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Abstract: Mascarpone, a soft-spread cheese, is an unripened dairy product manufactured by the
thermal-acidic coagulation of milk cream. Due to the mild flavor and creamy consistency, it is a
base ingredient in industrial, culinary, and homemade preparations (e.g., it is a key constituent of
a widely appreciated Italian dessert “Tiramist”). Probably due to this relevance as an ingredient
rather than as directly consumed foodstuff, mascarpone has not been often the subject of detailed
studies. To the best of our knowledge, no investigation has been carried out on the volatile
compounds contributing to the mascarpone cheese aroma profile. In this study, we analyzed the
Volatile Organic Compounds (VOCs) in the headspace of different commercial mascarpone cheeses
by two different techniques: Headspace-Solid Phase Microextraction-Gas Chromatography-Mass
Spectrometry (HS-SPME GC-MS) and Proton-Transfer Reaction-Mass Spectrometry coupled to a Time
of Flight mass analyzer (PTR-ToF-MS). We coupled these two approaches due to the complementarity
of the analytical potential—efficient separation and identification of the analytes on the one side
(HS-SPME GC-MS), and effective, fast quantitative analysis without any sample preparation on
the other (PTR-ToF-MS). A total of 27 VOCs belonging to different chemical classes (9 ketones,
5 alcohols, 4 organic acids, 3 hydrocarbons, 2 furans, 1 ester, 1 lactone, 1 aldehyde, and 1 oxime)
have been identified by HS-SPME GC-MS, while PTR-ToF-MS allowed a rapid snapshot of volatile
diversity confirming the aptitude to rapid noninvasive quality control and the potential in commercial
sample differentiation. Ketones (2-heptanone and 2-pentanone, in particular) are the most abundant
compounds in mascarpone headspace, followed by 2-propanone, 2-nonanone, 2-butanone, 1-pentanol,
2-ethyl-1-hexanol, furfural and 2-furanmethanol. The study also provides preliminary information
on the differentiation of the aroma of different brands and product types.

Keywords: mascarpone cheese; dairy product; VOCs; PTR-ToF-MS; HS-SPME GC-MS; aroma;
ketones; alcohols; Tiramisu; milk cream

1. Introduction

Mascarpone cheese is a soft-spread dairy unripened product manufactured by the thermal-acidic
coagulation of milk cream [1]. Mascarpone represents an interesting cheese processing method, in
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which direct acidification is applied. The raw materials for its production are milk cream (containing
80% dry weight lipids, 2.8% to 6% protein) and acidifying substances (single or mixed), such as acetic,
citric, tartaric, or lactic acids, vinegar or lemon juice, with a final pH ranging from 5.7 to 6.6 [2]. The
cream is heated up to 85-95 °C and, while stirring, acid is added in order to force matrix coagulation [3,4].
During the intensive heating, the whey protein denatures and aggregates or sticks to the casein micelles
and the fat globule membrane [3]. As a result of this reaction, whey proteins partly remain in the cheese
matrix during the draining step (about 20 h), obtaining the typical texture and flavor of mascarpone
cheese [3]. This typical Italian cheese was once produced domestically by the farmers of some northern
regions and consumed immediately after production. Due to its traditional importance, mascarpone is
included in the list of traditional agro-food products (Prodotto Agroalimentare Tradizionale) [5], a list of
Italian traditional regional food products. More recently, it has been industrially produced to satisfy
the increasing demand driven by two main sensory characteristics—the mild flavor and the creamy
consistency. In fact, due to these attributes, mascarpone cheese is a base ingredient in industrial,
culinary, and homemade preparations. The best example is its use in the preparation of one of the
most widely appreciated Italian desserts—the Tiramisu. In spite of its popularity and its increasing
economic relevance, the scientific literature does not report a characterization of Volatile Organic
Compounds (VOCs) released by this peculiar dairy matrix. In order to characterize for the first time
the VOCs associated with the headspace of mascarpone cheese, among various analytical techniques,
we exploit the complementarity of Gas Chromatography-Mass Spectrometry (GC-MS) and Proton
Transfer Reaction-Mass Spectrometry coupled to a Time of Flight mass analyzer (PTR-ToF-MS) [6].
Gas Chromatography-Mass Spectrometry (GC-MS) is the reference method in the analysis of VOCs in
the field of environmental, food, flavour and fragrance, medical and forensic sciences [7]. Solid-Phase
Microextraction (SPME) combined with static headspaces (HS-SPME), in particular, offers relatively
high-throughput performance and does not require extended sample preparation [8]. Moreover, it is
reproducible, simple, and effective, and eliminates interference compounds from the sample matrix
with improvement in the selectivity of the analysis. PTR-ToF-MS uses proton transfer to induce
chemical ionization of the sample headspace directly introduced into a drift tube, where volatile
organic compounds can react with H30* ions formed in a hollow cathode ion source. The protonated
particles are analyzed according to their mass/charge ratio (1m/z) using a quadrupole or Time-of-Flight
(ToF) mass analyzer and eventually detected as ion counts/second (cps) by a secondary electron
multiplier or multichannel plates [9]. The outcome is a rapid (< 1 s) mass resolved fingerprint of the
total volatile profile of the sample, measuring most VOCs at ultralow concentrations (a few pptv) and
high mass resolution [10]. These analytical approaches are complementary. In fact, PTR-MS provides
analytical information that is mostly limited to concentration and m/z ratios, i.e., sum formula, while
isobar separation and compound identification needs usually the support of GC analysis [6]. PTR-MS,
however, guarantees rapid and direct analysis and high sensitivity [11].

Using this integrated approach, the present study represents a first step towards the comprehension
of the molecular basis of sensory perceptions associated with the consumption of mascarpone cheese
and, more relevantly, of products that use mascarpone as raw material. Furthermore, within the panel
of tested samples, we preliminary explored variables such as different manufacturers and delactosed
mascarpone productions.

2. Results and Discussion

2.1. HS-SPME GC-MS Results

Solid-phase microextraction (SPME) is a very popular analytical extraction technique used before
GC-MS headspace (HS) analysis thanks to its ease-to-use, the possibility of automation, and good
sensitivity. SPME utilizes a short, thin, solid rod of fused silica coated with an absorbent/adsorbent
polymer. The coated fused silica (the SPME fiber) is attached to a metal rod, and both are protected by
a metal sheath that covers the fiber when not in use. SPME is particularly well suited to the analysis
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of dairy products being capable of extracting a broader range of analytes than most other sample
preparation methods [12]. Moreover, thanks to the relatively low temperatures and short times at
which headspace SPME extraction is performed, the risks to induce thermal artifacts are extremely low
if compared with other techniques such as simultaneous distillation-extraction (SDE) [13].

Methods developed for the analysis of organic compounds from aqueous samples
by SPME coupled to GC have been used to analyze VOCs in fresh and ripened dairy
productions [8,14]. A wide range of fibers with varying affinities for specific classes of volatile
organic compounds is available. After a preliminary screening of seven different types of
SPME fibers (100 pm PDMS (polydimethylsiloxane), 60 um PEG (Carbowax-Polyethylene Glycol),
85 um PA (Polyacrylate), 75 um CAR/PDMS (Carboxen/Polydimethylsiloxane), 85 um CAR/PDMS,
50/30 um DVB/CAR/PDMS (Divinylbenzene/Carboxen/Polydimethylsiloxane), and 65 um PDMS/DVB
(Polydimethylsiloxane/Divinylbenzene)) 75 pm CAR/PDMS was chosen, because it provides the
higher number of extracted volatiles. This fiber has been suggested to work particularly well for
the analysis of volatiles in dairy products [12]. Extraction conditions have also been preliminarily
explored by checking the effect of different times (10 min up to 4 h) and temperature (40 and 60 °C). A
good compromise between the multiplicity of extracted volatiles and peak intensity was found by
headspace exposing the fiber for 60 min at 60 °C and this experimental condition was selected for the
present characterization.

A total of 27 compounds belonging to different chemical classes (nine ketones, five alcohols,
four acids, three hydrocarbons, two furans, one ester, one lactone, one aldehyde, and one oxime)
have been identified. Ketones, which might induce fruity and floral sensory notes, are common
constituents of most dairy products [15-17] and by far the most important class of compounds
contributing to the mascarpone cheese aroma. In particular, 5 different ketones (2-heptanone >
2-pentanone > 2-propanone > 2-nonanone = 2-butanone) represent almost 75-80% of the sample
headspace. The compounds 2-heptanone and 2-pentanone characterized by odor descriptors including
sweet, fruity, orange peel, and herbaceous [15] are the dominating volatile organic compounds in
all samples. Several alcohols have been detected, but differently from ketones, are not present in
all samples—1-pentanol and 2-ethyl-1-hexanol, both common primary alcohols detected in dairy
products [15], are ubiquitous, and ethanol and 1,2 propandiol have been detected only in one sample
(Manufacturer B), suggesting a possible technological origin. Other minor compounds, including
short- and moderate-chain even-numbered fatty acids (C4—Cjy), ethyl acetate, 5-hexalactone, toluene,
benzaldehyde and methoxyphenyl oxime have been already found in cheese products [16,18,19]. The
two hydrocarbons 2,4-dimethylheptene and 2,2,4,6,6-pentamethylheptane have been detected only in
one sample (Manufacturer A) and the latter has been detected in the volatile fraction of butter [20].
Furfural and 2-furanmethanol, identified in all mascarpone cheese samples, have been found to
contribute to the nutty and roasted aroma of Parmigiano-Reggiano cheese [21].

In order to provide a general overview of volatile composition of three different samples (M1-M3)
of Mascarpone cheese analyzed by HS-SPME GC-MS, we performed multivariate data analysis using
Principal Component Analysis (PCA), reporting the graphical result in Figure 1.
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Figure 1. Principal Component Analysis (PCA) biplot of the 3 different commercial samples of
mascarpone (M1, M2, and M3). For each sample, the mean (n = 4) is represented by the sample name.
Score plot was given by the Volatile Organic Compound (VOC) content for each sample and loading
plot of the single volatile organic compounds. The codes correspond to the samples indicated in Table 1.

In the figure, it is possible to observe the samples (scores) and variables (loadings) plots related
to the first two principal components, which (cumulated) explain the 77% of the total variance (PC1,
50.0%; PC2, 27.0%) associated with the data set. A clear separation of mascarpone cheese M1 from the
other samples is observable along the PC1. PC2 explains the parting between M2 and M3 mascarpone
samples. The replicates belong to the same commercial mascarpone batch that is well-clustered
together, while is possible to highlight a clear separation of the three samples on the biplot. Observing
the loadings (i.e., the involvement of the single volatiles), it is possible to have an idea of the different
influence of the diverse volatiles in justifying variance observed trends.

Table 1. List of commercial ‘Mascarpone’ samples analyzed in the present study. All samples (M1-M12)
were investigated by PTR-ToF-MS analysis. Underlined samples (M1-M3) were evaluated also by
HS-SPME GC-MS.

Sample Claimed Characteristics Manufacturer
M1 Mascarpone A
M2 Mascarpone B
M3 Mascarpone C
M4 Mascarpone B
M5 Mascarpone C
M6 Mascarpone C
M7 Mascarpone M
Ms8 Mascarpone M
M9 Mascarpone without lactose M
M10 Mascarpone without lactose M
M11 Mascarpone without lactose C
M12 Mascarpone without lactose C

2.2. PTR-ToF-MS Results and Comparison with HS-SPME GC-MS Findings

As other Direct-Injection Mass Spectrometric (DIMS) technologies, PTR-MS finds application in
many sectors, from environmental sciences to food chemistry, and from biological studies to medical
applications. With this regard, we recently described a tailored system, that found application in this
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study, achieved connecting PTR-ToF-MS with an automated sampler, and associated custom-made
data analysis applications that improve the versatility of the analytical approach in the determination
of VOCs in association with i) huge numbers of samples, ii) bioprocesses monitoring, and iii) high
numbers of variables to be considered [11].

PTR-MS has been already exploited to study VOCs associated to dairy products such as mozzarella
cheese [22], Grana Padano, Parmigiano Reggiano, and Grana Trentino cheeses [23], liquid whey [24],
butter and butter oils (by means of quadrupole-based PTR-MS analyses, sensory analyses and classical
chemical analyses) [25], milk and whey powders [26], anhydrous milk fat [26], and fermented
milk-based beverages (yogurt and kefir) [27,28].

All samples included in this study have been analyzed by PTR-ToF-MS. A total of 411 mass
peaks were detected and extracted. Upon comparison with the blanks, 92 peaks were kept that
are significantly different between various manufacturers (p < 0.01 with Bonferroni correction) and
tentatively identified on the basis of exact mass, isotopic ration, and literature [29]. PTR-MS allowed
the detection and characterization of a larger number of VOCs/VOC fragments, which was larger than
the number of volatiles identified by GC. For the PTR analysis, all vials were incubated alternatively
at 40 °C or at 60 °C (data not shown) for 30 min before PTR-MS analysis. The last one was the
temperature at which good results were obtained by HS-SPME GC-MS. However, with PTR, even at
40 °C, the analysis was successfully performed and results were reliable. For this reason, we report
the data performed at 40 °C, a temperature closer to the real mascarpone cheese testing conditions.
One-way ANOVA followed by Tukey HSD test was carried out to compare and underline significant
differences among the assessed mascarpone samples. For each peak, we obtained the concentration of
the corresponding VOC ion in the headspace of all explored samples. Boxplots reported in Figure 2
illustrate the observed trends for 6 ions among the tested samples, as illustrative cases. In detail,
the figure proposes the behaviors corresponding to the peaks at m/z 73.065 (tentatively identified as
2-butanone), m/z 75.044 (tentatively identified as propionic acid), m/z 83.086 (tentatively identified as
hexanol fragment), m/z 87.080 (tentatively identified as 2-pentanone/isoprenol), m/z 98.105, and m/z
101.096 (tentatively identified as 2-hexanone). The intensity corresponding to the mass peak m/z 73.065
reaches the highest values in the delactosed samples produced by Manufacturer C, while the standard
productions belonging to the same manufacturer registered the lowest values (as all mascarpone
batches of Producer M) (Figure 2a). Samples from Manufacturers A and B present intermediate
intensities for this peak (Figure 2a). In accordance with these results, 2-butanone was found to be
variable in different types of whey [30]. In only the M2 batch did we detected a relevant intensity for
the mass peak m/z 75.044 (Figure 2b), tentatively identified as propionic acid, a compound that can be
responsible for a dairy taste/odor with a pronounced fruity lift [31].
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Figure 2. The boxplots indicated by letters (a—f) represent selected volatiles found in association
with the different commercial mascarpone samples such as m/z 73.0649—C,HyO*—t.i. 2-Butanone,
75.0437—C3H;0,*—t.i. Methyl acetate, 83.0860—C¢Hj1"—ti. fragment of Hexanal/Hexenol,
87.0809—CsH;;0"—t.i. 2-Pentanone/3-Buten-1-ol, 3-methyl-, 98.1048—isotope of CyHjz™—t.i.
Heptanal, 101.0968—CgH;30*—t.i. 2-Hexanone. Different letters indicate a significant difference
between different samples (p < 0.05, one-way ANOVA, Tukey HSD).

The mass peak m/z 83.086 has been found with pronounced intensities in the samples produced
by the Manufacturers A and B (Figure 2c). Hexanal was included among the high-content compounds
identified in samples belonging to dairy products [32] and described as having a fatty, green, grassy,
powerful, penetrating characteristic fruity odor and taste [31]. A similar trend can be underlined for the
intensities of mass peak my/z 101.096 (Figure 2f). Finally, a considerable variability can be highlighted
for the intensities corresponding to the mass peaks m/z 87.080 and 98.105 (Figure 2d,e).

Other than this kind of punctual analysis, PTR analysis offers also the opportunity to depict a
global analysis of molecular fingerprinting associated with the headspaces of the different samples.
Considering that the present work deals with an integrated analytical approach, we propose a PTR
data set selected in light of the comparison with GC data. In fact, we defined a new subset of the
PTR-ToF-MS data including only the mass peaks that were found also using the HS-SPME GC-MS
technique. As a result, we have a new matrix (Table 2) of twenty peaks corresponding to the masses of
protonated molecular ions of compounds such as acetic acid (sour pungent, cider vinegar, slightly
malty with a brown nuance; naturally occurring in various dairy products, it has a role in butter and
cheese flavors), acetoin (acidic, sour, cheesy, dairy, creamy with a fruity nuance; normally occurs
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in butter, milk, and cheeses), acetone (characteristic aromatic odor, pungent, somewhat sweet taste;
naturally occurring in fermented dairy products), ethanol (slight, characteristic odor and a burning taste;
naturally occurring in blue cheese, cheddar cheese, Swiss cheese), furfural (characteristic penetrating
odor typical of cyclic aldehydes; naturally occurring in cheeses), hexanoic acid (sickening, sweaty,
rancid, sour, sharp, pungent, cheesy, fatty, unpleasant odor reminiscent of copra oil; naturally occurring
in cheeses, butter, milk), and octanoic acid (mildly unpleasant odor and a burning, rancid taste, also
reported as having a faint, fruity-acid odor and slightly sour taste; natural component of butter fat,
occurring in cheeses) [31,33].

Table 2. Volatile compounds detected by both Proton Transfer Reaction-Mass Spectrometry coupled to a
Time of Flight mass analyzer (PTR-ToF-MS) and SPME/GC-MS in association with mascarpone samples.

Protonated Ion

Compound Chemical Class
m/z Sum Formula
Ethanol Alcohols 47.049 C,H,0*
2-Propanone Ketones 59.049 C3H;0%
Acetic acid Organic acids 61.028 C,H50,*
2-Butanone Ketones 73.065 C4HyOF
1,2-Propanediol = Propylene glycol Alcohols 77.060 C3HoO,*
2-Pentanone/3-Buten-1-ol, 3-methyl- Ketones/Alcohols 87.080 CsHy, 0%
Z_But:ﬁﬁzggz:zgz}gl) 1/9 ;iz:anom Ketones/Organic acids/Esters 89.060 C4HoO,*
Toluene Hydrocarbons 93.070 CyHo™"
Furfural Furans 97.028 CsH50,*
2-Hexanone Ketones 101.096 CgHy30%
Benzaldehyde Aldehyde 107.049 CyH,0*
5-Methyl-delta-valerolactone Lactones 115.075 CeH110,7
2-Heptanone Ketones 115.112 C;H; 50"
Hexanoic acid Organic acids 117.091 CeHy30,7
2,4-Dimethyl-1-heptene Hydrocarbons 127.148 CoHypo*
2-Octanone Ketones 129.127 CgHy,0%
1-Hexanol, 2-ethyl- Alcohols 131.143 CgH100%
2-Nonanone Ketones 143.143 CoHy9O*
Octanoic acid Organic acids 145.122 CgHy70,%
Oxime-, methoxy-phenyl- Oxime 152.071 CgHgNO,*
2-Undecanone Ketones 171.174 C11Hp30*
Heptane, 2,2,4,6,6-pentamethyl Hydrocarbons 171.211 CipHyyt

Statistical tests were performed on the new matrix in an attempt at understanding the impact
of these VOCs on the characterization of the different mascarpone cheese samples. The results
obtained for the twelve experimental modes were visualized by means of principal component analysis
(PCA), with each point representing a distinct sample (Figure 3), maximizing explained variability in
two dimensions.
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Figure 3. Analysis of mascarpone VOCs profile assessed by PTR-ToF-MS. Plot depicts the VOC profile
distribution of the twelve Mascarpone over the PCA score plot defined by the first two principal
components. The codes correspond to the samples indicated in Table 1.

Separation among Mascarpone samples according to the first two components accounted for
about 62% of the total variance. It is possible to highlight how the replicates belonging to the same
sample generally clustered together. In addition, a good separation among the different samples is also
depicted. Considering all variables connoting the panel of different mascarpone cheese analyzed, it is
mandatory to underline that the studied diversity in terms of different producers and classic versus
delactosed was not selected in order to delve into the effect of these parameters. In fact, it was just a
heterogeneous panel selected in order to provide a broad description of the overall VOCs associated
with this traditional dairy production. However, it is possible to foresee some preliminary differences,
such as clear groups among mascarpone cheese samples belonging to the same manufacturer and
a general (more or less pronounced) separation between classic and delactosed samples within the
same producer (Figure 3). These pieces of evidence suggest the need for further studies with tailored
sampling in order to test the potential of a PTR-based approach as a discriminatory tool to monitor
these variables. Considering the sensory changes among mascarpone cheese samples, our study
confirmed the presence of a diversification comparing different batches and different producers already
described in terms of spreadability [34]. In fact, Cattaneo et al. [34], studying eighteen batches from
six different manufacturers, noticed differences in four viscometric parameters they selected to assess
changes of rheological aptitude of mascarpone cheeses. This sensory variability calls attention to the
need for versatile tools for the industrial quality control also in the case of mascarpone cheese, a topic
of generally significant interest in the food industry [35,36].

In Table 3, it is possible to delve into the results for a more representative number of mass peaks,
underlining significant differences among concentrations reported for 22 protonated ions out of the
92 selected after comparison with the blanks. From this analysis, it is possible to notice how the
trends for selected mass peak intensities follow a certain producer-dependent behavior. It is also
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clear how the probabilities to find selected mass peaks associated to given experimental variables
considerably increase using the PTR-based technique, due to the potential of an untargeted approach.
The opportunity to have a wide (untargeted analysis) and fast (rapid time of analysis without any
sample preparation/extraction/destruction) view of the VOCs associated with mascarpone headspaces
confirmed the aptitude of this analytical approach to allow rapid noninvasive quality control for the
food industry (e.g., [37,38]), already explored in the dairy industry but on other matrices (e.g., [25,26]).
An approach that can i) simplify the selection of mascarpone as an ingredient in the food industry and
ii) boost the quality improvements in the production of this fresh cheese.

Table 3. Organic compounds associated to mascarpone headspace detected by PTR-ToF-MS. Black color
indicates compounds identified also by SPME/GC-MS. For each compound, different letters indicate a
significant difference between different samples according to ANOVA and Tukey HSD (p < 0.05). The
codes correspond to the samples indicated in Table 1. In the parenthesis, the different producers.

MM ™ SF M1 (A) M2 (B) M3 (O) M4 (B) M5 (C) p-Value
41.039 41.039 CsHst  212+09° 27 +3¢ 114+062 21+1P 10+12 1x10713
43,018 43018  CyH30* 300+07b  44+3° 24422 33+2b 24 +52 3x107°
43.054 43.054 C3H,*  115+06°  16+14d 35+052 6.7 +04P 31+042 4x1077
45.033 45.033  CpHs0"  113+6P 175+ 12°¢ 81+32 114 +10P 88 + 232 2x107°
47.049 47.049 C,H,0* 8+32 52+£39¢ 10+82 16+ 12 44 + 5be 2x1073
55.054 55.054 CyH;¥  133+04°¢ 149+089 81x03P 15+14 60+042 7 x 10716
57.070 57.070 C4Ho* 60+01°¢ 56+06° 39x02P 12+149 27+0.12 7x1071
59.049 59.049 C3H,O*  1062+35° 976 +72°  563+29° 1230+ 1164 355 + 262 9x 10715
61.029 61.028  C,H50,*  10+32 26+6P 18 + 52b 11+£22 24 +10b 4x107*
63.026 63.026 CH,St  151+03° 16+1¢ 72+04P 20«24 33+052 4x10716
69.070 69.07 CsHo* 64+022 83x06° 600472 9.0+0.8P 62+062 2x1078
71.086 71.086 CsHpi" 12+012%  17+08® 07+012  13+012*  072+0052 1x1073
73.065 73.065 C4Ho,O* 77 2P 82+ 7P 24+12 76+ 7P 1724092 1x 10716

75.044 75.044  C3H;O," 14+027 20+1b 1240272 14+032 14+022 1x1072
83.086 83.086 CeHii* 1.6+01P  17+01P 07+00% 1.8+02b 071 +0.042 4x10714
87.044 87.044  C4H;O,* 37+05b¢ 38+09P 30x042 43+04° 20+032 2x107°

87.081 87.08  CsH;jO*  61+2°¢ 66+5¢ 43 +2b 61+6° 23+22 6x 10713
89.060 89.06 C4HoOrt  22+062 52+06° 29+032 2+13P 35+03P 2x10°°
97.102 97.101 C;Hi3*  23+01°¢ 272029  18+00P 2.6+0.14 1.1+0.1% 4x10714
101.097 101.096 C;H,O0* 1.7+01°¢ 20+019 10+00Pb 2.0+0.24 0.6+0.12 5x 10714
115.113 115112 C;H;50T 28 +1°¢ 30+2¢ 205+ 06" 30+2¢ 12+1°2 7x 10714
143.145 143143  CoH3oOt 21+01°¢ 25+029 17+01Pb 242024 1.1+0.1% 2x10712

This panel of 22 peaks includes only 9 masses detected also by the GC analysis, thus providing a
broader overview of the diversity among samples associated with VOCs content. Comparing these
findings with a recent PTR headspace analysis of other dairy product of industrial interest (milk powder,
whey powder and anhydrous milk fat), the mass peaks 47.049, 63.026, 73.065, 87.081, 89.060, 101.097,
115.113, 143.145 seem to be peculiar of mascarpone headspace [26], indicating a potential role of the
corresponding volatiles in shaping perceptions associated to Mascarpone consumption. Additionally,
on the other hand, we found variable trends in mass peaks already detected in association with the
headspaces of skim milk powder (43.018, 61.029, 87.044, 97.102), whole milk powder (41.039, 43.018,
45.033, 55.054, 61.029, 71.086, 75.044, 83.086, 87.044), whey powder (43.018, 59.049, 61.029, 75.044), and
anhydrous milk fat (43.018, 43.054, 57.070, 69.070) [26]. This partial and specific overlapping, in terms
of volatiles content, with the headspaces of other dairy ingredients/products, can be probably of help
in the understanding of the unique sensory properties of mascarpone matrix.

Finally, in order to provide more complete information about the preliminary potential that arises
from the PTR data in terms of separation of delactosed products, we propose two PCA representations,
analyzing samples with or without lactose for the Manufacturers C and M, respectively (Figure 4).
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Figure 4. Analysis of mascarpone VOCs profile assessed by PTR-ToF-MS for the Manufacturers C (a)
and M (b) plotted by the first and the third principal components. The labels and the selected areas
indicate the separation between samples with or without lactose.

Figure 4a (Manufacturer C) and 4b (Manufacturer M) show that mascarpone samples classic and
delactosed in this subset (different producers) are separated along the first and third PC (explaining
47.6% and 57.9% of the total variance, respectively). Even if preliminary, these results confirm the
potential of PTR-TOF-MS analysis for the quality evaluation of lactose-free dairy products. In fact,
recently, this analytical approach found application to monitor VOC variability in ultrahigh temperature
lactose-free milk samples (assessing the impact of storage time and the of the use of different lactase
preparations) [39]

3. Materials and Methods

3.1. Sample Selection and Preparation

A total of 12 different mascarpone batches were studied in this project that are listed in Table 1.
The corresponding chemicophysical characteristics are reported in Table S1.

We obtained the samples from different local markets and stored them at 4 °C. The samples
represent different manufacturers, all analyzed within the expiration date, and both plain and
delactosed Mascarpone.

3.2. HS-SPME GC-MS Measurements

Aliquots of 8 mL of sample were placed in a 20 mL vials that were immediately sealed with a
silicone rubber Teflon cap and crimped with aluminium seal. Then samples were heated at 60 °C
and kept at the same temperature for 30 min while a polydimethylsiloxane/divinylbenzene SPME
fibre (Supelco, Bellefonte, PA, USA) was exposed to the headspace over the surface of each sample in
order to collect the compounds in the vapour phase. The exposure time was optimized in preliminary
experimental trials. The SPME coating containing the headspace volatile compounds was inserted
into the GC injection port and then thermally desorbed at 250 °C for 10 min in a 6890 GC (Agilent
Technologies, Santa Clara, CA, United States). Compounds were eluted by a He gas flow of 1,4 mL/min
in split mode (split 1:4) and separated using a 60 m Varian FactorFour WAXms capillary column (film
thickness 0.25 mm, 0.25 mm internal diameter) (Varian, Middelburg, The Netherlands). The oven
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temperature, initially set to 35 °C, was increased to 210 °C at 4 °C/min, then to 240 °C at a rate of
20 °C/min, and then this final temperature was held for 5 min. The mass spectrometer was set to
electron ionization mode (MS-EI) generated at 70 eV, and mass spectra were collected in full scan mode,
collecting ions from 39 to 250 m/z. The volatile compounds studied were identified by comparing their
mass spectra and their retention times to those of reference standards analyzed at the same conditions
and by comparison with spectra recorded in the Wiley 6 N mass spectral library (Wiley, Hoboken, NJ,
USA) and, when needed, to literature references. Due to the lengthy HS-SPME GC/MS analysis, only
four samples have been analysed by this method. For each sample, four replicates were analyzed.

3.3. PTR-ToF-MS Measurements

A commercial PTR-ToF-MS 8000 instrument (Ionicon Analytik GmbH, Innsbruck, Austria)
was used for the headspace measurements. The instrumental conditions in the drift tube were as
following—drift voltage 550 V, drift temperature 110 °C, drift pressure 2.30 mbar affording an E/N
value of 140 Townsend (1 Td = 10717 V.cm?). Sampling was performed with a flow rate of 40 sccm.
The mass resolution (m/Am) was at least 3800. Measurements were performed in an automated way
by using a multipurpose GC automatic sampler (Gerstel GmbH, Mulheim am Ruhr, Germany) as
previously described [11]. The measurement order, both samples and replicates, was randomized
to avoid memory effects. All vials were incubated at 40 °C for 30 min before PTR-MS analysis.
Each sample was measured for 30 s, at an acquisition rate of 1 spectrum per second with an overall
throughput of one sample every 5 min. The experiment was repeated at 60 °C, the temperature at
which HS-SPME GC-MS provided better results. The entire experiment was repeated three times
and empty vials, containing lab air, were measured together with the sample set and considered as
“blanks”. Data processing of PTR-ToF-MS spectra included dead time correction, external calibration
and peak extraction steps performed according to a procedure described elsewhere [40]. The baseline
of the mass spectra was removed after averaging the whole measurement and peak detection and
peak area extraction was performed by using modified Gaussian to fit the data [41]. To determine the
concentrations of volatile compounds in ppbv (part per billion by volume) the formulas described by
Lindinger et al. were used by assuming a constant reaction rate coefficient (kg=2 x 10~ cm?/s) for
H3O™" as primary ion [42].

3.4. Statistical Analyses

Data exploration was based on Principal Component Analysis (PCA) of centered and scaled
data. Analysis of variance (ANOVA) with Bonferroni correction was performed for selection of mass
peaks in the sample headspace which are significantly higher than blanks. After this step, one-way
ANOVA followed by Tukey’s HSD (p < 0.05) was applied to evaluate the significant differences among
mascarpone samples. All analyses were performed with core functions of R programming language
(R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2014) and its
external packages (ChemometricsWithR, DiscriMiner, prospectr). In some cases, in order to interpret
the results of the experiment, the entire dataset was divided into smaller subsets based on different
criteria (e.g., producer, lactose content).

4. Conclusions

Using two complementary analytical approaches, Headspace-Solid Phase Microextraction-Gas
Chromatography-Mass Spectrometry (HS-SPME GC-MS) and Proton-Transfer Reaction-Mass
Spectrometry coupled to a Time of Flight mass analyzer (PTR-ToF-MS), the present work provides a
first description of Volatile Organic Compounds (VOCs). In addition, we underline the differences in
VOC content susceptible to characterize the aroma of different brands and product types (classic and
lactose-free). On the whole, the dominance of volatiles generally associated to floral, fruity, sweet, and
nutty notes might contribute to explain the delicate sensory impression perceived by smelling this
fresh dairy product. Unfortunately, the aroma profile of the present investigation cannot be discussed



Molecules 2020, 25, 1242 12 of 14

in light of previous literature that is, as mentioned, very scarce. Considering the wide number of
products that use mascarpone as raw material, such as the popular Tiramist1 and coffee mascarpone
cream, this study provides information to design future studies conceived to assess the contribution of
this unripened cheese to the sensory characteristics of final products.

Supplementary Materials: The following are available online, Table S1: Monitored chemico-physical
characteristics for the list of ‘Mascarpone’ samples analyzed in the present study.
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