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Abstract: Todays, nano-pharmaceutics is emerging as an important field of science to develop
and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the
prevention and treatment of various chronic diseases such as cancers, a number of them have displayed
issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we
focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities
such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor
solubility and bioavailability that may compromise its clinical application to a great extent. Therefore,
the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these
major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different
types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due
to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic
applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver
curcumin effectively to the different target sites will be discussed.
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1. Introduction

In ancient cultures, the plants played a crucial role in providing food, spices, and medication
to the human population [1-4]. A number of nutraceuticals have displayed significant health
benefits, in modern era among which curcumin has been extensively studied for its pleiotropic
therapeutic actions [5]. The rhizome turmeric derived from Curcuma longa Linn consists of various
curcuminoids, including curcumin, demethoxycurcumin and bisdemethoxycurcumin [6,7]. Among
these curcuminoids, curcumin is the most abundant polyphenolic compound in turmeric, which is
widely used as a spice and flavoring agent in the food [8]. It was discovered about two centuries
ago and has a slightly bitter taste, peppery flavor, and smell like mustard with yellow color [8].
Pharmacologically, curcumin is safe and can mitigate tumor initiation as well as metastasis in breast,
colon, pancreatic, oral and several other cancers [9-12]. As mentioned earlier, curcumin has shown
remarkable anticancer activities by affecting diverse molecular targets. It can lead to an increased
expression of Bax and p53 (pro-apoptotic proteins), suppression of vascular endothelial growth
factor (VEGF) and hypoxia-inducible factor 1-alpha [HIF-1«] (angiogenesis factors), reduction of
the pro-inflammatory responses, induction of autophagy and improvement of drug efflux in drug
resistance cancer cells [13-17]. It also appears to be a promising agent for the treatment of brain
disorders, cholesterol, and endothelial dysfunctions and can serve as a potent anti-inflammatory
and anti-viral agent as well [18]. Furthermore, there is a report on the reduction of opioid tolerance
by curcumin through the inhibition of the activity of Ca2+/calmodulin-dependent protein kinase
II «. This kinase has been found to be critical for the opioid tolerance [19]. Notably, curcumin at
an optimized dose has low toxicity and is inexpensive, which makes it an ideal herbal for clinical
applications [20]. Notwithstanding, the poor bioavailability of curcumin may limit its application
in clinical administrations [21]. However, the low concentrations of curcumin are sufficient for its
biological activity and they may apply as a supplement in multiple targets therapy in combination
with other medications to improve their therapy efficacy [22]. To date, several curcumin carriers
have been synthesized as a drug delivery system using viruses, liposomes, magnetic nanoparticles
(NPs), ultrasound microbubbles, etc. [23,24]. It is important to mention that the size of nanocarriers
may also affect the therapeutics effect of their cargo [25]; for example, Tavakol et al. showed that
the size of a carrier changes the therapeutic effect and biocompatibility of curcumin [26]. Moreover,
the chemical and physical nature of carriers may induce side effects, including organ toxicity and/or
immune responses [27,28]. Moreover, carriers may exhibit non-uniform particle size distribution,
particle agglomeration, non-specific uptake, and rapid clearance from the blood [28-30]. Liposomes
are one of the most popular carriers used in drug delivery [31-33]; however, in some cases, they suffer
from fast elimination from the blood circulation, physical and chemical instability, aggregation, fusion,
degradation, hydrolysis and phospholipid oxidation [29,34].

Recently, different types of biopolymers have been introduced with the capability of being
used as carriers for delivering curcumin among them are chitosan, starch, zein, alginate,
silk, etc. The distinguishing features of these nano-systems like biodegradability, biocompatibility,
eco-friendliness, and a wide range of commercial applications have made them as an ideal candidates
for the drug delivery applications [35]. These types of polymers can incorporate drugs through
two main methods; desolvation process (for proteins) and nanoprecipitation (for polysaccharides)
in different forms of the hydrogels, single biopolymers, and complex biopolymers [36].

The other types of nanocarriers are biological carriers like exosomes that are secreted by most
cells of the body and provide a favorable drug delivery efficacy [30]. Exosome diameter is in the
range of 30-120 nm, and they can be derived from the extracellular fluids such as blood, urine,
amniotic fluid, saliva, and cerebrospinal fluid. Exosomes can carry many molecules like RNA,
proteins, and lipids [37]. Interestingly, encapsulation of curcumin into the exosome can improve
curcumin solubility, stability, and it’s in vitro and in vivo bioavailability [38]. As mentioned earlier,
the therapeutic efficacy of curcumin generally requires low to moderate concentrations, which are
attainable by encapsulation of curcumin into exosomes. Curcumin-encapsulated exosomes provide
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high plasma concentration along with low toxicity and immune response induction [18]. In addition to
their anti-aging and antioxidant properties, they can be effective against venom activities, protozoal
and microbial contamination, inflammatory responses, angiogenesis procedure, and tumor suppression
through the presence of exosomes [39]. The present review is a short description of curcumin, a widely
used polyphenol exhibiting anti-cancer and anti-inflammatory activities and different biopolymeric as
well as biological nanocarriers that can be used to facilitate substantial improvement in its bioavailability
for therapeutic applications.

2. Application of Curcumin for Cancer Therapy

Cancer is regarded as a major global public health problem [40-42]. The rate of cancer mortality
is increasing worldwide from 2012 to 2015. In 2012, cancer caused 8.2 million deaths that rose to
8.8 million deaths in 2015. Notably, it is predicted that global cancer causes will be over 20 million
new cases by 2025 [43]. There are different types of therapeutic options for cancer therapy including
radiotherapy, immunotherapy, surgery, chemotherapy, etc., among them, chemotherapy is known
as the most abundant method used for global cancer treatment [44,45]. Interestingly, SarinaMedTrip
a famous international health tourism company utilizes the latest technologies in the world to treat
cancer patients [46]. However, the chemical drugs used for chemotherapy exhibit several side effects
such as nausea, vomiting, hair loss, leukopenia, diarrhea, hepatotoxicity, nephrotoxicity, etc.

Recently, natural agents have received lots of attention due to their diverse pharmacological
activities [47-52]. They are derived from plants with the ability of cancer prevention or treatment
possibly with reduced side effects [53—61]. Curcumin can exhibit a wide range of pharmacological
potential [62-64] including anti-inflammatory, anti-oxidant, anti-proliferative, chemo-sensitizing,
cell cycle arrest, and can display apoptotic potential against various cancer cells, such as colorectal,
breast, pancreatic, and colon cancers [65] that makes it of great interest in cancer prevention and
therapy [66,67]. Notably, IC50 of curcumin in healthy cells is significantly higher than cancer cells [68].
In other words, it is well tolerated and used as a spice, coloring agent, and supplement up to a dose of
12 gram/day [69].

Notwithstanding, it is not entirely understood how curcumin is responsible for cell protection [68].
For example, the anti-inflammatory potential of curcumin plays a critical role in cancer therapy [70].
Moreover, curcumin inhibits the activity of transcription factor NF-«B and prevents its transmission to
the nucleus. Therefore, it can lead to the down-regulation of various inflammatory and oncogenic
genes [6]. Besides its anti-inflammatory potential, there are some reports on the dual role of curcumin
as a reactive oxygen radical scavenger and producer; however, it appears that curcumin through the
reactive oxygen radical production can also induce apoptosis in cancer cells [68]. It is noteworthy, that
curcumin can also affect multiple cell signaling pathways to negatively affect cancer cells, for example,
it inhibits VEGF and suppresses VEGF receptor-2, fibroblast growth factor 2, matrix metalloproteinases,
2 and 9 etc [66].

Curcumin has shown its positive effects both in vivo and in vitro models [71,72]. It has
anti-proliferative potential in a concentration-dependent manner [70] and is useful in combination with
anticancer agents; for example, its cytotoxicity in prostate cancer cells reduces the survival of these
cells [69]. It also affects cancer stem cells and shows anti-metastatic activity [43] and can be well tolerated
at doses near 8000 mg/day [73]. In one report, the effect of orally consumed curcumin on the apoptosis
of colon tumors was investigated. Their results indicated that curcumin, as a nutritional supplement
can enhance apoptosis and inhibit tumor progression [74]. Based on another study, it was concluded
that curcumin can also mitigate the progression of hepatoma cells and metastases, which are driven by
EMT-induced through TGF-1. The authors suggested that curcumin suppresses the phosphorylation
of Smad?2 through the TGF-31 over-expression that resulted in Snail down-regulation [70].
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3. Challenges Associated with Curcumin Delivery

Although a large number of nutraceuticals have shown substantial anti-cancer potential by
inhibiting various oncogenic molecular pathways in cancer cells and preclinical studies, they have
failed in clinical trials owning to their low bioavailability [32,33,75,76]. However, curcumin has shown
significant benefits in clinical settings and it has been found to be non-toxic and fairly well-tolerated,
however its solubility, and bioavailability may limit its usage in patients [7]. In other words, clinical
use of curcumin in the patients may be limited due to its low bioavailability, short half-life in
plasma, low solubility in water, and low stability [8,41,75,77] and it may necessitate high dose intake
to achieve optimal therapeutic effects. Interestingly, several of the important anti-carcinogenesis
effects of curcumin may be related to its significant ability to modulate transcription factor NF-xB
activation, however, it suffers from poor bioavailability and solubility. To overcome this obstacle,
Elias et al. prepared curcumin in guar gum tablet and enhanced curcumin solubility and bioavailability
effectively [78].

The second problem associated with its application is its rapid metabolism and enterohepatic
circulation that necessitates the higher doses of curcumin to induce pronounced efficacy [41,69].
Moreover, fast clearance from the bloodstream through the phagocytosis and reticuloendothelial
system is another major issue [75]. There are many investigations related to the enhancement of
solubility and stability of curcumin, for example, encapsulation of curcumin into lipid based carriers,
conjugation with nanoparticles, etc [26,41]. In the rest of the review, we have discussed these diverse
methods and highlighted the various procedures to overcome these drawbacks and increase curcumin
efficacy in the patients.

4. Biopolymer Nanoparticles (NPs)

Biopolymeric particles are colloidal structures that are assembled from one and multiple types of
biopolymer molecules and can be utilized as carriers for bioactive compounds [79-82]. Biopolymeric
particles can be used to improve the stability of bioactive molecules from the bio-degradation, enhance
their absorption, and deliver them to the target sites [83]. Notwithstanding, they can act as a controlled
release system for the sustained and controlled release of their ingredients [84]. Biopolymeric particles
are classified based on the method of preparation (inclusion complex), types of nano dimensions
(nanofiber, nanosphere, etc.) [85-87] and chemical components (chitosan, gelatin, etc.) [88-90]. Asshown
in Table 1, there are several investigations address the methods of nanocurcumin preparation and its
biological efficacy (in vitro and in vivo).
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Table 1. A list of different curcumin nanocarriers with their characteristics and applications under in vitro and in vivo settings.

50f28

Polymer Size Zeta Potential LC or EE Cell Line/Animal Advantages Refs.
Model
BSA@CUR NPs 92.59 + 16.75 nm -9.19 mV 18.3% MCEF-7 cells Increased therapeutic efficacy [77]
Curcumin in Better stability
BSA-dextran NP 115 nm 2.8% Caco-2 cells Improve the cellular ant1'0x1dant activity of [91]
curcumin
Curcumin -12.36 £ 0.73 to was dependent on the Improved cellular uptake
cross-linked HSA NPs 125 nm -10.88 £ 0.6 mV particle size A549 cells Increased the cytotoxicity 921
Curcumm—loaded 66 nm +171mV 734 0.1% GIT model May be useful for application in functional 93]
zein NPs foods or beverages
Curcumin-zein/rhamnolipid o In vitro simulated C
77.29 nm =31 mV To +3 mV EE: 98.05% - . Protect hydrophobic bioactive compounds [94]
complex gastrointestinal tract
Simulated o -
Pectin-coated CZ NPs 250 nm to 600 nm —45 to -50 mV 5% gastrointestinal E.nhanced ant10x1da.nt activity [95]
divesti ", in an aqueous environment
igestive condition
Curcumin-loaded Improving the water solubility
zein NPs with (SC) 190 nm 17 mV to 19.8 mV EE: 36.10% to 76.06% Improving photochemical stability improving [96]
and (SA) antioxidant activity
Curcumin-loaded silk o5 40170 nm —45mV EE: 50% Kelly Cell. Higher efficacy in cytotoxicit [7]
fibroin NPs o : 50% elly Cells gher efficacy in cytotoxicity
. 1.50 +0.11t0 11.40 + In vitro model of Exhibited a synergistic antioxidant effect
Curcumin plus SFNs 71+10nm 0.76 osteoarthritis Improve cyto- and hemo-compatibility 571
CUR-loaded silk NPs 229 nm to 2286 nm —17.8 nm to —18.9 mV 22 to 41% Rats Longer plasma circulation time [98]
CUR Loaded . ) o A great potential application for hydrophobic
RBA—CS NPs 778 nm Negative EE: 93.56% Caco-2 cells active agent delivery [99]
Simulate e - .
Zein-HA NPs 186.4 nm -35.2 to —28.7 mV 3.66% gastrointestinal Better stability of anti-light degradation, [100]
L and control release
digestion
SSPS NPs 200 nm to 300 nm EE: 90% HCT116 and MCF-7 Improved activity [101]
cells Improvement in the anti-proliferative activity
Cur-ACRU/CS NPs 200 nm to 450 nm +15mV 5.4% Caco-2 cells Improved permeability efficiency [102]

of free curcumin
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Table 1. Cont.
Polymer Size Zeta Potential LC or EE Cell Line/Animal Advantages Refs.
Model
Superior drug release
Cur-Chitosan NPs 167 nm to 251 nm +18.1to +20.2 mV EE: 80% HaCaT cells Enhanced transdermal permeation of curcumin [103]
A superior percentage of cell viability
B o Improvement of physicochemical stabilities, )
CDG-CANPs 215 nm 241 my 27% Caco-2 cells digestibility, bioaccessibility and cellular uptake [104]
CUR-AIgNP 100-600 nm -36.0+ 0.4 EE: 68.3% HeLa and H9c2 Kills the cancer cell lines at lower concentrations [105]
Cur-CS/Alg NPs 199 nm to 1120 nm -30.8 mV to —10.8 mV 0% to 27.4% HaCaT cells Improved the cellular uptake of curcumin [106]
Starch NPs <250 nm =30 mV EE: 80% Slmulateq gastric and Higher encapsulation efficiency [107]
intestinal fluids
Anti-cancer potential
OSA starch loa(.ied 10 nm o 50 nm HeLa cells Significant enhancement in c?l.lular uptake [108]
nano curcumin Increase bioavailability
More controlled release
. Improved the regeneration of hair follicles
Curcumin-load film ujidi 23 iglnllnn;llﬁiith Rat And sebaceous glands of the skin [109]
’ Attenuated the bacterial growth
Cur- NLCs 500 nm EE~588 4 3.5 Mouse Reducing the pro—l.nﬂammgtory cytokine levels [110]
in the skin

Inhibit microbial growth
ANC NPs <150 nm -31.2 £ 3.66 mV EE > 90% L929 and MCF-7 cells Prevent preferential killing of cancer cells [111]

compared to normal cells

Better protective effect on the breakdown of
curcumin in Pickering emulsions

WPI-Lac/EGCG NPs 110 nm 27 mV More even droplet distribution [112]

Greater thermal stability

Higher curcumin percentage retention

CUR-Loaded 147 + 52 nm -12.8+06 7.9 +0.2%, HeLa cells Improved solubility [113]

Gel-mPEG Nanogels

Enhanced therapeutic efficacy
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Table 1. Cont.
Polymer Size Zeta Potential LC or EE Cell Ll\i:;‘/;:ln imal Advantages Refs.
ot s A e, Penmesseddite
102;;}2;%‘%, 59.25 nm to 431.3 nm >430 mV 11.2 mg/g Prgtfes;;:;Sﬁ:t"e’g‘iirr‘zjgﬁ“y [115]
Curcumin-PECs 264.0 + 3.1 nm EE: 53% HCT116 cells ézﬁicif:dcce}l}tg{g}(eicagfisctt [116]
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4.1. Protein-Based Biopolymers

4.1.1. Albumin

Albumin is one of the main proteins of plasma with high stability, biodegradability,
non-immunogenicity, and biocompatibility. Moreover, it has lots of binding sites in its matrix
that make it an ideal platform for drug loading [77]. Human serum albumin (HSA) is one of the
smallest proteins in blood plasma, which can transport therapeutics in the bloodstream. Furthermore,
albumin-binding proteins are over-expressed on the surface of endothelial cells in tumor vessels,
and therefore, HSA can be accumulated in the tumor sites through transcytosis across continuous
endothelium [117,118]. Since the low water solubility of curcumin and its poor bioavailability may
result in the decrease of therapeutic efficacy, encapsulation of curcumin into a water-soluble albumin
carrier can be useful to overcome these obstacles [119]. For instance, in a recent study, curcumin was
encapsulated into the HSA particles to achieve a redox-responsive release of curcumin. According
to the results, the release of curcumin was considerably increased in the presence of glutathione in
the physiological pH (7.4) of the body or acidic pH (5.5) of the tumor environment during the 48 h
(57% and 70% of the loaded drugs, respectively). Moreover, HSA particles improve cellular uptake of
curcumin compared to free curcumin that leads to increase anti-cancer efficacy [77]. In another study,
curcumin was encapsulated into the bovine serum albumin (BSA)-conjugated dextran NP resulting
in increasing the size from <200 nm to 512 nm. Notably, NPs showed high stability against pH and
temperature changes with high cellular antioxidant activity [91]. Moreover, Saleh et al. deciphered
the potential of human epidermal growth factor receptor 2 (HER2) aptamer-decorated human serum
albumin NPs loaded with curcumin (281 nm) on HER2 overexpressing breast cancer cells. They showed
that curcumin conjugated Apt-HSA/CCM NPs significantly augmented aqueous solubility and cellular
uptake. Cytotoxicity was also elevated crucially on the SK-BR3 cell line compared with unconjugated
counterparts [120]. The optimal size of NPs is fundamental to achieving the maximum cellular
uptake. A more recent examination with curcumin cross-linked HSA NPs in a size range of 25-250 nm
conducted by Das et al. showed that 125 nm particles found to have noticeable cellular uptake and
cytotoxicity on A549 cell line compared to the free drug [92].

4.1.2. Zein-Based NP

Zein is an alcohol-soluble protein that is the major protein in the corn kernels and is made up of a
high level of non-polar amino acid. This feature along with other properties like high biocompatibility
and stability makes it an ideal polymeric carrier for encapsulation of hydrophobic molecules like
curcumin [121,122]. The zein-hyaluronan NPs loaded with curcumin were prepared by the anti-solvent
co-precipitation method. Results indicated in curcumin loaded into these carriers showed high stability
against light and resulting in a controlled release system in simulated gastrointestinal digestion [100].
Therefore, zein NPs can be used to encapsulate curcumin and enhance curcumin efficiency [123,124].

Zein can also be used in combination with other types of reagents, for example, electrostatic
complexes consisting of a protein (gelatin) and a polysaccharide (alginate) were prepared to coat
and stabilize zein NPs loaded with curcumin [93]. Moreover, hyaluronan was also used as a coating
agent to achieve high encapsulation efficiency, loading capacity, greater stability, and controlled
release system during gastrointestinal digestion [100]. Moreover, the potential of a zein-caseinate
composite as a carrier has also been investigated. The results showed high re-dispersibility in water,
high encapsulation efficiency, bioavailability and anti-oxidant property of curcumin [94]. Furthermore,
to improve the stability of these NPs, pectin was used as a carbohydrate-based coating. Pectin coating
not only increased the loading capacity of NPs to encapsulate curcumin but also promoted a sustained
release of curcumin under gastrointestinal conditions [95].

Chen et al. synthesized a combination therapy system of a layer-by-layer NPs consisting of
curcumin entrapped into Zein NPs. The NPs were covered by a quercetagetin shed and hyaluronic
acid (HA). The size of particles was 231 nm and showed convincing physical stability and slow rate
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release as well as a decreased light and thermal degradation [122]. In another study, curcumin was
loaded into Zein NPs and then they were double coated with sodium caseinate and sodium alginate
to stabilize the NPs structure (~70 nm). Aqueous solubility, drug-controlled release, photochemical
stability, and antioxidant scavenging activities were promoted significantly as compared to the unbound
curcumin. Much of recent literature on loading curcumin into nanoscale carriers are perpetrating
intended for the goal of improved oral drug delivery to the gastrointestinal tract [96]. Zein also
was used in the form of nanogel which was cross-linked with HA, as targeting agent, for curcumin
delivery, that showed improvement in the in vitro and in vivo pharmaceutical activity of the drug [125].
In another study, zein and (-carrageenan were used as core-shell NPs to prepare a photo and thermal
stable carrier for co-delivery of curcumin and piperine [126].

4.1.3. Silk-Based NPs

Silk fibroin is a type of biopolymers with different secondary structures (x-helix, 3-sheets, coil,
etc), which are used in different constructions like film, hydrogel, matrix, fiber, NPs, etc. [127]. It
seems that due to remarkable properties such as high stability, negatively charged, and low toxicity,
silk NPs attract much attention to be used as a carrier for curcumin. Notably, the curcumin-loaded
silk fibroin NPs showed considerable cytotoxicity against neuroblastoma cells [7]. In another study,
curcumin was loaded into magnetic silk fibroin core-shell NPs as an external magnet for cancer
targeting. The composite showed high cytotoxicity and cellular uptake against triple negative
breast cancer MDA-MB-231 cells [128]. Crivelli et al. revealed that curcumin encapsulated into silk
fibroin NPs (71 + 10 nm) enhances in vitro antioxidant, anti-inflammatory activities, and cell viability.
The remarkable anti-inflammatory properties of curcumin have been established as a promising
strategy for osteoarthritis treatment [97].

In a recent experiment, oral administration of curcumin- loaded silk particles with a wide size
range of 229-2286 nm carried out for evaluating the correlation between particle size and bioavailability
in rat models. Larger silk particles (with a size of about 800 nm) exhibited longer plasma half-life
and slower release rate, while smaller silk particles (with a size of about 200 nm) indicated higher
bioavailability and Cmax. Bioavailability was 5-fold and 17-fold higher than free drug in 800 and
200 nm particles, respectively [98]. In another study, a silk nanofiber membrane is produced to co-load
curcumin and 5-fluorouracil. The prepared membrane had about 100-200 nm size that released its
cargo during a steady and consisted method and thus, it can use as an ideal anti-cancer delivery
system [129].

4.1.4. Other Protein-Based NPs

Different proteins with various sources have been used as a carrier for curcumin [130-132].
For instance, in 2019, Radix Pseudostellariae protein (RPP)-based NPs were fabricated to loaded with
curcumin. The curcumin-loaded nanocomplexes with a size of 100 nm showed considerable thermal
stability and high light stability [133]. In another study, proso millet protein was utilized as a carrier to
increase curcumin therapeutic efficacy. The millet-curcumin has a spherical shape with 300 + 50 nm
size and an extensive range of drug loading, which was attributed to the millet extraction method [134].

Rice bran waste is rich in proteins and other essential compounds such as lipids, vitamins, and trace
minerals. In a recent study, the rice bran albumin (RBA) was derived from the rice bran waste to be used
as a carrier for curcumin. RBA was blended with chitosan and formed NPs through the self-assembly
method. The results showed RBA-chitosan NPs improves the solubility and high entrapment efficiency
of curcumin (about 93.56%). The RBA—chitosan NPs showed low bio-degradability in gastric conditions
along with satisfied biodegradability and high cytotoxicity against cancerous cells compared to free
curcumin that confirmed its usefulness as a drug delivery carrier [99]. Recently, a dual triggerable
release nanosystem was prepared to encapsulate curcumin. In this study, novel hydrogel NPs based on
fibrous structural proteins (keratin) and thermo-responsive copolymers (Pluronic) have been fabricated
to achieve redox and temperature-responsive release of curcumin, and the results were promising.
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In fact, by changing the temperature from 25 °C to 37 °C, the size of the drug-loaded nanocarrier was
also reduced from 165 nm to 66 nm that revealed the drug release property of the nano-system due
to its thermo-responsive property [135]. Moreover, Li et al. loaded curcumin into solid and hollow
Kafirin (a protein found in sorghum grain) and then coated with layer by layer deposition of Dextran
sulfate/Chitosan. Particle sizes were around ~60 and ~125 nm for hollow and solid NPs, respectively.
Despite their smaller size, hollow NPs presented greater encapsulation efficiency. The release rate in
both hollow and solid structures was higher than free curcumin, while hollow NPs manifested lower
release compared to solid ones [136].

4.2. Polysaccharide NPs

Polysaccharides are composed of repeated monosaccharide units joined bound by glycosidic
bonds. Due to their advantages, such as high stability, biocompatibility, and biodegradability, they can
be used for different applications in biomedical field [95].

4.2.1. Chitosan

One of the most commonly used polysaccharides for the preparation of nanocarriers is
chitosan [137]. Chitosan is a linear cationic heteropolymer derived by the partial deacetylation
of natural chitin. It was introduced by Charles Rouget in 1859 for the first time and can promote
cell membrane permeability, and thus, enhance absorption across intestinal epithelia [138,139]. It is
a positively charged polymer with p-glucosamine and N-acetyl-p-glucosamine units and excellent
properties like biocompatibility, biodegradability, low immunogenicity, and antibacterial activity that
make it an ideal carrier for drug delivery purposes [140,141].

It is widely used as a carrier for delivering curcumin, alone or in combination with different types
of components, for example: the polyelectrolyte complexation of positively charged chitosan and
negatively charged acylated cruciferin, was used for the curcumin entrapment. In vitro control-release
studies showed the controlled release of curcumin using simulated gastro-intestinal fluids; however,
the curcumin NPs showed non-toxicity against Caco-2 cells [102]. Curcumin- loaded chitosan NPs
(167-251 nm) exhibited enhanced entrapment efficiency, enhanced transdermal permeation, improved
drug release, and high cell viability in transdermal drug delivery [103].

In a recent study, curcumin loaded chitosan NPs with a size of about 200 nm were prepared
to be used as a chemotherapeutic agent for lung cancer. The results of this research confirmed a
significant improvement in the cytotoxicity of the drug-loaded nanocarrier and also introduced this
type of nanosystem as an oral supplement against environmental carcinogenesis [142]. In another
study, curcumin was loaded into a pH-responsive nanocapsule that is composed of mesoporous silica
and chitosan for using against the U87MG glioblastoma cancer cell line. The nanocarriers had about
88.1 + 4.76% encapsulation efficiency and curcumin release was sustained-in acidic pH (~42.72% during
96 h). Moreover, this form of curcumin encapsulation could reduce the IC50 of it from 15.2 pg/mL for
the free drug to 5.21 pug/mL for the loaded one [143]. Razi et al. prepared a formulation of genipin
cross-linked caseinate chitosan NPs for curcumin delivery, that had about 250 nm size and could
increase the stability and anti-cancer property of the curcumin [144].

4.2.2. Alginate

Alginate is a negatively charged biodegradable polysaccharide, which is composed of 1-4 linked
a-L-guluronic (G) and 3-p-mannuronic (M) acid residues and can exclude from gulfweed, bacteria or
seaweed of brown algae [145]. It is a linear polysaccharide that has significant advantages like high
mucoadhesiveness, aqueous solubility, biodegradability, pH sensitivity, and biocompatibility [146].
Sorasitthiyanukarn et al. recently reported that chitosan/alginate NPs loaded with curcumin diethyl
diglutarate (215 nm) promote sustain release, digestibility, bioaccessibility, physicochemical stability,
and cellular uptake of curcumin [104]. In a recent study, polyethylene glycol (PEG) was grafted
to polyethyleneimine (PEI) to form a PEG-b-PEI (mPPS). Then, it was coupled with folic acid as a
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ligand to target tumor cells that display an increased expression of folate receptors. Furthermore,
the FA-PEG-b-PEI carrier was assembled with curcumin loaded alginate NPs. Gomez et al. developed a
novel and efficient photodynamic therapy system for psoriasis therapy. In this study, curcumin-loaded
chitosan/alginate NPs were found to repress the hyperproliferation of TNF-o induced HaCaT cells by
using blue LED light [106]. Xu et al. prepared a nano-emulsion based alginate hydrogel beads for
curcumin encapsulation. The nanocarrier had 24 nm size with 99% drug entrapment efficiency and
pH-responsive drug released pattern [147].

4.2.3. Starch

One other type of biopolymers is starch that is found abundantly in different parts of plants
and is structured by interactions between glucose monomers in two forms, branched amylopectin
(70%—-80%) and linear amylose (20%-30%). This is a reactive biopolymer that can be modified with
various methods and used for different applications, especially it can be applied as a drug delivery
nanosystem for curcumin [148]. In this regard, there is a study conducted by Acevedo-Guevara et al.,
in which the acetylated starch extracted from green bananas used as a carrier for curcumin with an
average size of 250 nm. Results showed that acetylated nanocarriers had higher encapsulation efficacy
and controlled release potential than natural forms [107]. Furthermore, octenyl succinylated cassava
starch NPs loaded curcumin (10-50 nm) showed exclusive water solubility, bioavailability, control
release, cellular uptake, and anti-cancer potential [108].

The micellar structure of curcumin starch was prepared through the self-assembly of curcumin
conjugated with hydrophilic hydroxyethyl starch by using an acid-labile ester linker. This new type
of nanocarrier had a uniform size less than 100 nm with a dramatic enhancement in the solubility
of curcumin, along with increasing its storage stability, and also pH-responsive release profile [149].
Starch was also used in the form of composite with other materials for cancer prevention and treatment
with curcumin [150,151]. For example, Athira et al. prepared a curcumin loaded starch-poly(vinyl
alcohol) nanocomposite with the size of about 50-200 nm that improved its anti-cancer activities [152].
In a new study, a smart nanogel based on the covalent interactions between carboxymethyl starch
and chitosan hydrochloride was prepared, and curcumin was loaded in it with high entrapment
efficiency (89%-95%). Additionally, it showed a sustained released profile that was responsive to pH
changes [153].

4.2.4. Cellulose

Cellulose is a type of 3-glucan polysaccharide consist of glucose monomers that are attached
through (1,4)-p- linkage to each other. This is a type of biopolymer that is widely found in the cell wall
structure of plants, bacteria, algae, and fungi [154]. This is a natural polymer with characteristics like
low-cost, biocompatibility, low density, hydrophilicity, and suitable modification that make it an ideal
candidate for drug delivery application [155].

The application of this biopolymer for delivery of curcumin as an anti-cancer drug is discussed
in different studies; for example, cellulose nanocrystal film loaded with curcumin was synthesized
as an antimicrobial nanocarrier in the diabetic rat model. In vitro experiments showed a prolonged
release of drugs for 36 h accompanied by the lack of burst effects. However, in vivo investigations
demonstrated a significant decline in wound size and inhibition of bacterial growth. Sebaceous glands
and hair follicles were also repaired. This new wound dressing could be an alternative for heavy
metal substitutes such as silver ions [109]. In an experiment by Kanagarajan et al., pH-sensitive NPs
were fabricated, in which MnFe,O, curcumin loaded NPs coated with carboxymethyl cellulose by
glutaraldehyde crosslinking (27 nm). These superparamagnetic biocompatible NPs can facilitate the
release of cargo at endosomal acidic conditions (pH 5.5) [156]. Kang et al. hybridized curcumin
loaded nanostructured lipid carriers (~500 nm) with cellulose nanofiber films for the treatment of
imiquimod-induced psoriatic in mice model. Significant deposition of curcumin to the epidermis
in addition to skin hydrating booster effect of cellulose nanofiber film resulted in relief of psoriatic
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symptoms and reduction of pro-inflammatory cytokine levels [110]. Moreover, Ngwabebhoh et al.
synthesized curcumin encapsulated pickering NPs with an average size of 150 nm to improve curcumin
bioavailability. The results suggested a high encapsulation efficiency and sustained release of curcumin,
thereby indicating an enhanced antimicrobial and anticancer potential of drug [111].

5. Exosomes

Exosomes are bilayer membrane nano-sized vesicles derived from endosomal compartments
with an average diameter of 30 to 100 nm [157]. Its biogenesis is a tightly controlled method of
inward budding from the limiting membrane of multivesicular bodies (MVBs) [158]. The internal
contents are released into the extracellular space in the form of “exosomes” when MVBs are fused to
the plasma membrane. Exosomes can be found in body fluids such as blood, plasma, urine, saliva,
amniotic fluid, synovial fluid, malignant ascites, and pleural effusions [159]. However, they can be
produced by most cells, including B cells, T cells, dendritic cells, macrophages, neurons, glial cells,
the most tumor cells, and stem cells. It seems that most cell types from normal cells to unhealthy
cells release exosomes. Notably, exosomes based on their phenotypes and body fluids secrete diverse
bioactive molecules such as proteins, lipids, and nucleic acid. In other words, exosomes participate
in the transferring of signal transduction and intercellular communication from the main cell to the
receptor cell in the form of proteins, mRNAs, ncRNAs, and miRNAs. Moreover, exosome contents are
protected from the destruction of extracellular factors that it guarantees their half-life and biological
activity enhancement [160]. Exosomes are made up of different types of lipids, such as cholesterol,
sphingolipids, phosphoglycerides, ceramides, and saturated fatty acid chains. However, they have
proteins such as transport proteins, heat shock proteins, proteins associated with multi-vesicular body
biogenesis, and tetraspanin. They also have nucleic acids in the form of miRNA, mRNA, and other
non-coding RNAs [124].

Thus, exosomes play an essential role in intercellular communication without direct cell-to-cell
contact [161]. Although exosomes are not NPs derived from the nanotechnology due to its non-mankind
nature, they may act as a nanocarrier owing to their particle diameter. Therefore, exosome’s particle
size resulting in deep penetration into the tissues [162] and overcoming barriers such as the blood-brain
barrier and the deformable cytoskeleton. Notably, they have slightly negative zeta potential that
guarantees their long circulation [163]. In addition, some exosomes are capable of escaping from the
immune system and have shown low immunogenicity and high stability in the blood, which prolongs
the circulation of the drug within the body [164]. Furthermore, exosomes can be employed to load a
variety of small bioactive molecules as a nanocarrier such as paclitaxel, doxorubicin, and curcumin, as
well as peptide- or protein-based therapeutics. In addition, the loading of exosomes with a genetic
material such as siRNA has also been reported [165]. To sum things up, due to their naturally
biocompatible characteristics, exosomes are a promising candidate for clinical applications.

5.1. Advantage and Disadvantage of Exosomes

NPs seems to be promising for drug delivery of biomedical and pharmaceutical agents [77].
For example, liposomes control the release of drugs with an optimal synergistic molecular ratio and
increase the concentration of the drug at the tumor site through the enhanced permeability and
retention (EPR) effect. Although. liposomes reduce toxicity and side effects in the normal cells [41],
the use of liposomes is limited due to some disadvantages such as poor stability, short half-life,
rapid removal by the reticuloendothelial system, intracellular interactions or absorption, lipid particle
growth, tendency to gelation and their intrinsic low incorporation rate due to the structure of the
solid lipid [29,166]. Unlike conventional NPs such as liposomes and polymeric NPs, exosomes are
naturally stable [124,167,168] and potentially diminish endosomal pathways and lysosomal damage
while carrying their cargo directly into the cytoplasm. To have a comparison to cell therapy, exosomes
are easier stored and reduces risks [30]. One of the remarkable benefits related to exosome is their
permeability to damaged tissues and tumor sites and the ability to cross the blood-brain barrier
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(BBB) [124,169]. Therefore, exosome is an effective carrier to overcome the problems associated with
drug delivery to the brain in clinical trials [170]. Besides, they are stable in the blood that allows
them to remain in the body for a long time under various conditions. It is worth mentioning that
exosomes have a by-layer shape with the hydrophilic feature in both surface and hydrophobic features
in interlayer space that makes them suitable for both lipophilic and hydrophilic drug delivery [30].

There have been investigation related to natural cells such as bacteria, viruses, and eukaryotic
cells [171]. Compared to liposomes and virus-based delivery systems, the immunogenicity of exosomes
is very low [30], which makes them a suitable system for in vivo applications due to their more
biocompatibility. Another benefit of exosomes is that therapeutic exosomes can be isolated from the
patients and used for delivery and personal injections of the drugs. Exosomes that are provided
from a suitable source are essential for conducting load loads to targeted tissues because the fat
and compounds present at the cell surface are exclusive to these exosomes, and it is important to
maintain this feature [169]. A critical problem in clinical studies is the lack of an optimal method for
obtaining pure exosomes. This is primarily due to the relatively low amounts of released exosomes
by mammalian cells. Therefore, a long-term source of exosomes with excellent characteristics and
effective separation method is needed to obtain a large number of pure exosomes [30].

Another challenge with exosomes as a nanocarrier is their drug loading capacity [172]. Therefore,
increasing the loading capacity of cargo and non-destructive targeted capabilities is crucial for
favorable drug delivery. Finding more optimized approaches to manipulate the structure and function
of exosomes that may promote their clinical applications is therefore vital [30].

5.2. Exosomes for Curcumin Delivery

To sum things up, to increase curcumin solubility as well as bioavailability and thereby enhancing
curcumin therapeutic efficacy, an optimized drug delivery system may be needed. For this purpose,
curcumin can be encapsulated into liposomes, cyclodextrin, polymeric NPs, microspheres, hydrogels,
and exosomes [38,170,173]. To achieve proper function and performance of the liposome-based delivery
system, various components must be appropriately selected and controlled [37]. It is noteworthy that
an exosome can carry multiple drugs to adjust the activity of various pathways [38].

The protective environment of curcumin provided by exosomes makes exosome appropriate
carrier for oral administration [174]. The use of exosomal curcumin may have benefits for curcumin
function, as well [38]. Encapsulated curcumin into exosomes is stable compared to the free curcumin
and can protect curcumin from the environment of the human digestive system and protect the intestinal
epithelium [174]. Curcumin can be encapsulated in two layers of lipid exosomes, which results in the
protection of curcumin from damage. Theoretically, circulating exosomes due to endogenous origins
and a particular superficial composition should be more stable than other synthetic polymer-based
NPs, such as liposomes [175]. It appears that the encapsulation of curcumin into exosomes significantly
increases the solubility, bioavailability, and stability of curcumin [38].

In recent years, exosome delivery as a promising approach for carrying therapeutics across the
BBB to the central nervous system (CNS) has been an increasing interest among researchers. Kalani et al.
demonstrated that curcumin-primed and curcumin-loaded exosomes (40-200 nm) had neuroprotective
effects due to their anti-lipidemic, anti-oxidative, and anti-inflammatory nature [176]. Furthermore,
curcumin-primed exosomes (117 + 10 nm) prepared for drug delivery into CNS in vitro and in vivo.
Effective BBB transport achieved via receptor-mediated transcytosis, in which active targeting of
ICAM-1 proteins was provided by the LFA-1 functionalization of exosomes. Results indicated that
curcumin-primed exosomes prevent neural death and improve Alzheimer’s disease symptoms owing
to an inhibition of Tau protein phosphorylation through the AKT/GSK-33 pathway [177]. Intranasal
administration of curcumin encapsulated into exosomes causes NMDARI expression accompanied
by the reduction of edema, infarct size, astrogliosis, and vascular inflammation as well as tight and
adherent-junctions recovery and NeuN positive neurons restoration after an ischemia-reperfusion
injury in the mouse model. Potent therapeutic effects of curcumin encapsulated into exosomes are in
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part related to the numerous secreted paracrine factors derived from mesenchymal stem cells along
with extraordinary curcumin anti-inflammation and neuroprotective potentials [170].

Bovine milk is a rich source of exosomes for carrying therapeutics like curcumin. Curcumin-loaded
into milk exosomes (30-100 nm) possess higher bioavailability, aqueous solubility, and stability as well
as easier crossing through the intestinal barrier in compare with free curcumin [174]. Interestingly, oral
delivery of curcumin via milk-derived exosomes (~93 nm) showed a strong inhibitory effect in mice
bearing cervical tumor xenograft [178]. However, curcumin-exosome NPs exhibit higher solubility
and antioxidant efficacy (~41 nm) in comparison with free curcumin by using fluorescence tracking
analysis [179].

6. Co-Polymers

In order to improve bioavailability and hydrophilicity of curcumin, colloidal drug delivery systems
are used to solubilize medicines. There has been interest in the use of polymeric nano-particulate
delivery systems composed of biocompatible, biodegradable, amphiphilic diblock copolymers for
the intravenous administration of hydrophobic compounds [180]. Polymer-based nano-carriers
demonstrate good potential as an anti-cancer therapeutics [181]. The effect may be due to their
favorable properties like small size, enormous biocompatibility and biodegradability, high stability,
prolonged circulation time in the bloodstream, improved drug loading capacity, as well as tendency
for easy chemical modifications [181,182].

Biochemical reactions occur in the micrometer or sub-micrometer-sized environments. The various
categories of molecules such as hydrophilic drugs or enzymes can be applied to design a highly
efficient alternations [183]. Depending on the diblock composition and addition to aqueous media,
these copolymers self-gathered to form structures in a nano-sized termed micelles [180]. Polymeric
micelles defined as core-shell nanoparticles that may be used as appropriate carriers of biologically
active compounds for different medical applications [182]. Poly (ethylene glycol) (PEG) and poly
(e-caprolactone) (PCL) can be useful in the construction of polymeric carriers. PEG that has been
approved by the United States Food and Drug Administration (FDA) is a hydrophilic, non-toxic
polymer, and is used for medical purposes. It exhibits low protein adsorption and cell adhesion
properties [184]. The novel chitosan-coated XGO-b-PCL nanoparticles are another example of a better
strategy to improve the therapeutic efficacy of hydrophobic drugs [185].

Block copolymer nano-carriers have been used for the delivery of curcumin [182] for example
cationic PDMAEMA-PCL-PDMAEMA micelles were developed and provide sustained release and
modified antioxidant activity of curcumin. Yoncheva and et al. studied the effect of these particles on
K562 and U266 cells and found that cytotoxic capacity of micellar curcumin is better than the effect
of free curcumin at lower concentrations [181]. In another study, curcumin was incorporated into
the core of PEO113-b-PnBA235-b-PAA14 micelles. The release profiles of curcumin from micelles
showed sustained release without burst effect [182]. Additionally, Tabatabaei et al. prepared curcumin
loaded PLGA-PEG NPs and showed that the anti-cancer efficacy of curcumin triblock copolymer NPs
(70-300 nm, encapsulation efficacy 84.5%) is significantly higher than curcumin in MCF-7 human breast
cells [186]. PLGA a polymer consisting of PGA and PLA is considered as a copolymer and used for drug
delivery due to its non-significant toxicity and modulation of hydrophilicity/hydrophobicity. Hu et al.
prepared a curcumin-PLGA NP and investigated the inhibition of opioid tolerance in mice treated
with morphine. Interestingly, administration of curcumin-PLGA NP resulted in 11-33 fold decrease
in morphine dose in mice in part through the inhibition of activity of Ca2+/calmodulin-dependent
protein kinase II « [19]. Furthermore, Shen et al. prepared three types of NP including curcumin-PLGA,
Curcumin- PEG-b-PLA and the combination of curcumin-PLGA-PEG-b-PLA to investigate attenuation
of morphine tolerance in mice. The particle size of all NPs was similar and around 150 nm. Results of
tail-flick in mice were stronger than with non-formulated curcumin [187,188]. These findings are very
important especially for the diseases associated with chronic pain.
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Moreover, encapsulation of curcumin into a polymer based and other abovementioned materials
can enhance the bioavailability of curcumin and its drug efficacy. It appears that there are some
conflicting data on the correlation between the particle size and drug bioavailability. For example,
Sun et al. reported that NPs at the range of 700-120 nm enhanced bioavailability compared to the
suspension form while there was no significant between the NPs at the range of 700 to 120 nm.
Otherwise, bioavailability significantly enhance when the particle size drops to 80 nm [189]. While,
Vrana et al. demonstrated that there is not a significant correlation between the particle size and
cyclosporine A formulations [190]. If it is considered that water solubility (hydrophobicity) is one
the most critical factors in drug bioavailability, therefore it might be said that the contact angle of a
nanocarrier is a critical marker to predict drug bioavailability and eventually this hypothesis may
explain the controversy data on the correlation of particle size and bioavailability. The important point
is that particle size and surface charge are just two markers in the final fate of contact angle and there
are some other parameters such as roughness, morphology etc., that may affect contact angle.

7. Targeted Delivery

Targeted delivery can be divided into active and passive targeted delivery in which active targeted
delivery is usually through some antigen or receptor on/in targeted cells while passive delivery is
mediated via enhanced permeability and retention effect (EPR) mechanism. There are some molecules
that can act as a ligand for targeting drug delivery such as antibodies fragment and monoclonal
antibodjies, aptamers, folic acid and etc. (Table 2) [37,191,192]. Curcumin as an anti-inflammatory
agent has been widely used a potential drug in cancer therapy. Breast cancer cells overexpresses
sialic acid in cell membrane and Kundu et al. conjugated curcumin to phenyl boronic acid (PBA)
and ZnO NPs. Notably, Curcumin-PBA-ZnO NP (40 nm) can significantly decrease tumor growth
in mice bearing Ehrlich ascites carcinoma (EAC) tumor [193]. In another study, gold nanorods and
curcumin were loaded into a PLGA-b-PEG co-polymer NPs (~137 nm). The anti-cancer efficacy of the
nanocarrier with and without curcumin was investigated. The results disclosed the retention of both
gold-PLGA-b-PEG NPs (with and without circumin) in cancer cells located in esophageal mucosa, but
not in normal esophageal mucosa in a Barrett’s associated animal model upon NIR irradiation [194].
Another example of targeted delivery is related to folic acid attached to curcumin-albumin-Bi2S3 NPs.
The combination of chemotherapy and radiotherapy led to an enhanced efficacy in an animal model of
tumor [195].

There are some reports related to conjugation of folate to NPs as a cargo for anti-cancer delivery.
Another example of targeted curcumin delivery is related to the conjugation of curcumin to hyaluronic
acid (HA) and folic acid. Both HA (CD 44 receptor) and folic acid are over-expressed in cancer
cells. However, their attachments to gold NPs, HA, and PEG enhance cancer cell toxicity and
drug circumstance and up-take, respectively. Interestingly, the final particle size was approximately
120 nm [199]. In fact, folate conjugation enhances active targeting through increased transportation
of cargo using endocytosis into the cell. For example, Thulasidasan et al. conjugated folate on the
surface of PLGA-PEG loaded curcumin NP and evaluated the NP in combination with paclitaxel and
compared it with liposome. The results showed synergistic cytotoxicity in Hela cancer cells along with
enhanced retention time in cervix tissue of Swiss albino mice [200]. Huong et al. attached folic acid
to a NP containing magnetic NP, curcumin and coated it with O-carboxylmethylchitosan. Overall,
the outcomes indicated that targeted delivery system can enhance bio-distribution in mice bearing a
sarcoma-180 solid tumor. Notwithstanding, magnetic NPs under magnetic field can induce heat and
trigger cell death mechanisms especially in cancer cells owing to two reasons: (1) Cancer cells are more
susceptible to the high temperature (42 °C) compared to the normal cells, and (2) Passive targeting of
magnetic NPs owing to their particle size [201]. Song et al. conjugated folate on the surface of albumin
NPs loaded curcumin as a carrier (~165 nm, —27.3 mV) for cancer therapy in mice induced by HT29
cells subcutaneously. The results showed a higher anti-tumor efficacy of water soluble curcumin NPs
in part due to the inhibition of drug metabolism that resulted in an enhanced anti-tumor efficacy [188].
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Table 2. Targeted curcumin delivery using biopolymers-based nanoparticles.
Polymer The Route of Targeting Size Zeta Potential LC or EE Cell L;;‘:C/;:In imal Advantages Refs.
Murine colon Maintained sustained release, and a
F-CUR-HSANPs Folate 165.6+157nm  -273+42mV  EE:88.7% + 4.8% HHne o7 faster release of CM compare to the [188]
cancer model .
unconjugated NPs
Apt-HSA/CCM NP Aptamer to target HER-2 281.1nm -33.3 +25mV 3.4% SK-BR3 cells Higher toxicity [120]
positive cells
Galactosylation to target
asialoglycoprotein receptor Enhanced the internalization ability of
Gal-BSA-Cur NPs (ASGPR) overexpressed on 116.24 nm -14.12 + 1.81 EE:55.47% =+ 0.45% HCC cell line drug compared with BSA NPs-loaded [196]
hepatocellular carcinoma curcumin
(HCC) cells
Zein and HA for the simulated
co-delivery of curcumin HA 231 nm -30.5mV 2.5% gastrointestinal Improve oral bioavailability [122]
and quercetagetin tract conditions
Curcumin loaded magnetic Magnetic NP 30 nm to 250 nm LC: 8.4% MDA-MB-231 cells Enhanced growth inhibition [128]
silk fibroin core-shell NPs
The mouse breast
Bi2S3@BSA-FA-CUR Folic acid 170.9 nm -232mV LC10+ 1519  carcinoma cell line, Enhanced the efficacy of [195]
Murine breast chemoradiation therapy
cancer model
magnetic alginate/chitosan MDA-MB-231 The sustained release profiles, enhanced
layer-by-layer nanoparticles Fe304 NPs 172 nm to 199 nm EE: 49.2% breast cancer cells, uptake efficiency and cytotoxicity to [197]
(MACPs) HDEF cells cancer cells
folic acid tagged aminated
starch/ZnO coated iron
oxide nanoparticles as Fe304 NPs 31.2+2 42.9 +0.03 EE: 76.8 + 0.04% Hep fezlla ESGI;/ICF7 Enhanced the uptake by HepG2 cells [198]
targeted curcumin
delivery system
Cur loaded MnFe204-CMC Fe204 NPs 35 nm MCF7 and HeLa Enhanced the therapeutic efficacy [156]

cells
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As mentioned earlier, aptamers also function as a ligand for targeting delivery on the surface of
NPs. Lei et al. conjugated RNA aptamers for epithelial cell adhesion molecule (EpCAM) protein on the
surface of PLGA-lecithin-PEG NPs (less than 100 nm) containing of curcumin. They investigated its
efficacy on colorectal adenocarcinoma cells. The half-life and retention time of curcumin NPs increased
as compared to the free curcumin, 6 and 3-fold, respectively. However, the cancer cell cytotoxicity
and bioavailability of cargo was significantly enhanced as compared to the curcumin [202]. Moreover,
Huang et al. used galactosylation as a potential ligand for cell targeting. They galactosylated albumin
NPs encapsulated curcumin as carrier (116.24 nm) for HepG2 cancer cell therapy. It was noted that
galactose selectively bound to the receptors on the surface of cancer cells and inhibited NF-«B activation
and cell migration, thus resulting in enhanced anti-tumor efficacy [196].

8. Conclusions and Future Trends

Curcumin holds a great promise among the nutraceuticals due to its pleiotropic biological activities.
However, its poor solubility and bioavailability may limit its application in the clinic. To overcome these
drawbacks, it seems that encapsulation into specific nanocarriers can be of great interest and enhance
its applications. Here in this review, we have discussed different types of biopolymers and biological
carriers in different forms that can be used for curcumin delivery. For this purpose, at first, we described
protein-based biopolymers which are biocompatible carriers with the ability to form different types
of nanocarriers. Then different kinds of polysaccharide biopolymers are discussed along with their
characteristic features like biocompatibility, bioavailability, low cost, and biodegradability. At the end,
the biological carriers with specific focus on exosomes, their excellent properties, and preparation
methods have been highlighted. Overall, the encapsulation of curcumin into these various carriers may
lead to a significant enhancement of its various anti-cancer activities. Although the biocompatibility
and anti-cancer efficacy of the above-mentioned nanocarriers have been partially validated in different
models, however, further in vivo and clinical studies are needed to facilitate their safe administration
in cancer patients.
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(Grant Number: 96000548), Kerman, Iran.

Conflicts of Interest: The author report no potential conflict of interest.

Abbreviations

VEGF Vascular endothelial growth factor

HAS human serum albumin

BSA bovine serum albumin

NPs nanoparticles

HER2 human epidermal growth factor receptor 2
HA hyaluronic acid

Apt-HSA/CCM
SSPS

aptamer-decorated curcumin-loaded human serum albumin
soluble soybean polysaccharide

Cur-ACRU/CS curcumin-loaded acylated cruciferin/charged chitosan
CDG-CANPs curcumin diethyl diglutarate-loaded Chitosan/alginate NPs
CUR-AIgNP curcumin loaded alginate NP

Cur-CS/AlgNPs  curcumin-loaded chitosan/alginate NPs

CMC carboxymethyl cellulose

Cur-NLCs curcumin loaded nanostructured lipid carriers

ANC aminated nanocellulose

EWP egg white protein

PECs polyelectrolyte complexes

SC sodium caseinate

SA sodium alginate
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PEG poly (ethylene glycol)

PCL poly (e-caprolactone)

FDA U.S. Food and Drug administration
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