

Article

MDPI

A Reliable Enantioselective Route to Mono-Protected N1-Cbz Piperazic Acid Building Block

Evanthia Papadaki, Dimitris Georgiadis and Michail Tsakos *

Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Athens 15771, Greece; evapa@chem.uoa.gr (E.P.); dgeorgia@chem.uoa.gr (D.G.)

* Correspondence: mitsak@chem.uoa.gr; Tel.: +30-210-727-4899

Optimization of the mono-deprotection reaction.

о _≫ он		ОууОН
N ⁻ Cbz	Base	NH
└Ń __ Cbz	conditions	Ń. Cbz
13		5

Table S1. Full optimization study of the selective deprotection reaction.

Entry.	Starting material	Base (equiv)	Additives (equiv)	Solvent (0.26M)	Temperature (°C)	Time (h)	Full consump- tion of 13 (iso- lated yield of 5)
1	0.13mmol	NaOH	_	тне	23	1	
1	(50mg)	(1.2)	-	1111	23	1	-
2	0.13mmol	NaOH	_	THE	23	2	_
2	(50mg)	(1.2)		1111	20	2	_
3	0.13mmol	NaOH	_	THE	23	2 1/2	_
5	(50mg)	(1.2)		1111	25	2 '	
4	0.13mmol	NaOH		тиг	22	19	
4	(50mg)	(1.2)	-	1111	23	10	-
5	0.13mmol	NaOH	_	тне	23	1	_
	(50mg)	(2.0)	-	1111	25	1	
6	0.13mmol	NaOH		тне	23	2	
0	(50mg)	(2.0)	-	1111	25	2	-
7	0.13mmol	NaOH		тне	23	7 1/2	
/	(50mg)	(2.0)	-	1111	25	2 '	-
Q	0.13mmol	NaOH		тиг	22	19	
0	(50mg)	(2.0)	-	1111	23	10	-
9	0.13mmol	KOH		тне	23	1	
	(50mg)	(1.2)	-	1111	25	1	
10	0.13mmol	KOH	_	тне	23	2	_
10	(50mg)	(1.2)		1111	20	2	_
11	0.13mmol	KOH		тне	23	7 1/2	
11	(50mg)	(1.2)	-	1111	25	2 '	-
12	0.13mmol	KOH	_	тне	23	18	_
12	(50mg)	(1.2)	-	1111	25	10	-
13	0.13mmol	KOH	_	тне	23	1	_
15	(50mg)	(2.0)	-	1111	23	1	-
1/	0.13mmol	KOH		тне	23	2	
14	(50mg)	(2.0)	-	1111	23	4	-
15	0.13mmol	KOH	-	THF	23	21/2	-

	(50m a)	(2.0)					
	0.12mm.cl	(2.0) KOU					
16	(50		-	THF	23	18	-
	(50mg)	(2.0)					
17	0.13mmol	KOH	-	MeOH	23	1	-
	(50mg)	(2.0)			-		
18	0.13mmol	KOH	_	MeOH	23	2	_
	(50mg)	(2.0)		MCOII	20	2	
10	0.13mmol	KOH		MaOU	22	2 1/2	
19	(50mg)	(2.0)	-	меоп	23	$Z^{1/2}$	-
• •	0.13mmol	KOH				1.0	
20	(50 mg)	(2.0)	-	MeOH	23	18	-
	0.13mmol	NaOH					
21	(50mg)	(2.0)	-	MeOH	23	1	-
	0.12mm.ol	(2.0) NaOU					
22	0.13mmol	NaOH	-	MeOH	23	2	-
	(50mg)	(2.0)					
23	0.13mmol	NaOH	-	MeOH	23	21/2	-
	(50mg)	(2.0)		meen	-0	-	
24	0.13mmol	NaOH		MoOH	22	18	
24	(50mg)	(2.0)	-	меоп	23	10	-
25	0.13mmol	KOH			45	10	
25	(50mg)	(2.0)	-	IHF	45	18	v (45%)
	0.13mmol	NaOH					
26	(50mg)	(2.0)	-	THF	45	18	(72%)
	0.12mmol	(2.0) NoOU					()
27	(50mm m)	(2.0)	-	THF	45	18	✓ (60%)
	(50mg)	(3.0)					(0070)
28	0.13mmol	NaOH	-	THF	23	18	-
	(50mg)	(3.0)					
29	0.13mmol	Rb ₂ CO ₃	_	THF	45	18	_
2)	(50mg)	(2.0)	_	1111	40	10	-
20	0.13mmol	Rb ₂ CO ₃			45	10	
30	(50mg)	(3.0)	-	IHF	45	18	-
	0.13mmol	LiOH					
31	(50mg)	(2.0)	-	THF	23	18	-
	0.13mmol	LIOH					
32	(50m c)	(2.0)	-	THF	45	18	-
	(50mg)	(2.0)					
33	0.13mmol	NaH	-	THF	0 to 23	2	-
	(50mg)	(1.1)					
34	0.13mmol	NaH	_	THF	0 to 23	18	-
	(50mg)	(1.1)		1111	0 10 20	10	
25	0.13mmol	NaOH		TUE	22	10	
35	(50mg)	(2.0)	-	ППГ	23	10	-
24	0.13mmol	NaOH	Crown		22	4.0	
36	(50mg)	(2.0)	ether (1.1)	THF	23	18	-
	0.13mmol	NaOH	Crown				_
37	(50mg)	(2.0)	a ther (1, 1)	THF	45	18	(35%)
	0.12mm.cl	(2.0) KOU	Crosser				(3378)
38	0.13mmol	KOH	Crown	THF	23	18	-
	(50mg)	(2.0)	ether (1.1)				
39	0.13mmol	KOH	Crown	THF	45	18	-
	(50mg)	(2.0)	ether (1.1)		-0	10	30%
40	0.26mmol	NaOH		тнг	45	19	
-±0	(100mg)	(2.0)	-	1111	H J	10	(61%)
	1.30mmol	NaOH			4-	10	
41	(500 mg)	(2.0)	-	THF	45	18	* (70%)
	2.6mmol	NaOH					
42	(1000mg)	(2 M)	-	THF	45	18	(60%)
	(1000mg)	(4.0)					····/

Figure S1. (**A**): Monitoring the reactions by TLC analysis. In lanes 2 and 4 where the sm is fully consumed the product was purified. Correlation between TLC lanes and Table S1: Lane $1 \rightarrow$ Entry 7, Lane $2 \rightarrow$ Entry 26, Lane $3 \rightarrow$ Entry 15, Lane $4 \rightarrow$ Entry 25, Lane $5 \rightarrow$ Entry 23, Lane $6 \rightarrow$ Entry 24, Lane $S \rightarrow$ starting material **13**. (**B**): Reaction setup in a sand bath at 45°C. (**C**): Reaction setup at ambient temperature.

Synthetic protocols and characterization data

1-((Benzyloxy)carbonyl)hexahydropyridazine-3-carboxylic acid (5).

In a screw cap vial containing **13** (50 mg, 0.13 mmol, 1 equiv.) in THF (0.5 mL) was added solid NaOH (10 mg, 0.26 mmol, 2 equiv.) and the mixture was heated to 45 °C and left stirring for 18 h. After cooling to room temperature, the solvent was evaporated and the residue was dissolved in H₂O (5 mL), transferred to a separatory funnel and washed with Et₂O (5 mL). The organic layer was discarded to remove the byproduct [Figure S1(A), upper spot on TLC] and the aqueous phase was acidified with HCl 1N to pH 4-5 and then extracted thoroughly with ethyl acetate (4 x 5 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated in vacuo to afford piperazic acid **5** (25 mg, 72%) as a white solid.

 R_f 0.2 (9:1 chloroform/methanol, PMA stain). mp 158-160 °C, (Lit.³mp 166-167 °C). For (*R*)-**5** we found: $[\alpha]_D^{23} = +22$ (*c* 1, MeOH), {[Lit.³ $[\alpha]_D^{20} = -35$ (*c* 1, MeOH) for (*S*)-enantiomer};¹H-NMR (400 MHz, CD₃OD) δ 7.39-7.29(br, 5H), 5.16 (br s, 2H), 3.85 (br, 1H), 3.51-3.48 (m, 1H), 3.35 (br, 1H), 2.01 (br, 1H), 1.79-1.60 (br, 3H);¹³C NMR (101 MHz, CD₃OD) δ 174.7, 157.5, 137.9, 129.5, 129.3, 129.2, 129.0, 128.3, 127.99, 68.7, 65.2, 59.3, 45.7, 28.4, 24.2. MS (ESI) *m/z* (%) :265.2 [M+H, (100)]⁺.

Synthesis of aldehyde 7.

To a stirring solution of 1,5-pentanediol (2 g, 19.20 mmol, 1 equiv.) in toluene (58 mL) was added HBr (48% aq., 2.6 mL, 23.04 mmol, 1.2 equiv.) and the mixture was heated at reflux for 24 hours. After cooling down to ambient temperature, the mixture was transferred to a separatory funnel and the layers were separated. The organic phase was washed with 1N NaOH (aq., 15 mL) and brine (30 mL), dried (Na₂SO₄), filtered and concentrated carefully at the rotavap (ATTENTION: alcohol **S2** is volatile). The crude product was purified by FCC (pentane/Et₂O 1:1 to 1:1.5) to furnish **S2** (1.91 g, 60%) as a colorless liquid. NMR data matched those in the literature.¹

 R_f 0.3 (7:3 petroleum ether 40-60 °C/EtOAc, CAM stain). ¹H-NMR (200 MHz, CDCl₃) δ 3.66 (t, J = 6.2 Hz, 2H), 3.42 (t, J = 6.7 Hz, 2H), 1.97-1.83 (m, 2H), 1.67-1.43 (m, 4H).

To a stirring mixture of PCC (2.94 g, 13.65 mmol, 1.2 equiv.) and Florisil (11 g) in CH_2Cl_2 (35 mL) at ambient temperature was added slowly via addition funnel a solution of alcohol **S2** (1.90 g, 11.37 mmol, 1 equiv.) in CH_2Cl_2 (20 mL) and the reaction was monitored by TLC. After 2.5 hours the reaction was filtered through a pad of Celite and concentrated carefully at the rotavap (ATTENTION: aldehyde **7** is volatile). The crude product was purified by FCC (pentane/Et₂O 7:3) to furnish **7** (1.32 g, 71%) as a colorless liquid. NMR data matched those in the literature.²

 R_f 0.6 (7:3 pentane/Et₂O, CAM stain). ¹H-NMR (200 MHz, CDCl₃) δ 9.73 (t, J = 1.5 Hz, 1H), 3.37 (t, J = 6.2, 2H), 2.45 (td, J = 7.0 and 1.5 Hz, 2H), 1.88-1.64 (m, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 201.8, 42.8, 33.1, 31.9, 20.6.

To a stirring solution of aldehyde **7** (1.30 g, 7.87 mmol, 1.8 equiv.) in dry CH_2Cl_2 (11 mL) at 0 °C was added *D*-proline (91 mg, 0.78 mmol, 0.18 equiv.) followed by dibenzylazodicarboxylate (1.30 g, 4.37 mmol, 1 equiv.) and the mixture was left stirring at the same temperature for 15 hours. TLC analysis showed full consumption of the starting material (petroleum ether 40-60 °C /EtOAc 9:1, PMA stain). Sulfamic acid (764 mg, 7.87 mmol, 1.8 equiv.) was added in one portion followed by NaClO₂ (1.13 M, 533 mg 80% NaClO₂ in 5.2 mL H₂O) slowly while the color of the reaction turns green. After 10 minutes (TLC analysis showed disappearance of the intermediate aldehyde, petroleum ether 40-60 °C /EtOAc 9:1, PMA stain) and stirred for 1 hour at room temperature. Then, the mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was washed with CH_2Cl_2 (2 x 10 mL) and the combined organic layers were washed with brine (30 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether 40-60 °C /EtOAc 9:1:1 to remove the byproduct and then neat EtOAc) to furnish **4** (1.37 g, 66%) as a white solid.

Figure S2. TLC analysis of the reaction sequence. **A)** TLC (petroleum ether 40-60 °C /EtOAc 9:1) of the organocatalytic reaction after 15 hours at 0 °C. In the left lane we have the starting material (sm), in the middle lane the co-spot of sm and reaction mixture (rm), and in the right lane the rm. We can see full consumption of sm. **B)** TLC (petroleum ether 40-60 °C /EtOAc 9:1) after the Pinnick oxidation. **C)** A more polar TLC after the Pinnick oxidation (petroleum ether 40-60 °C /EtOAc 1:1). The product **4** is the lower spot that "tails".

To a stirring solution of acid **4** (1.30 g, 2.71 mmol, 1 equiv.) in THF (9 mL) at 0 °C was added solid NaOH (217 mg, 5.42 mmol, 2 equiv.) and the mixture was stirred at the same temperature for 24 hours. Then, the reaction was allowed to reach ambient temperature and was left stirring for an additional 4 hours. Subsequently, NaOH 1N (aq., 3 mL) and sat. NaHCO₃ (aq., 4 mL) were added, the mixture was transferred to a separatory funnel and the layers were separated. The organic layer was washed with sat. NaHCO₃ (5 mL) and discarded. The aqueous layer was washed with petroleum ether 40-60 °C (2 x 5 mL) and then was acidified to pH 4-5 with

HCl 37%. The aqueous phase was extracted with EtOAc (3 x 5 mL), dried and concentrated in vacuo to furnish a mixture of bis- and mono-Cbz Piz (307 mg) as colorless glue.

Synthesis of (*R*)-5 following the global deprotection and selective mono-protection sequence.⁴

To a stirring solution of acid **13** (1.56 g, 3.92 mmol, 1 equiv.) in dichloromethane (159 mL) was added 10% Pd/C (1.4 g) and trifluoroacetic acid (2.9 mL, 39.2 mmol, 10 equiv). The suspension was stirred under a hydrogen atmosphere (balloon) at 23°C for 12h. The mixture was then filtered through a pad of Celite to remove the catalyst, the filter cake was washed thoroughly with MeOH and the filtrate was concentrated in vacuo to give the trifluroacetic acid salt **2** as a slurry oil. The product was advanced directly to the next step.

¹H-NMR (200 MHz, CD₃OD) δ 3.98 (br, 1H), 3.41-3.13 (m, 2H), 2.25-1.91 (m, 4H).^{4a}

To a mixture of the above salt **2** (3.92 mmol, 1 equiv.) and NaOH (470 mg, 11.76 mmol, 3.0 equiv.) in water (11.5 mL) was added a solution of benzyl chloroformate (0.56 mL, 3.92 mmol, 1.0 equiv.) in toluene (8 mL) at +10 °C. After being stirred for 15 hours at room temperature, the reaction mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was washed with Et_2O (10 mL), acidified with 1N HCl to pH 4 and extracted with AcOEt (3 x 15 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by FCC (CHCl₃/MeOH: 9/1) to give the monoprotected acid in a 15% yield (150 mg) as yellowish oil.^{4b}

To a stirring solution of aldehyde **7** (1.10 g, 6.67 mmol, 1.5 equiv.) in dry CH₃CN (32 mL) at 0 °C was added dibenzylazodicarboxylate**6** (1.33 g, 4.45 mmol, 1 equiv.) followed by *L*-proline (51 mg, 0.45 mmol, 0.1 equiv.) and the mixture was stirred at the same temperature for 20 hours. Then, NaBH₄ (168 mg, 4.45 mmol, 1 equiv.) and EtOH (13 mL) were added sequentially and the reaction was left stirring at 0 °C for an additional 1 hour before it was quenched by slow addition of 5% citric acid (aq., 5-6 mL). After stirring 5 minutes at ambient temperature the reaction was concentrated in vacuo, re-dissolved in EtOAc (30 mL) and transferred to a separatory funnel. The organic phase was washed with brine (30 mL) and the aqueous phase was back-extracted with EtOAc (2 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude product was purified by FCC (petroleum ether 40-60 °C /EtOAc 6:4) to give alcohol **9** as a white solid.

*R*_f 0.3 (7:3 petroleum ether 40-60 °C/EtOAc, PMA stain). ¹H-NMR (200 MHz, CDCl₃) δ 7.32 (br, 10H), 6.53 (br, 1H), 5.17 (br, 4H), 3.56-3.24 (m, 4H), 1.90 (br, 1H), 1.60-1.41 (br, 4H). MS (ESI) *m/z* (%): 487.2 [M+Na, (100)]⁺, 489.2 [M+Na, (80)]⁺. The enantiomeric ratio of (*S*)-**9** was determined to be >99% *ee* by chiral HPLC (CHIRALPAK[®] OD-H, hexane/iPrOH/TFA 90:10:0.1, 0.6 mL/min, 254 nm, 32.4 min).

To a stirring solution of the above alcohol **9** (4.45 mmol, 1 equiv.) in dry DMF (52 mL) was added imidazole (1.51 g, 22.25 mmol, 5 equiv.) followed by TBS-Cl (805 mg, 5.34 mmol, 1.2 equiv.) and the reaction was left stirring at ambient temperature until TLC analysis showed full conversion (approx. 3 hours). Then it was diluted with Et₂O (50 mL) and transferred to a separatory funnel. The organic layer was washed with H₂O (2 x 30 mL) and the aqueous layers were back-extracted with Et₂O (2 x 25 mL). The combined organic phases were then washed with brine (30 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether 40-60 °C /EtOAc 9:1) to furnish bromide **10** (2.31 g, 90% for three steps) as a white solid. *R*_f 0.7 (8:2 petroleum ether 40-60 °C /EtOAc, PMA stain). ¹H-NMR (200 MHz, CDCl₃) δ 7.34-7.23 (br, 10H), 6.57 (br, 1H), 5.14 (br, 4H), 4.29 (br, 1H), 3.67-3.37 (m, 4H), 1.88-1.47 (m, 4H), 0.86 (s, 9H), 0.04 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 157.0, 156.1, 135.7, 128.6, 128.4, 128.2, 67.8, 62.9, 29.0, 26.7, 26.0, 25.7, 18.0, -3.5, -5.5. MS (ESI) *m/z* (%): 581.2 [M+H, (100)]⁺, 579.4 [M+H, (90]]⁺.

A stirring solution of bromide **10** (2.30 g, 3.98 mmol, 1 equiv.) in dry DMF (25 mL) under Ar was cooled to 0 °C and NaH (60%, 280 mg, 6.97 mmol, 1.7 equiv.) was added in three portions

over a period of 30 minutes. After stirring at the same temperature for an additional 2 hours TLC analysis showed full conversion. The reaction was quenched by slow addition of 5% citric acid (aq., 10 mL) and then it was allowed to reach room temperature and it was transferred to a separatory funnel. The layers were separated and the aqueous phase was back-extracted with Et₂O (50 mL and then 2 x 25 mL). The combined organic layers were washed with brine (30 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether 40-60 °C /EtOAc 9:1) to furnish silyl ether **11** (1.95 g, 98%) as a colourless oil.

R_f 0.5 (85:15 petroleum ether 40-60 °C /EtOAc, CAM stain). ¹H-NMR (200 MHz, CDCl₃) δ 7.33-7.28 (br, 10H), 5.19-5.13 (m, 4H), 4.44-4.06 (m, 1H), 3.90-3.50 (m, 3H), 3.01 (br, 1H), 1.90-1.67 (br, 3H), 1.59-1.43 (br, 1H), 0.87 (s, 9H), 0.09 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 156.5, 136.2, 136.0, 128.4, 127.8, 67.7, 67.5, 67.3, 60.8, 54.2, 44.3, 25.7, 18.8, 18.1, -5.6. MS (ESI) *m/z* (%): 499.4 [M+H, (100)]⁺.

A stirring solution of **11** (1.95 g, 3.91 mmol, 1 equiv.) in dry THF (30 mL) under Ar was cooled to 0 °C and TBAF (1M in THF, 4.7 mL, 4.69 mmol, 1.2 equiv.) was added. After 1 hour (TLC analysis showed full conversion) the reaction was quenched by the addition brine (20 mL) and the mixture was transferred to a separatory funnel and was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by FCC (petroleum ether 40-60 °C /EtOAc 1:1) to furnish primary alcohol **12** (1.39 g, 93%) as a colourless oil.

*R*_f 0.4 (1:1 petroleum ether 40-60 °C /EtOAc, CAM stain). ¹H-NMR (200 MHz, CDCl₃) δ 7.37 (br, 10H), 5.22 (br, 4H), 4.48 (br, 1H), 4.30-4.06 (m, 1H), 3.81-3.50 (m, 2H), 3.10 (br, 1H), 1.85-1.50 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 155.0, 135.9, 135.8, 135.5, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 68.6, 68.5, 68.3, 60.7, 60.1, 19.8, 19.5. MS (ESI) *m/z* (%): 402.1 [M+NH₄, (100)]⁺, 385.4 [M+H, (76)]⁺.

To a stirred solution of alcohol **12** (1.63 g, 4.24 mmol, 1 equiv.) in CH_3CN (4.4 mL) and H_2O (4.4 mL) were added TEMPO (133 mg, 0.85 mmol, 0.2 equiv.) and BAIB (3.0 g, 9.33 mmol, 2.2 equiv.) at room temperature. After stirring the mixture at the same temperature for 2 h, water was added and the mixture was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by FCC (petroleum ether 40-60 °C /EtOAc/formic acid; 1:1:0.01) to furnish **13** (1.57 g, 93%) as a colorless glue.

*R*_f 0.4 (9:1 CHCl₃/MeOH, PMA stain). For (*S*)-**13**: $[\alpha]_D^{23} = -17$ (*c* 1, CHCl₃), {Lit.⁵ $[\alpha]_D^{23} = -19.6$ (*c* 1, CHCl₃)};¹H-NMR (200 MHz, CDCl₃) δ 8.86 (br, 1H), 7.35-7.24 (br s, 10H), 5.31-4.97 (m, 5H), 4.30-3.97 (br, 1H), 3.29-2.98 (br, 1H), 2.33-1.60 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 171.2, 137.6, 135.1, 130.4, 128.8, 128.6, 128.3, 128.0, 127.6, 94.5, 69.4, 69.3, 68.9, 68.3, 20.8, 20.5, 20.1. MS (ESI) *m/z* (%): 397.0 [M-H, (100)]⁻.

<u>Determination of enantiopurity of 1-((Benzyloxy)carbonyl)hexahydropyridazine-3-</u> carboxylic acid (5)

The enantiomeric ratio of compound **5** was determined after derivatization to the corresponding allyl ester (**S3**).

To a stirring solution of acid **5** (80 mg, 0.30 mmol, 1 equiv.) in dry DMF (1.6 mL) was added sequentially NaHCO₃ (102 mg, 1.20 mmol, 4.0 equiv.) and allyl bromide (50 μ L, 0.61 mmol, 2.0 equiv.) and the mixture was stirred at ambient temperature overnight. The reaction was quenched by addition of H₂O (2 mL) and the product was extracted with Et₂O (3 x 5 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by FCC (petroleum ether 40-60 °C /Et₂O 1:1) to furnish the desired allyl ester **S3** as a colorless liquid.

*R*_f 0.2 (1:1 petroleum ether 40-60 °C /Et₂O, PMA stain). For (*S*)-**S3**: $[\alpha]_D^{23} = -26$ (*c* 1, CHCl₃), {Lit.⁶[α]_D^{23} = -30.2 (*c* 1, CHCl₃)};¹H-NMR (200 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 5.99-5.80 (m, 1H), 5.36-5.17 (m, 4H), 4.61 (dt, *J* = 5.8 and 1.4 Hz, 2H), 4.07-3.90 (m, 1H), 3.63-3.48 (m, 1H), 3.25-3.00 (m, 1H), 2.17-2.00 (m, 1H), 1.85-1.46 (m, 3H). MS (ESI) *m/z* (%): 305.2 [M+H, (100)]⁺. The enantiomeric ratio of (*S*)-**S3** was determined to be 94:6 (88% *ee*) by chiral HPLC (CHIRALPAK [®] AD-H, hexane/iPrOH 90:10, 1.0 mL/min, 230 nm, 17.6 minor and 23.4 major).

Area Percent Report

Peak RetTime Type # [min] 	Width Area [min] [mAU*s]	Height [mAU]	Area %
1 17.605 VV 2 23.366 MM	0.4761 386.80084 0.9159 5929.84375	9.80773 107.90417	6.1235 93.8765
Totals :	6316.64459	117.71189	

For (*R*)-**S3**

Area Percent Report

_			 	_			-		 	_	 	_	-	-	_	_							_	-	-	 	 	_	-			_	-	_		 _		 		_			 _	_			-	-
_	_	_	 	_	_	_	-	_	 _	_	 	_	_	_	_	_	_	_	_	_	_	_	_	-	-	 _	 	_	-	_	_	_	-	_	_	 _	_	 	_	-	-	_	 _	_	_	_		

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.522	MM	0.7056	6231.22852	147.17540	93.7418
2	23.522	VV	0.6180	415.99628	8.00828	6.2582
Total	ls :			6647.22479	155.18368	

Racemic S3 was prepared by mixing equal amounts of chiral (S)- and (R)-S3

Area Percent Report

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.884	VV	0.5408	3279.98193	83.04240	50.8530
2	23.854	BB	0.6384	3169.95142	60.19385	49.1470

Totals :

6449.93335 143.23626

¹ (a) For the mono-bromination procedure see: Chong, J. M.; Heuft, M. A.; Rabbat, P. *J. Org. Chem.***2000**, *65*, 5837-5838. (b) For product characterization see: Thomson, A.; O'Connor, S.; Knuckley, B.; Causey, C. P. *Bioorg. Med. Chem.***2014**, *22*, 4602-4608.

² For product characterization see: Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, M. *Angew. Chem. Int. Ed.***2018**, *57*, 11683-11687.

³ Chen, Y.; Lu, Y.; Zou, Q.; Chen, H.; Ma, D. Org. Proc. Res. Dev. 2013, 17, 1209-1213.

⁴ (a) For the hydrogenolysis step see: Henmi, Y.; Makino, K.; Yoshitomi, Y.; Hara, O.; Hamada, Y. *Tetrahedron: Asymmetry*, **2004**, *15*, 3477-3481. (b) For the selective protection step see: Adams, C. E.; Aguilar, D.; Hertel, S.; Knight, W. H.; Paterson, J. *Synth. Commun.***1988**, *18*, 2225-2231.

⁵ Makino, K.; Henmi, Y.; Terasawa, M.; Hara, O.; Hamada, Y. *Tetrahedron Lett.***2005**, *46*, 555-558.

⁶ Shibahara, S.; Matsubara, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett. **2011**, *13*, 4700-4703.