Supporting information

Iron-Catalysed C(*sp*²)-H Borylation: *in situ* Generation of an Active Catalyst

Luke Britton¹, Jamie H. Docherty^{1*}, Andrew P. Dominey and Stephen P. Thomas^{1*}

¹ EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.

²GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK.

Contents

1.	General Experimental	3
2.	Table S1 – Iron Complexes for the	4
	Catalytic Borylation of 2-methylfuran	
3.	Table S2 – Activator Screening	5
4.	Table S3 – Variation of Catalyst to	6
	Activator Ratio	
5.	Table S4 – Variation of Catalyst Loading	7
	and Reaction Time	
6.	Table S5 – Solvent Screening	8
7.	Table S6 – HBpin Quantity Screening	9
8.	Table S7 – Substrate Scope	10
9.	NMR Spectra	11

General experimental

Reaction Setup: All reactions were performed in oven (185 °C) and/or flamed-dried glassware under an atmosphere of anhydrous nitrogen or argon, unless otherwise indicated. All airand moisture sensitive reactions were carried out using standard vacuum line and Schlenk techniques, or in a glovebox with a purified argon atmosphere. All glassware was cleaned using base (KOH, i PrOH) and acid (HClaq) baths. All reported reaction temperatures correspond to external bath temperatures. Room temperature (r.t) was approximately 22 °C.

NMR Spectroscopy: ¹H, ¹³C, ¹¹B, and ³¹P spectra were recorded on Bruker Avance III 400 and 500 MHz; Bruker PRO 500 MHz; Bruker Avance I 600 MHz spectrometers. Chemical shifts are reported in parts per million (ppm). ¹H and ¹³C NMR spectra were referenced to the residual deuterated solvent peak (CDCl₃: 7.26 ppm, 77.00 ppm; *d*⁸-THF: 1.73 ppm, 25.37). Multiplicities are indicated by app. (apparent), br. (broad), s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), sext. (sextet), sept. (septet), non. (nonet). Coupling constants, J, are reported in Hertz and rounded to the nearest 0.1 Hz. Integration is provided

Solvents: All solvents for air- and moisture sensitive techniques were obtained from an anhydrous solvent system (Innovative Technology). Reaction solvents tetrahydrofuran (THF) (Fisher, HPLC grade), ether (Et₂O) (Fisher, BHT stabilized ACS grade), and dichloromethane (CH₂Cl₂) (Fisher, unstabilised HPLC grade) were dried by percolation through two columns packed with neutral alumina under a positive pressure of argon. Reaction solvent toluene (ACS grade) was dried by percolation through a column packed with neutral alumina and a column packed with Q5 reactant (supported copper catalyst for scavenging oxygen) under a positive pressure of argon. Reaction solvent ethanol (absolute, VWR) was used as received. Solvents for filtration, transfers, chromatography, and recrystallization were dichloromethane (CH₂Cl₂) (ACS grade, amylene stabilised), diethylether (Et₂O) (Fisher, BHT stabilised ACS grade), ethyl acetate (EtOAc) (Fisher, ACS grade), hexane (Optima), methanol (MeOH) (ACS grade), pentane (ACS grade), and petroleum ether (40–60°C, ACS grade).

Chemicals: All reagents were purchased from Sigma Aldrich, Alfa Aesar, Acros organics, Tokyo Chemical Industries UK, Fluorochem and Apollo Scientific or synthesised within the laboratory. Iron (II) chloride was purchased from Strem Chemicals Inc. (UK); anhydrous iron chloride, 98% (product number 93-2631. Lot 19226800, 44.00000% Fe, expect 44.059%). Sodium *tert*-butoxide (97%) was purchased from Sigma Aldrich (UK). Sulfate buffer refers to aqueous sulfate buffer solution which was prepared by dissolving Na₂SO₄ (1.5 mol) in H₂SO₄ (0.5 mol) and adding water to give a total volume of 2 L.

Table S1. Iron Complexes for the Catalytic Borylation of 2-Methylfuran.^a

^aExperimental conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe2FeCl₂ (5 mol%), MeLi (10 mol%), THF (0.5 mL), 16 hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures. ^bdmpe = bis(dimethylphosphino)ethane; depe = bis(diethylphosphino)ethane; dmpm = bis(dimethylphosphino)methane.

Table S2. Activator Screening^a

		Yield ^a			
Entry	Activator	% 3a	% 4a	3a:4a	% Total
1	Lithium methoxide	13	4	76:24	17
2	Potassium methoxide	22	7	76:24	29
3	Tetrabutylammonium methoxide	29	10	74:26	39
4	Sodium iso-propoxide	24	10	70:30	34
5	Sodium <i>tert</i> -butoxide	33	6	85:15	39
6 ^b	Sodium tert-butoxide	0	0	0	0
7	Potassium tert -butoxide	3	6	85:15	39
8	Sodium ethanethiolate	28	8	70:39	36
9c	Lithium aluminium hydride	0	0	0	0
10	Sodium bicarbonate	0	0	0	0
11 ^c	Sodium bis(trimethylsilyl)amide	28	7	74:26	35
12	Sodium formate	6	2	75:25	8
13	Lithium acetate	2	0	100:0	2
14	Sodium acetate	23	9	72:28	32
15	Sodium trifluroacetate	26	9	74:26	35
16	Sodium benzoate	33	12	73:27	45
17 ^d	Sodium benzoate	35	14	73:27	49
18	Sodium 2-ethylhexanoate	32	13	71:29	45
19 ^e	Sodium 2-ethylhexanoate	27	10	71:29	37
20	Tetrabutylammonium 2-ethylhexanoate	19	8	70:30	27
21 ^d	Sodium 2-ethylhexanoate	45	14	71:29	59
22 ^f	Sodium 2-ethylhexanoate	0	0	0	0

^aStandard reaction conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (2 mol%), **Activator** (4 mol%), THF (0.5 mL), 24 hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures.^bdmpe₂FeCl₂ (5 mol%), 16 hours, 70 °C, no light. ^c15 hours. ^d48 hours. ^eStoichiometric 15-crown-5 added. ^fdmpe₂FeCl₂ (0 mol%).

Table S3. Variation of Catalyst to Activator Ratio^a

^aStandard reaction conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (**2** mol%), Na(2-EH) (**X** mol%), THF (0.5 mL), 16 hours, blue LED. Yields from crude reaction mixtures determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy.

Table S4. Variation of Catalyst Loading and Reaction Time^a

^aStandard reaction conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (**X** mol%), Na(2-EH) (**Y** mol%), THF (0.5 mL), **Z** hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures.

Table S5. Solvent Screening^a

^aStandard reaction conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (2.5 mol%), NaO'Bu (5 mol%), **X** (0.5 mL), 16 hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures.

Table S6. HBpin Quantity Screening^a

^aStandard reaction conditions: 2-Methylfuran (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (2.5 mol%), NaO^tBu (5 mol%), THF (0.5 mL), 16 hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures.

Table S7. Substrate Scope^a

^aStandard reaction conditions: Substrate (0.5 mmol), HBpin (0.6 mmol), dmpe₂FeCl₂ (4 mol%), Na(2-EH) (8 mol%), THF (0.5 mL), 48 hours, blue LED. Yields determined by ¹H NMR spectroscopy of the crude reaction mixtures using 1,3,5-trimethoxybenzene as an internal standard. Product ratios were determined by ¹H NMR spectroscopy of the crude reaction mixtures.

Figure S1. 1H NMR (500 MHz, CDCl3) tetrabutylammonium 2-ethylhexanoate

Figure S2. ¹³C NMR (126 MHz, CDCl₃) tetrabutylammonium 2-ethylhexanoate

Figure S3. ¹¹B NMR (160 MHz, THF) Reaction of the activator, Na(2-EH), and HBpin after 24 h at 60 °C, ligand redistribution to a mixture of boron-containing species, including HBpin **A**, boron 'ate' complexes **B**, BH₃ **C** and BH₄⁻ **D**.

Figure S4. ³¹P NMR (202 MHz, CDCl₃) dmpe₂FeCl₂ 1

Figure S5. ¹H NMR (400 MHz, d₈-THF) dmpe₂FeCl₂ 1

Figure S6. ³¹P NMR (202 MHz, C₆D₆) depe₂FeCl₂ 1b

Figure S7. 1H NMR (500 MHz, CDCl3) depe2FeCl2 1b

Figure S9. 1H NMR (500 MHz, C6D6) dmpm2FeCl2 1d

Figure S10. ³¹P NMR (202 MHz, d₈-THF) dmpe₂FeCl₂ 1 + Na(2-EH) (2 equiv.) r.t. 30 minutes

quartet

Figure S12. ³¹P NMR (202 MHz, d₈-THF) 2: stoichiometric dmpe₂FeCl₂ 1 added after 1 day. Appearance of dmpe₂FeHCl 6.

Figure S13. ³¹P NMR (202 MHz, THF) dmpe₂FeH₂ 7 and dmpe₂FeHCl 6. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (2 equiv.) + THF at 60 °C for 6 h.

-12.7 -12.8 -12.9 -13.0 -13.1 -13.2 -13.3 -13.4 -13.5 -13.6 -13.7 -13.8 -13.9 -14.0 -14.1 -14.2 -14.3 -14.4 -14.5 -14.6 -14.7 -14.8 -14.9 -15.0 -15.1 -15.2 -15.3 -15.4 -15.5 -15.6 -15.7 f1 (ppm)

Figure S14. ¹H NMR (600 MHz, THF) dmpe₂FeH₂ 7. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (4 equiv.) + THF at 60 °C for 24 h.

-30.9 -31.0 -31.1 -31.2 -31.3 -31.4 -31.5 -31.6 -31.7 -31.8 -31.9 -32.0 -32.1 -32.2 -32.3 -32.4 -32.5 -32.6 -32.7 -32.8 -32.9 -33.0 -33.1 -33.2 -33.3 -33.4 -33.5 f1 (ppm)

Figure S15. ¹H NMR (600 MHz, THF) dmpe₂FeHCl 6. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (4 equiv.) + THF at 60 °C for 24 h.

Figure S16. ³¹P NMR (202 MHz, THF) dmpe₂FeH₂ 7 and dmpe₂FeHCl 6. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (4 equiv.) + THF at 60 °C for 24 h.

Figure S17. ³¹P NMR (202 MHz, THF) *cis*-dmpe₂FeH(Bpin) 8, *trans*-dmpe₂FeH(Bpin) 9, dmpe₂FeH₂ 7, dmpe₂FeCl₂ 6, and unknown *. dmpe₂FeCl₂ 1 + HBpin (xs.) + Na(2-EH) (2 equiv.) + THF + blue light for 16 h.

-11.8 -11.9 -12.0 -12.1 -12.2 -12.3 -12.4 -12.5 -12.6 -12.7 -12.8 -12.9 -13.0 -13.1 -13.2 -13.3 -13.4 -13.5 -13.6 -13.7 -13.8 -13.9 -14.0 -14.1 -14.2 -14.3 -14.4 -14.5 -14.6 f1 (ppm)

Figure S18. ¹H NMR (500 MHz, THF) *cis*-dmpe₂FeH(Bpin) 8 and *trans*-dmpe₂FeH(Bpin) 9. dmpe₂FeCl₂ 1 + HBpin (xs.) + Na(2-EH) (2 equiv.) + THF + blue light for 16 h.

Figure S19. ¹¹B NMR (160 MHz, THF) dmpe₂FeH(Bpin) 8 and 9 and *: B(OR)₃ impurity. dmpe₂FeCl₂ 1 + HBpin (xs.) + Na(2-EH) (2 equiv.) + THF + blue light for 16 h.

Figure S20. ³¹P NMR (202 MHz, THF) 1: Solution containing dmpe₂FeH(Bpin) 8 and 9, dmpe₂FeH₂ 7, dmpe₂FeCl₂ 1, dmpe₂FeHCl 6, and 2-methylfuran (xs.) 20 h at 60 °C. 2: After blue light irradiation for 3 h, development of dmpe₂FeH(2-Me-furyl) 10 complex.

Figure S21. ¹H NMR (500 MHz, THF) 1: Solution containing dmpe₂FeH(BPin) **8** and **9**, dmpe₂FeH₂ **7**, dmpe₂FeCl₂ **1**, dmpe₂FeHCl, and 2-methylfuran (xs.) **A**, 20 h at 60 °C. 2: After blue light irradiation for 3 h, development of dmpe₂FeH(2-Me-furyl) complex **10**, and borylated 2-methylfuran **3a/4a**.

Figure S22. ³¹P NMR (202 MHz, THF) dmpe₂FeH(2-Me-furyl) 10, dmpe₂FeH₂ 7, dmpe₂FeHCl 6, and *: unknown. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (2 equiv.) + THF + blue light for 24 h.

Figure S23. ¹H NMR (500 MHz, THF) dmpe₂FeH(2-Me-furyl) 10. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (2 equiv.) + THF + blue light for 24 h.

Figure S24. ¹H NMR (500 MHz, THF) dmpe₂FeH(2-Me-furyl) 10 and 2-methylfuran A. dmpe₂FeCl₂ 1 + HBpin (2 equiv.) + Na(2-EH) (2 equiv.) + THF + blue light for 24 h.

Figure S25. ³¹P NMR (202 MHz, THF) 1: Solution containing dmpe₂FeH(2-Me-furyl) 10, dmpe₂FeH₂ 7, dmpe₂FeCl₂ 6, and HBpin (xs.), 20 h at 60 °C. 2: After blue light irradiation for 3 h, formation of dmpe₂FeH(Bpin) complexes 8 and 9.

Figure S26. ¹H NMR (500 MHz, THF) 1: Solution containing dmpe₂FeH(2-Me-furyl) 10, dmpe₂FeH₂ 7, dmpe₂FeCl₂ 1, dmpe₂FeHCl 6, 2-methylfuran A (xs.), and HBpin (xs.), 20 h at 60 °C. 2: After blue light irradiation for 3 h, development of borylated 2-methylfuran 3a/4a.

Figure S27. ¹¹B NMR (160 MHz, CDCl₃) **1**: Solution containing dmpe₂FeH(2-Me-furyl) **10**, dmpe₂FeH₂ **7**, dmpe₂FeCl₂ **1**, dmpe₂FeHCl **6**, and HBpin (xs.), 20 h at 60 °C. **2**: After blue light irradiation for 3 h, development of dmpe₂FeH(Bpin) **8** and **9**, **A**: Boronate species, **B**: [BH₄]⁻, *: B(OR)₃ impurity.

Figure S28. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylfuran-2-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane

Figure S29. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylfuran-2-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-3-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetr

Figure S30. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylfuran-2-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetramethyl-3-yl)-1,3,2-dioxaborolane 3a, 4,4,5,5-tetr

Figure S31. ¹H NMR (600 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(furanyl-2-yl)-1,3,2-dioxaborolane 3b, 4,4,5,5-tetramethyl-2-(furanyl-3-yl)-1,3,2-dioxaborolane 4b, 2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5ba, 2,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5bb, and *: B(OR)₃ impurity.

Figure S32. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(furanyl-2-yl)-1,3,2-dioxaborolane 3b, 4,4,5,5-tetramethyl-2-(furanyl-3-yl)-1,3,2-dioxaborolane 4b, 2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5ba, 2,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5bb, and *: B(OR)₃ impurity.

Figure S33. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(furanyl-2-yl)-1,3,2-dioxaborolane 3b, 4,4,5,5-tetramethyl-2-(furanyl-3-yl)-1,3,2-dioxaborolane 4b, 2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5ba, 2,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan 5bb, and *: B(OR)₃ impurity.

Figure S34. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4,5-dimethylfuran-2-yl)-1,3,2-dioxaborolane 3c and *: B(OR)₃ impurity.

Figure S35. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4,5-dimethylfuran-2-yl)-1,3,2-dioxaborolane 3c

Figure S36. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4,5-dimethylfuran-2-yl)-1,3,2-dioxaborolane 3c and *: B(OR)₃ impurity.

Figure S37. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-ethylfuran-2-yl)-1,3,2-dioxaborolane 3d, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3d, 4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3d,

Figure S38. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-ethylfuran-2-yl)-1,3,2-dioxaborolane 3d, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 3d, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane

Figure S39. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-ethylfuran-2-yl)-1,3,2-dioxaborolane 3d, 4,4,5,5-tetramethyl-2-(5-methylfuran-3-yl)-1,3,2-dioxaborolane 4d, and *: B(OR)₃ impurity.

Figure S40. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylthiophen-2-yl)-1,3,2-dioxaborolane **3e**, 4,4,5,5-tetramethyl-2-(5-methylthiophen-3-yl)-1,3,2-**4e**, and *****: impurity.

Figure S41. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylthiophen-2-yl)-1,3,2-dioxaborolane **3e**, 4,4,5,5-tetramethyl-2-(5-methylthiophen-3-yl)-1,3,2-dioxaborolane **3e**, 4,4,5,5-tetramethyl-2-(5-methylthiophen-3-yl)-1,3,2-de, and *****: impurity.

Figure S42. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(5-methylthiophen-2-yl)-1,3,2-dioxaborolane **3e**, 4,4,5,5-tetramethyl-2-(5-methylthiophen-3-yl)-1,3,2- **4e**, and *****: impurity.

Figure S43. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(thiophene-2-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-2-(thiophene-3-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-3-(thiophene-3-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-3-(thiophene-3-yl)-1,3,2-dioxabor

Figure S44. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(thiophene-2-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-2-(thiophene-3-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-2-(thiophene-3-yl)-1,3,2-dioxaborolane-2-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-2-(thiophene-3-yl)-1,3,2-dioxaborolane 3f, 4,4,5,5-tetramethyl-3-(thiophene-3-yl)-1,3,2-dioxaborolane 3f, 4,5,5-tetramethyl-3-(thiop

Figure S45. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(thiophene-2-yl)-1,3,2-dioxaborolane **3f**, 4,4,5,5-tetramethyl-2-(thiophene-3-yl)-1,3,2-dioxaborolane **3f**, 4,4,5,5-tetramethyl-3-(thiophene-3-yl)-1,3,2-dioxaborolane **3f**, 4,4,5,5-tetramethyl-3-(thiophene-3-yl)-1,3,2-dioxaborol

Figure S46. ¹H NMR (500 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4-methylthiophen-2-yl)-1,3,2-dioxaborolane 3g and *: impurity.

Figure S47. ¹³C NMR (126 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4-methylthiophen-2-yl)-1,3,2-dioxaborolane 3g and *: impurity.

Figure S48. ¹¹B NMR (160 MHz, CDCl₃) 4,4,5,5-tetramethyl-2-(4-methylthiophen-2-yl)-1,3,2-dioxaborolane **3g** and *****: B(OR)₃ impurity.