yield). Yellow solid Mp: 287 ◦C. IR νmax (film): 3252, 3059,
2749, 2681, 2113, 1624. 1H-NMR (300 MHz, DMSO-d6) δ 11.86 (s, 1H), 8.07 (dd, J = 8.1, 1.5 Hz, 1H),
7.68–7.56 (m, 3H), 7.53–7.47 (m, 2H), 7.30 (ddd, J = 8.1, 6.8, 1.1 Hz, 2H), 7.23 (s, 4H), 6.91 (d, J = 2.7
Hz, 1H), 4.60 (d, J = 8.3 Hz, 1H), 3.29–3.22 (m, 1H), 3.04 (dd, J = 17.6, 1.5 Hz, 1H). 13C-NMR (75 MHz,
DMSO-d6) δ 174.7 (CO), 144.3 (C-5), 143.8 (C-15), 139.7 (C-7), 138.0 (C-3), 134.1 (C-19), 132.0 (C-18),
131.1 (C-9), 129.4 (C-22), 129.3 (C-16), 128.5 (C-17), 127.8 (C-21), 125.5 (C-20), 125.4 (C-12), 124.5 (C-11),
123.4 (C-10), 118.5 (C-8), 118.3 (C4), 113.8 (C14), 34.0 (C1), 33.7 (C2). Anal. Calc. for C25H17ONCl2 C,
71.78; H, 4.10; N, 3.35. Found C, 71.04; H, 4.20; N, 3.49.

3.4. General Procedure for the Synthesis of 1,3-diaryl-acridin-9(10H)-ones 3

A microwave tube containing a solution of the suiTable 1,3-diaryl-1,2-dihydroacridin-9(10H)-one
derivatives 2 (30 to 441 mg, 0.07 to 1.0 mmol) in nitrobenzene (3 mL), was closed and placed in the
cavity of a CEM Discover focused microwave oven. The reaction mixture was heated by microwave
irradiation for 90 min., at 200 W and 250 ◦C. Then, the mixture was cooled to room temperature
and the solvent was evaporated under reduce pressure. The crude mixture was washed with cool
chloroform and the solid obtained was filtered to obtain compounds 3. In the cases of compounds 3k
and 3n, purification required column chromatography on silica gel, eluting with petrol ether/EtOAc
(7/3). Compound numbering used in the assignment of 13C-NMR signals is given below.
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1,3-Diphenylacridin-9(10H)-one (3a). Prepared from compound 2a (175 mg, 0.5 mmol). Yield: 142 mg, 

(0.41 mmol, 82%); brown solid. Mp: 333–334 °C. IR νmax (film): 3062, 2972, 1624, 1594 cm−1. 1H-NMR (250 

MHz, DMSO-d6) δ 8.03 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.3 Hz, 3H), 7.71 (t, J = 6.9 Hz, 1H), 7.58–7.45 (m, 

4H), 7.33 (bs, 5H), 7.24–7.14 (m, 2H). 13C-NMR (63 MHz, DMSO-d6) δ 176.5 (CO), 144.1 (C-5), 143.5 (C-

3), 143.1 (C-7), 142.9 (C-19), 140.4 (C-15), 138.8 (C-1), 133.3 (C-9), 129.3 (C-21), 128.7 (C_17), 127.1 (C-20, 

C-16 and C-22) (3 overlapped signals), 126.3 (C-18), 126.2 (C-11), 123.2 (C-14), 121.9 (C-10), 121.0 (C-12), 

116.8 (C-8), 116.6 (C-4), 114.5 (C-2). Anal. Calc. for C25H17NO (M = 347.41): C, 86.43; H, 4.93; N, 4.03; 

found: C, 85.94; H, 5.03; N, 4.06. 

7-(Dimethylamino)-1,3-diphenylacridin-9(10H)-one (3b). Prepared from compound 2b (196 mg, 0.5 mmol). 

Yield: 156 mg, (0.40 mmol, 80%); brown oil. IR νmax (film): 2924, 2853, 1621, 1589 cm−1. 1H-NMR (250 

MHz, CDCl3) δ 8.82 (s, 1H), 7.64 (dd, J = 7.9, 1.5 Hz, 2H), 7.50–7.39 (m, 8H), 7.39–7.32 (m, 2H), 7.24 (d, J 

= 1.7 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.01 (dd, J = 8.8, 2.7 Hz, 1H), 2.79 (s, 6H). 13C-NMR (63 MHz, CDCl3) 

δ 177.7 (CO), 144.9 (C-5), 144.6 (C-3), 144.0 (C-10), 143.8 (C-19), 141.8 (C-15), 139.6 (C-1), 133.2 (C-7), 129.1 

(C-21), 128.5 (C-17), 128.4 (C-16), 127.5 (C-20), 127.4 (C-18), 126.6 (C-22), 124.0 (C-14), 123.9 (C_12), 122.8 

(C-9), 117.5 (C-4), 116.7 (C-2), 114.3 (C-11), 105.2 (C-8), 31.3 (NMe). Anal. Calc. for C27H22N2O (M = 

390.48): C, 83.05; H, 5.68; N, 7.17; found: C, 82.95; H, 6.03; N, 7.15. 

7-Fluoro-1,3-diphenylacridin-9(10H)-one (3c). Prepared from compound 2c (184 mg, 0.5 mmol). Yield: 155 

mg, (0.42 mmol, 85%); pale yellow solid. Mp: 320–321 °C. IR νmax (film): 3238, 3100, 2969, 1625, 1594, 

1563 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.93 (bs, 1H), 7.84–7.73 (m, 3H), 7.69 (d, J = 8.0 Hz, 1H), 

7.66–7.59 (m, 2H), 7.59–7.45 (m, 3H), 7.35 (bs, 5H), 7.19 (d, J = 0.8 Hz, 1H). 13C-NMR (63 MHz, DMSO-

d6) δ 175.7 (CO), 157.0 (C_10) (d, J = 240 Hz), 143.9 (C-5), 143.6 (C_3), 142.9 (C-19), 142.8 (C-15), 138.7 (C-

1), 137.2 (C-7), 129.3 C-17), 128.7 (C-21), 128.7 (C-16), 127.2 (C-20), 126.3 (C-18), 123.4 (C-22), 122.5 (C-

14), 122.4 (C-12), 122.1 (C-9) (d, J = 25.2 Hz), 119.4 (C-8), 115.7 (C-2), 114.5 (C-4), 110.1 (d, J = 22.7 Hz) (C-

11). Anal. Calc. for C25H16FNO (M = 365.40): C, 82.18; H, 4.41; N, 3.83; found: C, 82.13; H, 4.47; N, 3.81. 

7-Chloro-1,3-diphenylacridin-9(10H)-one (3d). Prepared from compound 2d (192 mg, 0.5 mmol). Yield: 145 

mg, (0.38 mmol, 76%); yellow solid. Mp: 312–313 °C. IR νmax (film): 3068, 2967, 1626, 1561 cm−1. 1H-NMR 

(250 MHz, DMSO-d6) δ 11.97 (s, 1H), 7.96 (d, J = 2.5 Hz, 1H), 7.81 (s, 1H), 7.79–7.74 (m, 3H), 7.72 (d, J = 

2.5 Hz, 1H), 7.56 (dd, J = 7.9, 4.1 Hz, 3H), 7.49 (dd, J = 8.0, 3.7 Hz, 2H), 7.35 (s, 3H), 7.20 (d, J = 1.7 Hz, 

1H). 13C-NMR (63 MHz, DMSO-d6) δ 175.4 (CO), 144.1 (C-5), 143.8 (C-3), 142.8 (C-19), 139.0 (C-15), 138.7 

(C-7), 133.7 (C-1), 133.3 (C-9), 129.3 (C-11), 128.8 (C-17), 128.7 (C-21), 127.2 (C-16), 127.2 (C-20), 126.4 (C-

18), 125.4 (C-22), 125.1 (C-14), 123.7 (C-12), 122.7 (C-8), 119.3 (C-10), 116.4 (C-4), 114.6 (C-2). Anal. Calc. 

for C25H16ClNO (M = 381.85): C, 78.63; H, 4.22; N, 3.67; found: C, 78.58; H, 4.26; N, 3.63. 

7-Bromo-1,3-diphenylacridin-9(10H)-one (3e). Prepared from compound 2e (214 mg, 0.5 mmol). Yield: 166 

mg, (0.69 mmol, 78%); yellow solid. Mp: 276–277 °C. IR νmax (film): 3264, 3059, 2985, 1620, 1596 cm−1. 1H-

NMR (250 MHz, DMSO-d6) δ 11.99 (s, 1H), 8.10 (d, J = 2.3 Hz, 1H), 7.83–7.79 (m, 2H), 7.76 (m, 3H), 7.58–

7.52 (m, 2H), 7.52–7.46 (m, 3H), 7.38–7.33 (m, 3H), 7.20 (d, J = 1.6 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) 

δ 175.3 (CO), 144.1 (C-5), 143.8 (C-3), 142.8 (C-19), 139.3 (C-7), 138.7 (C-15), 135.8 (C-1), 129.3 (C-9), 128.8 

(C-11), 128.7 (C-17), 128.3 (C-21), 127.2 (C-16), 127.2 (C-20), 127.1 (C-18), 126.4 (C-229, 123.7 (C-14), 123.2 

(C-12), 119.5 (C-8), 116.5 (C-10), 114.6 (C-4), 113.1 (C-2). Anal. Calc. for C25H16BrNO (M = 426.30): C, 

70.43; H, 3.78; N, 3.29; found: C, 70.39; H, 3.73; N, 3.34. 

1,3-Diphenylacridin-9(10H)-one (3a). Prepared from compound 2a (175 mg, 0.5 mmol). Yield: 142 mg,
(0.41 mmol, 82%); brown solid. Mp: 333–334 ◦C. IR νmax (film): 3062, 2972, 1624, 1594 cm−1. 1H-NMR
(250 MHz, DMSO-d6) δ 8.03 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.3 Hz, 3H), 7.71 (t, J = 6.9 Hz, 1H), 7.58–7.45
(m, 4H), 7.33 (bs, 5H), 7.24–7.14 (m, 2H). 13C-NMR (63 MHz, DMSO-d6) δ 176.5 (CO), 144.1 (C-5), 143.5
(C-3), 143.1 (C-7), 142.9 (C-19), 140.4 (C-15), 138.8 (C-1), 133.3 (C-9), 129.3 (C-21), 128.7 (C_17), 127.1
(C-20, C-16 and C-22) (3 overlapped signals), 126.3 (C-18), 126.2 (C-11), 123.2 (C-14), 121.9 (C-10), 121.0
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(C-12), 116.8 (C-8), 116.6 (C-4), 114.5 (C-2). Anal. Calc. for C25H17NO (M = 347.41): C, 86.43; H, 4.93; N,
4.03; found: C, 85.94; H, 5.03; N, 4.06.

7-(Dimethylamino)-1,3-diphenylacridin-9(10H)-one (3b). Prepared from compound 2b (196 mg, 0.5 mmol).
Yield: 156 mg, (0.40 mmol, 80%); brown oil. IR νmax (film): 2924, 2853, 1621, 1589 cm−1. 1H-NMR (250
MHz, CDCl3) δ 8.82 (s, 1H), 7.64 (dd, J = 7.9, 1.5 Hz, 2H), 7.50–7.39 (m, 8H), 7.39–7.32 (m, 2H), 7.24
(d, J = 1.7 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.01 (dd, J = 8.8, 2.7 Hz, 1H), 2.79 (s, 6H). 13C-NMR (63
MHz, CDCl3) δ 177.7 (CO), 144.9 (C-5), 144.6 (C-3), 144.0 (C-10), 143.8 (C-19), 141.8 (C-15), 139.6 (C-1),
133.2 (C-7), 129.1 (C-21), 128.5 (C-17), 128.4 (C-16), 127.5 (C-20), 127.4 (C-18), 126.6 (C-22), 124.0 (C-14),
123.9 (C_12), 122.8 (C-9), 117.5 (C-4), 116.7 (C-2), 114.3 (C-11), 105.2 (C-8), 31.3 (NMe). Anal. Calc. for
C27H22N2O (M = 390.48): C, 83.05; H, 5.68; N, 7.17; found: C, 82.95; H, 6.03; N, 7.15.

7-Fluoro-1,3-diphenylacridin-9(10H)-one (3c). Prepared from compound 2c (184 mg, 0.5 mmol). Yield:
155 mg, (0.42 mmol, 85%); pale yellow solid. Mp: 320–321 ◦C. IR νmax (film): 3238, 3100, 2969, 1625,
1594, 1563 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.93 (bs, 1H), 7.84–7.73 (m, 3H), 7.69 (d, J = 8.0 Hz,
1H), 7.66–7.59 (m, 2H), 7.59–7.45 (m, 3H), 7.35 (bs, 5H), 7.19 (d, J = 0.8 Hz, 1H). 13C-NMR (63 MHz,
DMSO-d6) δ 175.7 (CO), 157.0 (C_10) (d, J = 240 Hz), 143.9 (C-5), 143.6 (C_3), 142.9 (C-19), 142.8 (C-15),
138.7 (C-1), 137.2 (C-7), 129.3 C-17), 128.7 (C-21), 128.7 (C-16), 127.2 (C-20), 126.3 (C-18), 123.4 (C-22),
122.5 (C-14), 122.4 (C-12), 122.1 (C-9) (d, J = 25.2 Hz), 119.4 (C-8), 115.7 (C-2), 114.5 (C-4), 110.1 (d,
J = 22.7 Hz) (C-11). Anal. Calc. for C25H16FNO (M = 365.40): C, 82.18; H, 4.41; N, 3.83; found: C, 82.13;
H, 4.47; N, 3.81.

7-Chloro-1,3-diphenylacridin-9(10H)-one (3d). Prepared from compound 2d (192 mg, 0.5 mmol). Yield:
145 mg, (0.38 mmol, 76%); yellow solid. Mp: 312–313 ◦C. IR νmax (film): 3068, 2967, 1626, 1561 cm−1.
1H-NMR (250 MHz, DMSO-d6) δ 11.97 (s, 1H), 7.96 (d, J = 2.5 Hz, 1H), 7.81 (s, 1H), 7.79–7.74 (m, 3H), 7.72
(d, J = 2.5 Hz, 1H), 7.56 (dd, J = 7.9, 4.1 Hz, 3H), 7.49 (dd, J = 8.0, 3.7 Hz, 2H), 7.35 (s, 3H), 7.20 (d, J = 1.7
Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 175.4 (CO), 144.1 (C-5), 143.8 (C-3), 142.8 (C-19), 139.0 (C-15),
138.7 (C-7), 133.7 (C-1), 133.3 (C-9), 129.3 (C-11), 128.8 (C-17), 128.7 (C-21), 127.2 (C-16), 127.2 (C-20), 126.4
(C-18), 125.4 (C-22), 125.1 (C-14), 123.7 (C-12), 122.7 (C-8), 119.3 (C-10), 116.4 (C-4), 114.6 (C-2). Anal. Calc.
for C25H16ClNO (M = 381.85): C, 78.63; H, 4.22; N, 3.67; found: C, 78.58; H, 4.26; N, 3.63.

7-Bromo-1,3-diphenylacridin-9(10H)-one (3e). Prepared from compound 2e (214 mg, 0.5 mmol). Yield:
166 mg, (0.69 mmol, 78%); yellow solid. Mp: 276–277 ◦C. IR νmax (film): 3264, 3059, 2985, 1620, 1596
cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.99 (s, 1H), 8.10 (d, J = 2.3 Hz, 1H), 7.83–7.79 (m, 2H), 7.76
(m, 3H), 7.58–7.52 (m, 2H), 7.52–7.46 (m, 3H), 7.38–7.33 (m, 3H), 7.20 (d, J = 1.6 Hz, 1H). 13C-NMR (63
MHz, DMSO-d6) δ 175.3 (CO), 144.1 (C-5), 143.8 (C-3), 142.8 (C-19), 139.3 (C-7), 138.7 (C-15), 135.8 (C-1),
129.3 (C-9), 128.8 (C-11), 128.7 (C-17), 128.3 (C-21), 127.2 (C-16), 127.2 (C-20), 127.1 (C-18), 126.4 (C-229,
123.7 (C-14), 123.2 (C-12), 119.5 (C-8), 116.5 (C-10), 114.6 (C-4), 113.1 (C-2). Anal. Calc. for C25H16BrNO
(M = 426.30): C, 70.43; H, 3.78; N, 3.29; found: C, 70.39; H, 3.73; N, 3.34.

6,8-Dichloro-1,3-diphenylacridin-9(10H)-one (3f). Prepared from compound 2f (209 mg, 0.5 mmol). Yield:
162 mg, (0.39 mmol, 78%); yellow solid. Mp: 281–282 ◦C. IR νmax (film): 3279, 3060, 2923, 1620, 1595
cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.61 (s, 1H), 9.68 (d, J = 5.0 Hz, 1H), 7.75 (d, J = 7.2 Hz, 2H),
7.62 (s, 1H), 7.57–7.43 (m, 3H), 7.39–7.22 (m, 4H), 7.09 (d, J = 0.8 Hz, 1H), 6.51 (d, J = 1.0 Hz, 1H), 6.10
(d, J = 1.0 Hz, 1H). 13C-NMR (63 MHz, DMSO-d6) δ 179.2 (CO), 153.3 (C-7), 143.7 (C-5), 143.5 (C-3),
143.4 (C-19), 143.4 (C-15), 141.9 (C-11), 139.3 (C-1), 138.7 (C-9), 129.2 (C-17), 128.7 (C-21), 128.4 (C-16),
127.2 (C-20), 127.1 (C-18), 126.2 (C-22), 123.8 (C-12), 117.4 (C-14), 113.7 (C-10), 106.0 (C-8), 99.9 (C-4),
98.9 (C-2). Anal. Calc. for C25H15Cl2NO (M = 416.30): C, 72.13; H, 3.63; N, 3.36; found: C, 72.09; H,
3.67; N, 3.31.
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6,8-Dimethyl-1,3-diphenylacridin-9(10H)-one (3g). Prepared from compound 2g (189 mg, 0.5 mmol).
Yield: 150 mg, (0.40 mmol, 80%); brown solid. Mp: 286–287 ◦C. IR νmax (film): 3021, 2962, 1593, 1534
cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.42 (s, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.66 (s, 1H), 7.58–7.42 (m,
3H), 7.34 (m, 5H), 7.10 (s, 2H), 6.75 (s, 1H), 2.60 (s, 3H), 2.37 (s, 3H). 13C-NMR (63 MHz, DMSO-d6) δ
178.7 (CO), 143.8 (C-5), 143.3 (C-7), 143.0 (C-9), 142.3 (C-3), 142.1 (C-19), 142.1 (C-11), 139.9 (C-15), 139.0
(C-1), 129.2 (C.12), 128.5 (C-17), 128.5 (C-21), 127.3 (C-16), 127.1 (C-20), 126.1 (C-18), 125.4 (C-22), 123.0
(C-14), 118.6 (C-10), 118.2 (C-4), 114.3 (C-2), 113.7 (C-8), 23.2 (C9-Me), 21.3 (C11-Me). Anal. Calc. for
C27H21NO (M = 375.46): C, 86.37; H, 5.64; N, 3.73; found: C, 86.32; H, 5.68; N, 3.72.

1-(4-Nitrophenyl)-3-phenylacridin-9(10H)-one (3h). Prepared from compound 1h (441 mg, 1.0 mmol).
Yield: 338 mg, (0.86 mmol, 86 % overall) without the need for a separate oxidation step; pink solid.
Mp: 174–175 ◦C. IR νmax (film): 3401, 3325, 3260, 1587, 1493 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ
8.30 (s, 1H), 7.66 (d, J = 7.0 Hz, 2H), 7.46 (t, J = 7.3 Hz, 1H), 7.38 (d, J = 8.6 Hz, 3H), 7.31–7.23 (m, 1H),
7.22–7.12 (m, 5H), 6.84 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 8.5 Hz, 2H). 13C-NMR (63 MHz, DMSO-d6) δ
182.3 (CO), 148.6 (C-18), 144.3 (C-15), 143.4 (C-5), 142.5 (C-3), 141.8 (C-7), 140.9 (C-19), 129.3 (C21), 128.9
(C-1), 127.7 (C-9), 127.5 (C-16), 127.4 (C-20 and 22), 126.8 (C-11 and C14), 119.9 (C-17), 117.1 (C-10),
116.0 (C-12), 114.2 (C-8), 112.9 (C-4), 112.5 (C_2). Anal. Calc. for C25H16N2O3 (M = 392.41): C, 76.52; H,
4.11; N, 7.14; found: C, 76.48; H, 4.05; N, 7.18.

3-(4-Bromophenyl)-1-phenylacridin-9(10H)-one (3i). Prepared from compound 2i (214 mg, 0.5 mmol).
Yield: 179 mg, (0.42 mmol, 84%); yellow solid. Mp: 326–327 ◦C. IR νmax (film): 3090, 2984, 1624, 1570,
1533 cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.80 (s, 1H), 8.03 (d, J = 7.1 Hz, 1H), 7.81–7.63 (m, 6H),
7.52 (d, J = 8.2 Hz, 1H), 7.41–7.29 (m, 5H), 7.20 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 1.6 Hz, 1H). 13C-NMR (63
MHz, DMSO-d6) δ 176.8 (CO), 144.5 (C-5), 143.3 (C-3), 143.2 (C-7), 142.5 (C-15), 140.7 (C-19), 138.3 (C-1),
133.7 (C-9), 132.5 C-20), 129.6 (C-17), 129.0 (C-16), 127.5 (C-18), 126.6 (C-11), 126.5 (C-14), 123.3 (C-22),
122.6 (C-21), 122.3 (C-10), 121.4 (C-12), 117.2 (C-8), 117.1 (C-4), 114.8 (C-2). Anal. Calc. for C25H16BrNO
(M = 426.30): C, 70.43; H, 3.78; N, 3.29; found: C, 70.39; H, 3.82; N, 3.34.

1-Phenyl-3-(thiophen-2-yl)acridin-9(10H)-one (3j). Prepared from compound 2j (178 mg, 0.5 mmol). Yield:
140 mg, (0.39 mmol, 79%); orange solid. Mp: 301–302 ◦C IR νmax (film): 3057, 3007, 2922, 1673, 1592
cm−1. 1H-NMR (250 MHz, DMSO-d6) δ 11.76 (s, 1H), 8.01 (dd, J = 8.1, 1.1 Hz, 1H), 7.78–7.64 (m, 4H),
7.49 (d, J = 8.1 Hz, 1H), 7.40–7.27 (m, 5H), 7.25–7.14 (m, 3H). 13C-NMR (63 MHz, DMSO-d6) δ 176.2
(CO), 144.3 (C-5), 142.9 (C-7), 142.9 (C-19), 141.7 (C-15), 140.4 (C-3), 136.8 (C-1), 133.3 (C-9), 129.0 (C-17),
128.5 (C-22), 127.8 (C-21), 127.2 (C-16), 126.3 (C-20), 126.2 (C-18), 125.9 (C-14), 122.0 (C-11), 121.5 (C-10),
121.1 (C-12), 116.8 (C-8), 116.6 (C-4), 112.5 (C-2). Anal. Calc. for C23H15NOS (M = 353.44): C, 78.16; H,
4.28; N, 3.96; found: C, 78.12; H, 4.24; N, 4.04.

1,3-Di(furan-2-yl)acridin-9(10H)-one (3k). Prepared from compound 2k (165 mg, 0.5 mmol). Yield: 126
mg, (0.38 mmol, 77%); brown solid. Mp: 195–196 ◦C. IR νmax (film): 3104, 2922, 1621, 1601 cm−1.
1H-NMR (250 MHz, CDCl3) δ 10.10 (s, 1H), 8.33 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 1.4 Hz, 1H), 7.56–7.45
(m, 3H), 7.39 (dd, J = 8.0, 1.4 Hz, 2H), 7.11 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 3.3 Hz, 1H), 6.57 (d, J = 3.0 Hz,
1H), 6.47–6.38 (m, 2H). 13C-NMR (63 MHz, CDCl3) δ 177.7 (CO), 154.5 (C-15), 152.2 (C-19), 143.6 (C-5),
142.7 (C-18), 142.2 (C-22), 140.2 (C-7), 133.9 (C-3), 133.3 (C-9), 132.5 (C-1), 127.1 (C-11), 122.7 (C-14),
121.8 (C-10), 121.1 (C-12), 117.6 (C-8), 116.7 (C-4), 112.3 (C-2), 112.1 (C-17), 111.1 (C-21), 108.4 (C-16),
108.2 (C-20). Anal. Calc. for C21H13NO3 (M= 327.33): C, 77.05; H, 4.00; N, 4.28; found: C, 77.11; H,
4.05; N, 4.32.

3-(4-Methoxyphenyl)-1-phenylacridin-9(10H)-one (3l). Prepared from compound 2l (50 mg, 0.13 mmol);
Yield: 38 mg (0.10 mmol, 74% yield); yellow solid Mp: 296 ◦C. IR νmax (film): 3264, 3107, 2929, 2106,
1889, 1617..1H-NMR (300 MHz, CDCl3) δ 9.18 (s, 1H), 8.36 (dd, J = 8.2, 1.5 Hz, 1H), 7.69–7.59 (m, 3H),
7.55 (d, J = 1.8 Hz, 1H), 7.50–7.41 (m, 4H), 7.41–7.33 (m, 3H), 7.22 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 6.99–6.92
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(m, 2H), 3.83 (s, 3H). 13C-NMR (75 MHz, CDCl3) δ 177.1 (CO), 158.8 (C-22), 145.1 (C-5), 144.9 (C-3),
144.1 (C-7), 140.2 (C-15), 139.2 (C-1), 134.8 (C-19), 133.5 (C-9), 129.7 (C-20), 129.0 (C-17), 128.6 (C-16),
127.4 (C-18), 127.1 (C-11), 125.0 (C-14), 122.1 (C-10), 122.0 (C-12), 117.0 (C-21), 116.4 (C-8), 114.2 (C-4),
113.2(C-2), 55.2 (OMe). Anal. Calc. for C26H19O2N C, 82.74; H, 5.07; N, 3.71. Found C, 79.83; H, 5.18;
N, 3.69.

3-(4-Chlorophenyl)-1-phenylacridin-9(10H)-one (3m). Prepared from compound 2m (30 mg, 0.08 mmol);
Yield: 22 mg (0.06 mmol, 70% yield). Yellow solid Mp: 366 ◦C. IR νmax (film):3262, 3072, 2930, 2109,
1892, 1623. 1H-NMR (300 MHz, DMSO-d6) δ 11.87 (s, 1H), 8.10 (dd, J = 8.1, 1.5 Hz, 1H), 7.86 (dd, J = 7.2,
1.8 Hz, 3H), 7.78 (ddd, J = 8.5, 6.9, 1.6 Hz, 1H), 7.61 (t, J = 7.2 Hz, 3H), 7.56–7.51 (m, 1H), 7.51–7.39 (m,
4H), 7.31–7.23 (m, 2H). 13C-NMR (75 MHz, DMSO-d6) δ 176.9 (CO), 144.0 (C-5), 143.3 (C-3), 143.1 (C-7),
142.4 (C-15), 140.9 (C-19), 139.2 (C-1), 133.8 (C-9), 131.6 (C-22), 130.9 (C-21), 129.7 (C-20), 129.2 (C-17),
127.6 (C-16), 127.5 (C-18), 126.6 (C-11), 123.5 (C-14), 122.3 (C-10), 121.6 (C-12), 117.3 (C-6), 116.9 (C.4),
115.2 (C-2). Anal. Calc. for C25H16ONCl C, 78.64; H, 4.22; N, 3.67. Found C, 76.90; H, 4.26; N, 3.67.

3-(2,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-acridin-9(10H)-one (3n). Prepared from compound 2n (30
mg, 0.07 mmol); Yield: 24 mg (0.05 mmol, 77% yield). Orange solid Mp: 281 ◦C. IR νmax (film): 3263,
3105, 2954, 2831, 2110, 1887, 1611. 1H-NMR (300 MHz, CDCl3) δ 9.37 (s, 1H), 8.24 (dd, J = 8.2, 1.5 Hz,
1H), 7.57 (d, J = 1.7 Hz, 1H), 7.52 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.31–7.22
(m, 3H), 7.16–7.08 (m, 2H), 6.93–6.84 (m, 2H), 6.51–6.44 (m, 2H), 3.78 (s, 3H), 3.77 (s, 3H), 3.74 (s, 3H).
13C-NMR (75 MHz, CDCl3) δ 176.8 (CO), 161.3 (C-20), 158.8 (C-22), 157.8 (C-18), 142.9 (C-5), 142.6 (C-3),
141.9 (C-7), 140.0 (C-1), 134.9 (C-9), 133.3 (C-15), 131.5 (C-16), 129.9 (C-20), 127.5 (C-11), 127.0 (C-14
and C-19), 121.9 (C-10), 121.8 (C-12), 121.4 (C-17), 116.7 (C-8), 116.3 (C-4), 113.2 (C-2), 105.0 (C-21),
99.1 (C21′), 55.7 (OMe), 55.5 (OMe), 55.2 (OMe). Anal. Calc. for C28H23O4N C, 76.87; H, 5.30; N, 3.20.
Found C, 74.15; H, 5.41; N, 3.15.

1,3-Bis(4-chlorophenyl)acridin-9(10H)-one (3o). Prepared from compound 2o (30 mg, 0.07 mol); Yield:
13 mg (0.03 mmol, 43% yield). Orange solid Mp 298 ◦C. IR νmax (film): 3264, 3114, 2922, 2105, 1619.
1H-NMR (300 MHz, DMSO-d6) δ 11.84 (s, 1H), 8.04 (dd, J = 8.2, 1.6 Hz, 1H), 7.87–7.81 (m, 2H), 7.78 (d, J
= 1.8 Hz, 1H), 7.72 (ddd, J = 8.5, 6.9, 1.6 Hz, 1H), 7.63–7.58 (m, 2H), 7.54 (d, J = 8.3 Hz, 1H), 7.45–7.34 (m,
4H), 7.26–7.18 (m, 2H). 13C-NMR (75 MHz, DMSO-d6) δ 176.8 (CO), 143.3 (C-5), 142.7 (C-3), 142.4 (C-7),
140.9 (C-19), 137.9 (C-15), 134.1 (C-1), 133.9 (C-9), 131.7 (C-18), 131.6 (C-22), 130.9 (C-17), 130.1 (C-21),
129.7 (C-16), 129.4 (C-20), 127.5 (C-11), 126.7 (C-14), 123.3 (C-10), 122.4 (C-12), 117.4 (C-8), 117.0 (C-4),
115.3 (C-2). Anal. Calc. for C25H15ONCl2 C, 72.13; H, 3.63; N, 3.36. Found C, 71.23; H, 3.76; N, 3.53.

4. Conclusions

The atom-economic method described here achieves the transformation of very simple reagents
and catalysts into derivatives of the 1,3-diaryl-9-acridone framework. The method allows the two-step
synthesis of dihydroacridone derivatives 2 having some potential significance as fluorescent probes
for oxidant species, including reactive oxygen species (ROS) and reactive nitrogen species (NOS),
since the absence of the C1-C2 double bond prevents the full conjugation of their two potential
fluorescent chromophores, namely the m-terphenyl and acridone fragments, which would be restored
upon dehydrogenation. This is an aspect of the chemistry of our compounds that will be studied
in the near future. On the other hand, exposure of compounds 2 to nitrobenzene under microwave
irradiation allowed their dehydrogenation to the fully aromatic derivatives 3, which have a high
potential biological significance. By forming two rings, one carbon-nitrogen and three carbon-carbon
bonds over two steps, our work demonstrates the high significance of multicomponent reactions
followed by suitable postcondensation modifications in terms of the generation of structural diversity.

Supplementary Materials: The following are available online, copies of NMR spectra of new compounds.
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