

1 Supplementary Materials

- 2 How different substitution positions of F, Cl atoms in
- **benzene ring of 5-methylpyrimidine pyridine**
- 4 derivatives affect the inhibition ability of
- 5 EGFR^{L858R/T790M/C797S} Inhibitors: A Molecular Dynamics
- 6 Simulation Study
- 7

8 Jingwen E¹, Ye Liu², Shanshan Guan^{3, 4}, Zhijian Luo¹, Fei Han¹, Weiwei Han², Song Wang^{1*} and 9 Hao Zhang^{1*}

- 10 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University,
- 11 Changchun 130023, People's Republic of China

12 ² Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin

13 ³ College of Food Engineering, Jilin Engineering Normal University, Changchun, Jilin 130052, China

- 14 ⁴ Key Laboratory of Molecular Nutrition at Universities of Jilin Province, Changchun, Jilin 130052, China
- 15 * Correspondence: ws@jlu.edu.cn (S. Wang); stringbell@jlu.edu.cn (H. Zhang); Tel.: +86-27-88498761
- 16 17

Figure S1. Optimal docking models of the six complexes: compound (**a**) 8r-B, (**b**) 8r-A (**c**) 8p-B (**d**) 8p-A (**e**) 8q-B and (**f**) 8q-A docked to EGFRTM. Key residues and ligands are represented by stick models.

Figure S2. Stability analyses for EGFRTM_8r-B(red), EGFRTM_8r-A(blue), EGFRTM_8p-B(magenta), EGFRTM_8p-A(olive), EGFRTM_8q-B(navy), EGFRTM_8q-A(violet) complexes during the 100ns simulation. (**a**) RMSDs of the protein backbone, (**b**) Average RMSD values for the six systems.

Figure S3. Cross-correlation matrix maps for the complex. (a) EGFRTM-8r-B, (b) EGFRTM-8r-A, (c)
 EGFRTM-8p-B, (d) EGFRTM-8p-A, (e) EGFRTM-8q-B, and (f) EGFRTM-8q-A.

Figure S4. Comparison the differences of secondary structural differences between (a) 8p-B-bound,
(b) 8p-A-bound, (c) 8q-B-bound, (d) 8q-A-bound proteins.

- 33
- 34
- 35

- 38
- 39 40 41 42
 - Figure S5. Structure based clustering analysis on equalized trajectory. Cluster centroids are shown and labeled. The clusters are shown others which percentage population were lower than 2%. (a) Complex EGFRTM_8r-B, (b) Complex EGFRTM_8r-A, (c) Complex EGFRTM_8p-B, (d) Complex EGFRTM_8p-A, (e) Complex EGFRTM_8q-B, (f) Complex EGFRTM_8q-A.

Figure S6. The optimized protein backbone atoms' RMSDs.

45

46 Figure S7. The comparison between the protein in 5EDP.pdb (green) and the optimized protein 47 (purple). Different for two structure show as red region.

	696	GEAPNGALLR	ILS	ETER	REI	RVL	OBGAPO	IT VS	ROLWIPE	ERV	RIFVAIR	ELR	EATSP	SA.	NKE	LDEA	VY	HASYD	NPHYC	RLLOI	CL/TST	VQLI	MQLMPP	795
	SEDP		8	GGG .	EEE	EEE	SEE 5	SEE	EFFE	TTO	DEEXEEE	EE	. 3	uun	1000	ntitu	100	HHT	TTB	EREE	EESSS	EFEE	EE TT	
	Opt	TTT	в	TTS	EEE	EFF	EEE S	SEE	FFFE	TTS	REFEREN	EE	- 7	TH:	HHH	HHH	HH:	HHS	TTB	REFE	E 88	ERE	EE TT	
	796	GCLLDYVREN	KDN	1680	TTLL.	NWC	VQIARO	H 10	LEDRELVI	I RDL	AARNVLV	KTP	QHVK3	70	FGL	KLL	AR	EREYH	AEGGE.	VPIKM	HALES	TLHP	TYTHOS	895
	SEDP	внининии	666	HH	OHHH	ннн	нанные	H HB	HHHPTEE	8	SCORE	888	8 EEE	£011	77	EE	88	8 EE	8	666	8 HHH	HHH	EE HHH	
	Opt	внилиния	TTT	312	DEDUE	RHH	HINNH	01 HE	HHH?TEE.	8	GGGEEE	EET	T EFE	£	TT	ER	TT	5	8	TTT	S THH	HHT	B HHI	
	896	DVWSYGVTVW	ELM	TFGS	RPY	DOI	PASEIS	IS II	ERGERLP	PPI	CTIDVYM	IMV	KCHMI	DA.	DERI	RFR	LI	IEFSIO	MARDP	QRYLV	IQUDE	RACHI	PSPTDS	995
	SEDP	инникник	HHH	TTS	TT	TT	HHHH	in ni	CHH2	TT	в нинин	HHH	HHT S	186	GGS	HHI	EHH	HINNHH.	HHHSH	HRHE	TITT	Ŧ		
	Opt	REPERT	HHH	TTS	TT	TT	TTHE	IH HE	HTT	77	BTHHHHH	BRH	HHT S	196	GGS	HH	HH.	нннян	HTT G	GGTB	TITT	T		
	996	NFYRALMDEE	DMD	DVVI	ADE	YLI																		1018
10	SEDP		T	TB	GGG																			
48	Opt		8	888	TTT																			
49		Figure S8.	Co	mp	aris	on	of se	ecor	darv s	truc	ure fo	or c	onst	rua	rted	str	uc	ture.	H=0	-heliy	с. B=	resid	due ir	
			00	r			01 00		i duli j o				01100								., 2			
50		isolated β-l	oric	lge,	E=	ext	ende	d st	rand, j	parti	cipate	s in	β-la	ado	der,	G=	:3-l	nelix	(3/10)helix), I=	5-he	lix (pi	

- 50
- 51 helix), T=hydrogen bonded turn, S=bend, Blank=loop or irregular.

Figure S9. Redocking result for complex. (a) Overall comparison of crystal ligand CO-1686 (cyan
 stick) and redocking model (green stick). The main contributing residues (red stick and surface) of
 CO-1686-bound (b) and redocking model-bound (c) complexes during docking calculations.

...

Figure S10. Docking grid for six inhibitors bound with $\text{EGFR}^{\text{TM}}.$