Article

A Reliable Enantioselective Route to Mono-Protected N1-Cbz Piperazic Acid Building Block

Evanthia Papadaki, Dimitris Georgiadis and Michail Tsakos *
Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Athens 15771, Greece; evapap@chem.uoa.gr (E.P.); dgeorgia@chem.uoa.gr (D.G.)
* Correspondence: mitsak@chem.uoa.gr; Tel.: +30-210-727-4899

Optimization of the mono-deprotection reaction.

Table S1. Full optimization study of the selective deprotection reaction.

Entry.	Starting material	Base (equiv)	Additives (equiv)	Solvent $(0.26 \mathrm{M})$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Full consump- tion of 13 (iso- lated yield of 5)
1	0.13 mmol $(50 \mathrm{mg})$	NaOH (1.2)	-	THF	23	1	-
2	0.13 mmol $(50 \mathrm{mg})$	NaOH (1.2)	-	THF	23	2	-
3	0.13 mmol $(50 \mathrm{mg})$	NaOH (1.2)	-	THF	23	$2^{1 / 2}$	-
4	0.13 mmol $(50 \mathrm{mg})$	NaOH (1.2)	-	THF	23	18	-
5	0.13 mmol $(50 \mathrm{mg})$	NaOH (2.0)	-	THF	23	1	-
6	0.13 mmol $(50 \mathrm{mg})$	NaOH (2.0)	-	THF	23	2	-
7	0.13 mmol $(50 \mathrm{mg})$	NaOH (2.0)	-	THF	23	$2^{1 / 2}$	-
8	0.13 mmol $(50 \mathrm{mg})$	NaOH (2.0)	-	THF	23	18	-
9	0.13 mmol $(50 \mathrm{mg})$	KOH (1.2)	-	THF	23	1	-
10	0.13 mmol $(50 \mathrm{mg})$	KOH (1.2)	-	THF	23	2	-
11	0.13 mmol $(50 \mathrm{mg})$	KOH (1.2)	-	THF	23	$2^{1 / 2}$	-
12	0.13 mmol $(50 \mathrm{mg})$	KOH (1.2)	-	THF	23	18	-
13	0.13 mmol $(50 \mathrm{mg})$	KOH (2.0)	-	THF	23	1	-
14	0.13 mmol $(50 \mathrm{mg})$	KOH (2.0)	-	THF	23	2	-
15	0.13 mmol	KOH	-	THF	23	$2^{1 / 2}$	-

	(50mg)	(2.0)					
16	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	23	18	-
17	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	-	MeOH	23	1	-
18	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ (2.0) \end{gathered}$	-	MeOH	23	2	-
19	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	-	MeOH	23	$2^{1 / 2}$	-
20	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	-	MeOH	23	18	-
21	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	-	MeOH	23	1	-
22	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	NaOH (2.0)	-	MeOH	23	2	-
23	$\begin{gathered} \hline 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	-	MeOH	23	$2^{1 / 2}$	-
24	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \end{gathered}$	-	MeOH	23	18	-
25	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	45	18	(45\%)
26	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	45	18	(72%)
27	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (3.0) \\ \hline \end{gathered}$	-	THF	45	18	(60\%)
28	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \hline \mathrm{NaOH} \\ (3.0) \end{gathered}$	-	THF	23	18	-
29	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3} \\ (2.0) \end{gathered}$	-	THF	45	18	-
30	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3} \\ (3.0) \\ \hline \end{gathered}$	-	THF	45	18	-
31	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{LiOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	23	18	-
32	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{LiOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	45	18	-
33	$\begin{gathered} \hline 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{NaH} \\ (1.1) \end{gathered}$	-	THF	0 to 23	2	-
34	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{NaH} \\ (1.1) \end{gathered}$	-	THF	0 to 23	18	-
35	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \hline \mathrm{NaOH} \\ (2.0) \end{gathered}$	-	THF	23	18	-
36	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	Crown ether (1.1)	THF	23	18	-
37	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	Crown ether (1.1)	THF	45	18	(35%)
38	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \hline \text { KOH } \\ (2.0) \end{gathered}$	Crown ether (1.1)	THF	23	18	-
39	$\begin{gathered} 0.13 \mathrm{mmol} \\ (50 \mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ (2.0) \\ \hline \end{gathered}$	Crown ether (1.1)	THF	45	18	30%
40	$\begin{gathered} \hline 0.26 \mathrm{mmol} \\ (100 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \end{gathered}$	-	THF	45	18	(61\%)
41	$\begin{gathered} 1.30 \mathrm{mmol} \\ (500 \mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \end{gathered}$	-	THF	45	18	(70\%)
42	$\begin{aligned} & 2.6 \mathrm{mmol} \\ & (1000 \mathrm{mg}) \end{aligned}$	$\begin{gathered} \mathrm{NaOH} \\ (2.0) \\ \hline \end{gathered}$	-	THF	45	18	(60%)

Figure S1. (A): Monitoring the reactions by TLC analysis. In lanes 2 and 4 where the sm is fully consumed the product was purified. Correlation between TLC lanes and Table S1: Lane $1 \rightarrow$ Entry 7, Lane $2 \rightarrow$ Entry 26, Lane $3 \rightarrow$ Entry 15, Lane $4 \rightarrow$ Entry 25, Lane $5 \rightarrow$ Entry 23, Lane $6 \rightarrow$ Entry 24, Lane $S \rightarrow$ starting material 13. (B): Reaction setup in a sand bath at $45^{\circ} \mathrm{C}$. (C): Reaction setup at ambient temperature.

Synthetic protocols and characterization data

1-((Benzyloxy)carbonyl)hexahydropyridazine-3-carboxylic acid (5).

In a screw cap vial containing 13 ($50 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) in THF (0.5 mL) was added solid NaOH ($10 \mathrm{mg}, 0.26 \mathrm{mmol}, 2$ equiv.) and the mixture was heated to $45^{\circ} \mathrm{C}$ and left stirring for 18 h . After cooling to room temperature, the solvent was evaporated and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, transferred to a separatory funnel and washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was discarded to remove the byproduct [Figure S1(A), upper spot on TLC] and the aqueous phase was acidified with HCl 1 N to $\mathrm{pH} 4-5$ and then extracted thoroughly with ethyl acetate ($4 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford piperazic acid 5 ($25 \mathrm{mg}, 72 \%$) as a white solid.
$R_{f} 0.2$ (9:1 chloroform/methanol, PMA stain). mp $158-160^{\circ} \mathrm{C}$, (Lit. ${ }^{3} \mathrm{mp} 166-167{ }^{\circ} \mathrm{C}$). For (R)-5 we found: $[\alpha]_{D}{ }^{23}=+22(c 1, \mathrm{MeOH}),\left\{\left[\mathrm{Lit}^{3}{ }^{3}[\alpha]_{D}{ }^{20}=-35(c 1, \mathrm{MeOH})\right.\right.$ for (S)-enantiomer $\} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.39-7.29(\mathrm{br}, 5 \mathrm{H})$, $5.16(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{br}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{br}, 1 \mathrm{H})$, $2.01(\mathrm{br}, 1 \mathrm{H}), 1.79-1.60(\mathrm{br}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta 174.7,157.5,137.9,129.5,129.3$, 129.2, 129.0, 128.3, 127.99, 68.7, 65.2, 59.3, 45.7, 28.4, 24.2. MS (ESI) m/z (\%) :265.2 [M+H, (100)] ${ }^{+}$.

Synthesis of aldehyde 7.

To a stirring solution of 1,5-pentanediol ($2 \mathrm{~g}, 19.20 \mathrm{mmol}, 1$ equiv.) in toluene (58 mL) was added HBr (48% aq., $2.6 \mathrm{~mL}, 23.04 \mathrm{mmol}, 1.2$ equiv.) and the mixture was heated at reflux for 24 hours. After cooling down to ambient temperature, the mixture was transferred to a separatory funnel and the layers were separated. The organic phase was washed with 1 N NaOH (aq., 15 mL) and brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated carefully at the rotavap (ATTENTION: alcohol $\mathbf{S 2}$ is volatile). The crude product was purified by FCC (pentane/Et ${ }_{2} \mathrm{O}$ 1:1 to 1:1.5) to furnish $\mathbf{S 2}(1.91 \mathrm{~g}, 60 \%)$ as a colorless liquid. NMR data matched those in the literature. ${ }^{1}$
 $\mathrm{Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.43(\mathrm{~m}, 4 \mathrm{H})$.

To a stirring mixture of PCC ($2.94 \mathrm{~g}, 13.65 \mathrm{mmol}, 1.2$ equiv.) and Florisil $(11 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 $\mathrm{mL})$ at ambient temperature was added slowly via addition funnel a solution of alcohol $\mathbf{S 2}(1.90 \mathrm{~g}$, 11.37 mmol, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the reaction was monitored by TLC. After 2.5 hours the reaction was filtered through a pad of Celite and concentrated carefully at the rotavap (ATTENTION: aldehyde $\mathbf{7}$ is volatile). The crude product was purified by FCC (pentane/ $\mathrm{Et}_{2} \mathrm{O} 7: 3$) to furnish $7(1.32 \mathrm{~g}, 71 \%)$ as a colorless liquid. NMR data matched those in the literature. ${ }^{2}$
$R_{f} 0.6$ (7:3 pentane/Et ${ }_{2} \mathrm{O}, \mathrm{CAM}$ stain). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=$ $6.2,2 \mathrm{H}), 2.45(\mathrm{td}, J=7.0$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.8,42.8$, 33.1, 31.9, 20.6.

Synthesis of (S)-5 following the protocol by Ma and co-workers. ${ }^{3}$

To a stirring solution of aldehyde $7\left(1.30 \mathrm{~g}, 7.87 \mathrm{mmol}, 1.8\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added D-proline ($91 \mathrm{mg}, 0.78 \mathrm{mmol}, 0.18$ equiv.) followed by dibenzylazodicarboxylate ($1.30 \mathrm{~g}, 4.37 \mathrm{mmol}, 1$ equiv.) and the mixture was left stirring at the same temperature for 15 hours. TLC analysis showed full consumption of the starting material (petroleum ether $40-60{ }^{\circ} \mathrm{C}$ /EtOAc 9:1, PMA stain). Sulfamic acid ($764 \mathrm{mg}, 7.87 \mathrm{mmol}, 1.8$ equiv.) was added in one portion followed by $\mathrm{NaClO}_{2}\left(1.13 \mathrm{M}, 533 \mathrm{mg} 80 \% \mathrm{NaClO}_{2}\right.$ in 5.2 mL H O) slowly while the color of the reaction turns green. After 10 minutes (TLC analysis showed disappearance of the intermediate aldehyde, petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c 9: 1$, PMA stain) the reaction was quenched by addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (aq. saturated) and stirred for 1 hour at room temperature. Then, the mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether $40-60{ }^{\circ} \mathrm{C} / E t O A c 1: 1$ to remove the byproduct and then neat EtOAc) to furnish 4 (1.37 g , 66%) as a white solid.

Figure S2. TLC analysis of the reaction sequence. A) TLC (petroleum ether $40-60{ }^{\circ} \mathrm{C} / E t O A c 9: 1$) of the organocatalytic reaction after 15 hours at $0^{\circ} \mathrm{C}$. In the left lane we have the starting material (sm), in the middle lane the co-spot of sm and reaction mixture (rm), and in the right lane the rm. We can see full consumption of sm. B) TLC (petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c 9: 1$) after the Pinnick oxidation. C) A more polar TLC after the Pinnick oxidation (petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c 1: 1$). The product 4 is the lower spot that "tails".

To a stirring solution of acid 4 ($1.30 \mathrm{~g}, 2.71 \mathrm{mmol}, 1$ equiv.) in THF (9 mL) at $0{ }^{\circ} \mathrm{C}$ was added solid NaOH ($217 \mathrm{mg}, 5.42 \mathrm{mmol}, 2$ equiv.) and the mixture was stirred at the same temperature for 24 hours. Then, the reaction was allowed to reach ambient temperature and was left stirring for an additional 4 hours. Subsequently, NaOH 1 N (aq., 3 mL) and sat. NaHCO_{3} (aq., 4 mL) were added, the mixture was transferred to a separatory funnel and the layers were separated. The organic layer was washed with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and discarded. The aqueous layer was washed with petroleum ether $40-60^{\circ} \mathrm{C}(2 \times 5 \mathrm{~mL})$ and then was acidified to $\mathrm{pH} 4-5$ with
$\mathrm{HCl} 37 \%$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried and concentrated in vacuo to furnish a mixture of bis- and mono-Cbz Piz (307 mg) as colorless glue.

Synthesis of (R)-5 following the global deprotection and selective mono-protection sequence. ${ }^{4}$

To a stirring solution of acid 13 ($1.56 \mathrm{~g}, 3.92 \mathrm{mmol}, 1$ equiv.) in dichloromethane (159 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(1.4 \mathrm{~g})$ and trifluoroacetic acid ($2.9 \mathrm{~mL}, 39.2 \mathrm{mmol}, 10$ equiv). The suspension was stirred under a hydrogen atmosphere (balloon) at $23^{\circ} \mathrm{C}$ for 12 h . The mixture was then filtered through a pad of Celite to remove the catalyst, the filter cake was washed thoroughly with MeOH and the filtrate was concentrated in vacuo to give the trifluroacetic acid salt $\mathbf{2}$ as a slurry oil. The product was advanced directly to the next step.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.98(\mathrm{br}, 1 \mathrm{H}), 3.41-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.25-1.91(\mathrm{~m}, 4 \mathrm{H}) .{ }^{4 \mathrm{a}}$
To a mixture of the above salt 2 ($3.92 \mathrm{mmol}, 1$ equiv.) and $\mathrm{NaOH}(470 \mathrm{mg}, 11.76 \mathrm{mmol}, 3.0$ equiv.) in water (11.5 mL) was added a solution of benzyl chloroformate ($0.56 \mathrm{~mL}, 3.92 \mathrm{mmol}, 1.0$ equiv.) in toluene (8 mL) at $+10^{\circ} \mathrm{C}$. After being stirred for 15 hours at room temperature, the reaction mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, acidified with 1 N HCl to pH 4 and extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{FCC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}: 9 / 1\right)$ to give the monoprotected acid in a 15% yield (150 mg) as yellowish oil. ${ }^{4 \mathrm{~b}}$

Synthesis of (R)-13 following the Hamada protocol. ${ }^{4 a}$

To a stirring solution of aldehyde $7\left(1.10 \mathrm{~g}, 6.67 \mathrm{mmol}, 1.5\right.$ equiv.) in dry $\mathrm{CH}_{3} \mathrm{CN}(32 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dibenzylazodicarboxylate $6(1.33 \mathrm{~g}, 4.45 \mathrm{mmol}, 1$ equiv.) followed by L-proline (51 $\mathrm{mg}, 0.45 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred at the same temperature for 20 hours. Then, NaBH_{4} ($168 \mathrm{mg}, 4.45 \mathrm{mmol}, 1$ equiv.) and EtOH (13 mL) were added sequentially and the reaction was left stirring at $0^{\circ} \mathrm{C}$ for an additional 1 hour before it was quenched by slow addition of 5% citric acid (aq., $5-6 \mathrm{~mL}$). After stirring 5 minutes at ambient temperature the reaction was concentrated in vacuo, re-dissolved in EtOAc (30 mL) and transferred to a separatory funnel. The organic phase was washed with brine $(30 \mathrm{~mL})$ and the aqueous phase was back-extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude product was purified by FCC (petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c 6: 4$) to give alcohol 9 as a white solid.
$R_{f} 0.3$ ($7: 3$ petroleum ether $\left.40-60^{\circ} \mathrm{C} / E t O A c, ~ P M A ~ s t a i n\right) . ~{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{br}, 10 \mathrm{H})$, $6.53(\mathrm{br}, 1 \mathrm{H}), 5.17(\mathrm{br}, 4 \mathrm{H}), 3.56-3.24(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{br}, 1 \mathrm{H}), 1.60-1.41(\mathrm{br}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}(\%):$ $487.2[\mathrm{M}+\mathrm{Na},(100)]^{+}, 489.2[\mathrm{M}+\mathrm{Na},(80)]^{+}$. The enantiomeric ratio of $(S)-9$ was determined to be $>99 \%$ ee by chiral HPLC (CHIRALPAK ${ }^{\circledR}$ OD-H, hexane/iPrOH/TFA 90:10:0.1, $0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $32.4 \mathrm{~min})$.

To a stirring solution of the above alcohol 9 (4.45 mmol , 1 equiv.) in dry DMF (52 mL) was added imidazole ($1.51 \mathrm{~g}, 22.25 \mathrm{mmol}, 5$ equiv.) followed by TBS $-\mathrm{Cl}(805 \mathrm{mg}, 5.34 \mathrm{mmol}, 1.2$ equiv.) and the reaction was left stirring at ambient temperature until TLC analysis showed full conversion (approx. 3 hours). Then it was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and the aqueous layers were back-extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The combined organic phases were then washed with brine (30 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c 9: 1$) to furnish bromide $\mathbf{1 0}$ ($2.31 \mathrm{~g}, 90 \%$ for three steps) as a white solid.
 $10 \mathrm{H}), 6.57(\mathrm{br}, 1 \mathrm{H}), 5.14(\mathrm{br}, 4 \mathrm{H}), 4.29(\mathrm{br}, 1 \mathrm{H}), 3.67-3.37(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.47(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, 0.04 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,156.1,135.7,128.6,128.4,128.2,67.8,62.9,29.0$, 26.7, 26.0, 25.7, 18.0, -3.5, -5.5. MS (ESI) $\mathrm{m} / \mathrm{z}(\%): 581.2[\mathrm{M}+\mathrm{H},(100)]^{+}, 579.4[\mathrm{M}+\mathrm{H},(90)]^{+}$.

A stirring solution of bromide $10(2.30 \mathrm{~g}, 3.98 \mathrm{mmol}, 1$ equiv.) in dry DMF (25 mL) under Ar was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%, 280 \mathrm{mg}, 6.97 \mathrm{mmol}, 1.7$ equiv.) was added in three portions
over a period of 30 minutes. After stirring at the same temperature for an additional 2 hours TLC analysis showed full conversion. The reaction was quenched by slow addition of 5% citric acid (aq., 10 mL) and then it was allowed to reach room temperature and it was transferred to a separatory funnel. The layers were separated and the aqueous phase was back-extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}$ and then $2 \times 25 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether 40-60 $\left.{ }^{\circ} \mathrm{C} / E t O A c 9: 1\right)$ to furnish silyl ether 11 ($1.95 \mathrm{~g}, 98 \%$) as a colourless oil. $R_{f} 0.5$ ($85: 15$ petroleum ether $40-60{ }^{\circ} \mathrm{C} / E t O A c, C A M$ stain). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28$ (br, 10H), 5.19-5.13 (m, 4H), 4.44-4.06 (m, 1H), 3.90-3.50 (m, 3H), $3.01(\mathrm{br}, 1 \mathrm{H}), 1.90-1.67(\mathrm{br}, 3 \mathrm{H})$, 1.59-1.43 (br, 1H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5,136.2,136.0,128.4$, 127.8, 67.7, 67.5, 67.3, 60.8, 54.2, 44.3, 25.7, 18.8, 18.1, -5.6. MS (ESI) m/z (\%): 499.4 [M+H, (100)] ${ }^{+}$.

A stirring solution of 11 ($1.95 \mathrm{~g}, 3.91 \mathrm{mmol}, 1$ equiv.) in dry THF (30 mL) under Ar was cooled to $0^{\circ} \mathrm{C}$ and TBAF (1 M in THF, $4.7 \mathrm{~mL}, 4.69 \mathrm{mmol}, 1.2$ equiv.) was added. After 1 hour (TLC analysis showed full conversion) the reaction was quenched by the addition brine (20 mL) and the mixture was transferred to a separatory funnel and was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether $40-60^{\circ} \mathrm{C} /$ EtOAc $1: 1$) to furnish primary alcohol 12 ($1.39 \mathrm{~g}, 93 \%$) as a colourless oil.
$R_{f} 0.4$ (1:1 petroleum ether $40-60{ }^{\circ} \mathrm{C} / E t O A c, C A M$ stain). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (br, $10 \mathrm{H}), 5.22(\mathrm{br}, 4 \mathrm{H}), 4.48(\mathrm{br}, 1 \mathrm{H}), 4.30-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{br}, 1 \mathrm{H}), 1.85-1.50(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,155.0,135.9,135.8,135.5,128.8,128.7,128.6,128.5$, $128.4,128.3,128.1,127.9,68.6,68.5,68.3,60.7,60.1,19.8,19.5 . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}(\%): 402.1\left[\mathrm{M}+\mathrm{NH}_{4}\right.$, $(100)]^{+}, 385.4[\mathrm{M}+\mathrm{H},(76)]^{+}$.

To a stirred solution of alcohol 12 ($1.63 \mathrm{~g}, 4.24 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(4.4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(4.4 \mathrm{~mL})$ were added TEMPO ($133 \mathrm{mg}, 0.85 \mathrm{mmol}, 0.2$ equiv.) and BAIB ($3.0 \mathrm{~g}, 9.33 \mathrm{mmol}, 2.2$ equiv.) at room temperature. After stirring the mixture at the same temperature for 2 h , water was added and the mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by FCC (petroleum ether $40-60^{\circ} \mathrm{C} / E t O A c /$ formic acid; 1:1:0.01) to furnish 13 ($1.57 \mathrm{~g}, 93 \%$) as a colorless glue.
$R_{f} 0.4$ (9:1 CHCl $3 / \mathrm{MeOH}, \mathrm{PMA}$ stain). For (S)-13: $[\alpha]_{\mathrm{D}}{ }^{23}=-17$ (c 1, CHCl_{3}), $\left\{\mathrm{Lit}^{5}{ }^{5}[\alpha]_{\mathrm{D}}{ }^{23}=-19.6\right.$ (c 1, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{br}, 1 \mathrm{H}), 7.35-7.24(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 5.31-4.97(\mathrm{~m}, 5 \mathrm{H}), 4.30-$ $3.97(\mathrm{br}, 1 \mathrm{H}), 3.29-2.98(\mathrm{br}, 1 \mathrm{H}), 2.33-1.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,171.2$, 137.6, 135.1, 130.4, 128.8, 128.6, 128.3, 128.0, 127.6, 94.5, 69.4, 69.3, 68.9, 68.3, 20.8, 20.5, 20.1. MS (ESI) m/z (\%): 397.0 [M-H, (100)].

Determination of enantiopurity of 1-((Benzyloxy)carbonyl)hexahydropyridazine-3carboxylic acid (5)

The enantiomeric ratio of compound 5 was determined after derivatization to the corresponding allyl ester (S3).

To a stirring solution of acid 5 ($80 \mathrm{mg}, 0.30 \mathrm{mmol}, 1$ equiv.) in dry DMF (1.6 mL) was added sequentially NaHCO_{3} ($102 \mathrm{mg}, 1.20 \mathrm{mmol}, 4.0$ equiv.) and allyl bromide ($50 \mu \mathrm{~L}, 0.61 \mathrm{mmol}, 2.0$ equiv.) and the mixture was stirred at ambient temperature overnight. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by FCC (petroleum ether $40-60^{\circ} \mathrm{C} / \mathrm{Et}_{2} \mathrm{O} 1: 1$) to furnish the desired allyl ester $\mathbf{S 3}$ as a colorless liquid.
$R_{f} 0.2$ (1:1 petroleum ether $40-60{ }^{\circ} \mathrm{C} / \mathrm{Et}_{2} \mathrm{O}$, PMA stain). For (S)-S3: $[\alpha]_{\mathrm{D}}{ }^{23}=-26\left(c 1, \mathrm{CHCl}_{3}\right)$, $\left\{\right.$ Lit. $\left.^{6}[\alpha]_{\mathrm{D}}{ }^{23}=-30.2\left(c 1, \mathrm{CHCl}_{3}\right)\right\}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.99-5.80(\mathrm{~m}, 1 \mathrm{H})$, 5.36-5.17 (m, 4H), 4.61 (dt, J = 5.8 and $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.46(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}(\%): 305.2[\mathrm{M}+\mathrm{H},(100)]^{+}$. The enantiomeric ratio of (S)-S3 was determined to be $94: 6$ (88% ee) by chiral HPLC (CHIRALPAK ${ }^{\circledR}$ ADH , hexane/ $\mathrm{iPrOH} 90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, 17.6$ minor and 23.4 major).

For (R)-S3

Racemic S3 was prepared by mixing equal amounts of chiral (S)- and (R)-S3

Spectra

EVP1
STANBARD in OBSERE

$\underbrace{ \pm} \mathrm{NoN}$

 evpl_C13 ix Osserve
-201.80

(OTBS

$$
\underbrace{-\mathrm{OH}}_{12}
$$

${ }^{1}$ (a) For the mono-bromination procedure see: Chong, J. M.; Heuft, M. A.; Rabbat, P. J. Org. Chem.2000, 65, 5837-5838. (b) For product characterization see: Thomson, A.; O'Connor, S.; Knuckley, B.; Causey, C. P. Bioorg. Med. Chem.2014, 22, 4602-4608.
${ }^{2}$ For product characterization see: Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, M. Angew. Chem. Int. Ed. 2018, 57, 11683-11687.
${ }^{3}$ Chen, Y.; Lu, Y.; Zou, Q.; Chen, H.; Ma, D. Org. Proc. Res. Dev.2013, 17, 1209-1213.
${ }^{4}$ (a) For the hydrogenolysis step see: Henmi, Y.; Makino, K.; Yoshitomi, Y.; Hara, O.; Hamada, Y. Tetrahedron: Asymmetry, 2004, 15, 3477-3481. (b) For the selective protection step see: Adams, C. E.; Aguilar, D.; Hertel, S.; Knight, W. H.; Paterson, J. Synth. Commun.1988, 18, 2225-2231.
${ }^{5}$ Makino, K.; Henmi, Y.; Terasawa, M.; Hara, O.; Hamada, Y. Tetrahedron Lett.2005, 46, 555-558.
${ }^{6}$ Shibahara, S.; Matsubara, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett.2011, 13, 4700-4703.

