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Abstract: Snakebite is a neglected disease with a high impact in tropical and subtropical countries.
Therapy based on antivenom has limited efficacy in local tissue damage caused by venoms.
Phospholipases A2 (PLA2) are enzymes that abundantly occur in snake venoms and induce several
systemic and local effects. Furthermore, sulfur compounds such as thioesters have an inhibitory
capacity against a snake venom PLA2. Hence, the objective of this work was to obtain a carbodithioate
from a thioester with known activity against PLA2 and test its ability to inhibit the same enzyme.
Benzyl 4-nitrobenzenecarbodithioate (I) was synthesized, purified, and characterized using as
precursor 4-nitrothiobenzoic acid S-benzyl ester (II). Compound I showed inhibition of the enzymatic
activity a PLA2 isolated from the venom of the Colombian rattlesnake Crotalus durissus cumanensis
with an IC50 of 55.58 µM. This result is comparable with the reported inhibition obtained for II.
Computational calculations were performed to support the study, and molecular docking results
suggested that compounds I and II interact with the active site residues of the enzyme, impeding the
normal catalysis cycle and attachment of the substrate to the active site of the PLA2.
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1. Introduction

Based on our previous results, we decided to compare the biological activity of a thioester with
the corresponding carbodithioate exchanging oxygen by sulfur. We studied the ability of benzyl
4-nitrobenzenecarbodithioate (I) to inhibit a myotoxic Asp-49 phospholipases A2 (PLA2) from Crotalus
durissus cumanensis venom, as we are interested in the search for inhibitors of snake venom enzymes
that complement antivenom therapy. In this work, we show, for the first time, the capacity of a
carbodithioate to inhibit snake venom toxins.

The World Health Organization (WHO) recognizes snakebite as a Neglected Tropical Disease [1].
Each year between 4.5 and 5.4 million people are bitten by snakes [2], mainly poorer people living
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in rural areas of tropical countries; hence, this disease has significant medical importance since it is
associated with high morbidity and mortality. There are between 81,410 and 137,880 deaths per year,
and approximately three times this number of people are left with permanent disabilities [3]. In 2018,
the Colombian National Institute of Health reported 5434 ophidian accidents [4].

Systemic and local effects of snakebite envenomations are caused by the action of several enzymes,
proteins, and peptides, including phospholipases A2 (PLA2) [5]. PLA2 from Viperidae venoms are
myotoxins that cause local and systemic myotoxicity and myonecrosis via the disruption of the plasma
membrane [6,7]. PLA2 are one of the most abundant muscle-damaging components present in snake
venoms. Among them, myotoxic PLA2 are calcium-dependent enzymes that catalyze the breakdown
of glycerophospholipids, the main component of biological membranes, into lysophospholipids. The
latter is responsible for the release of fatty acids, such as arachidonic acid, which is a precursor of
pro-inflammatory eicosanoids [7]. Moreover, such degradation can lead to destabilization of the
membrane bilayer [8].

Usually, PLA2 have 119 to 134 residues, three long helixes, two antiparallel β sheets, and a
calcium-binding loop. The hydrophobic channel is composed of the antiparallelαhelixes (residues 37–57
and 90–109, respectively) together with the N-terminal helix (residues 1–12). This structure leads the
substrate to the active site formed by His48, Asp49, Tyr52, and Asp99. Additionally, Asp49, Tyr28,
Gly30, and Gly32 form the calcium-binding loop that coordinates the Ca2+ and helps in the stabilization
of the tetrahedral intermediate during catalysis [8]. Furthermore, there is an interfacial binding surface
that allows the lipid–water interface of the phospholipid membrane bilayer.

Viperidae snake venoms also contain catalytically inactive PLA2 homologues, which have some
changes in their primary structure, highlighting a specific mutation in the catalytic residue that changes
Asp49 by Lys, Ser, Arg, Asn or Gln. Nevertheless, these PLA2 also induce myotoxicity and edema, by a
mechanism independent of enzymatic hydrolysis of membrane glycerophospholipids. These toxins
require an allosteric activation induced by the binding of fatty acid into the PLA2 hydrophobic channel,
which activates specific sites for docking and disrupting membrane glycerophospholipids. Finally,
destabilization occurs, and myotoxicity takes place [9].

Currently, there are no alternative or complementary therapies to antivenom for snakebite
envenoming [10], although a considerable number of reports demonstrated a limited efficacy of the
actual therapy against the local tissue damage [11]. This justifies the efforts of many research groups
to find new molecules capable of inhibiting the effect of enzymes that cause local tissue damage and
could act as a complement to antivenom therapy.

The search for new inhibitors of snake venom enzymes has become a topic of growing interest.
There are reports of PLA2 inhibitors from natural sources and synthesis, including substituted
thiobenzoic acid S-benzyl esters [12], naringenin derivatives [13], Aiplai, a compound from Azadirachta
indica [14], cholic and ursodeoxycholic acids [15]. Varespladib, a pharmacological drug initially
designed to inhibit mammal PLA2, recently proved effective in inhibiting snake venom PLA2, including
Bothrops asper and Bothrops jararaca with IC50 of 0.0001 and 0.0002 µM [16]. Some compounds have
reported IC50 with the same methodology used in this work, namely Pinostrobin, a flavonone isolated
from Renealmia alpinia (IC50 of 1.85 mM) [17], Morelloflavone, a biflavonoid from Garcinia madruno,
with IC50 of 0.38 mM [18], and thioesters derived from 2-sulfenyl ethylacetate, with IC50s between
132.7 and 305.4 µM [19].

In previous studies, we found that substituted thiobenzoic acid S-benzyl esters and thioesters
derived from 2-sulfenyl ethylacetate are inhibitors of an Asp49-PLA2 enzyme isolated from the
venom of the Colombian Crotalus durissus cumanensis rattlesnake in micromolar concentrations [12,19].
In this study, the title compound belongs to the carbodithioates, R-C(S)-S-R’, a family closely related
to thioesters R-C(O)-S-R’. Changing the carbonyl C(O) function to thiocarbonyl C(S) implies some
structural differences that deserve to be mentioned. In comparison to the corresponding C=O bond, a
lengthening of the C-S interatomic distance is expected due to the ineffective overlapping between
p-orbitals of the first (C) and second (S) row atoms. It transforms the π bond of the C=S group into C-S;
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therefore, a more diffuse charge transfer toward the bulky and slightly more electronegative sulfur
atom C+-S- is expected. These hypotheses prompted us to determine the PLA2 inhibition of the tittle
carbodithioate I. The structures of I and the related thioester II (4-nitrothiobenzoic acid S-benzyl ester,
previous work) are shown in Figure 1, and some of their calculated physicochemical properties are
found in Table 1. Both compounds have the same syn/anti planar conformational preferences around
the ψ(X-C8-S-C7) torsion angle [20,21]. The X-ray structure of I [22] shows a syn conformation for the
carbodithioate moiety with a planar geometry [ψ(S=C8-S-C7) = -1.2◦].
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Figure 1. General structure of studied compounds: Benzyl 4-nitrobenzenecarbodithioate (I) and
4-nitrothiobenzoic acid S-benzyl ester (II).

Table 1. Studied compounds and physicochemical properties.

Compound X MW a nON a nOHNH a LogP(calc) a

I S 289.38 3 0 4.41
II O 273.31 4 0 3.86

a Physicochemical properties calculated using Molinspiration. MW: Molecular mass. nON: Hydrogen bonds
acceptor. nOHNH: Hydrogen bonds donator. LogP: Calculated octanol/water partition coefficient.

Several methods to synthesize carbodithioates are described in the literature, and the
oxygen/sulfur exchange is one of the simplest and direct ways to convert a thioester in
carbodithioate compound. Although the Lawesson reagent [23,24] is widely used for this purpose,
2,4-Bis(4-phenoxyphenyl)-1,3,2,4-dithiadiphsophetane 2,4-disulfide was found more useful and
effective for obtaining I [25].

Compound I was prepared in order to test its inhibitory ability on the enzymatic activity of a snake
venom PLA2. Theoretical calculations were also performed to determine optimized geometries and
vibrational frequencies to assist the experimental infrared band assignments. Moreover, experimental
parameters obtained from the X-ray crystal structure of I [22] were used to validate the theoretical results.

Finally, a molecular docking study of I and II was carried out to suggest a mode of action of both
compounds to evaluate the influence of the carbonyl and thiocarbonyl groups on the affinity for the
active site of PLA2.

2. Results

2.1. Conformational Analysis

The experimental structural parameters of I were taken from the single-crystal X-ray diffraction
results [22]. The carbodithioate function shows a syn conformation with the chain S=C8-S-C7-C1′

within this plane with dihedral angles ψ(S=C8-S-C7) = −1.2◦ and ψ(C8-S-C7-C1′) = −174.7◦. The
phenyl and nitrophenyl rings are strongly deviated [ψ(S-C7-C1′-C2′) = 62.9◦] and almost coplanar
[ψ(S=C8-C1-C2) = 7.7◦], respectively, from this plane. The interatomic distances involving the sulfur
atoms in the thiocarbonyl and thioether C8-S-C7 groups are 1.644(3)Å (C8=S), 1.714(3)Å (C8-S),
and 1.807(4)Å (C7-S).
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The calculated parameters were obtained by B3LYP/6-31+G(d,p) level of approximation using
Gaussian 09 (Gaussian Inc, Wallingford, CT, USA) [26] program package. The optimized free molecule
represents the global minimum having no negative frequencies. The calculated potential energy curve
for the torsion around the dihedral angle ψ(S=C8-S-C7) showed two minima for the synperiplanar and
+anticlinal conformations, being the +anticlinal 28 kJ/mol higher in energy than the synperiplanar form.
The last conformation was used to perform the vibrational frequencies calculations. The bond distances
and angles were compared with the experimental ones (single crystal X-ray diffraction spectroscopy)
and are shown in Table S1 (Supplementary Material). The carbodithioate function connecting both
aromatic rings is almost planar (ψ(S=C8-S-C7) = 2.65◦, ψ(C8-S-C7-C1′) = 179.01◦), but the phenyl and
nitrophenyl moieties are twisted in respect to this plane in 91.42◦ and 36.25◦, respectively. The bond
distances C8=S, C8-S, and C7-S, are 1.653 Å, 1.758 Å, and 1.847 Å, respectively.

2.2. Vibrational Analysis

Compound I has 84 normal vibrational modes. The experimental, most representative IR bands
are shown in Table 2. The C=S stretching is a very strong band at 1048 cm−1 and 1065 cm−1 in the
experimental and calculated spectra, respectively. The antisymmetric stretching for S-C8-C1 involves
the carbodithioate moiety and is observed at 895 cm−1 (experimental) and 902 cm−1 (calculated). For
the nitro group, two bands corresponding to the antisymmetric and symmetric stretching vibration
have been measured at 1516 and 1343 cm−1, respectively (calculated: 1589 and 1382 cm−1).

Table 2. Selected calculated (B3LYP/6-31+G(d,p)) and experimental IR frequencies (cm−1), relative
intensities, and tentative assignments of the main fundamental vibrational modes of I.

Calculated a IR a Assignment b

1647 m 1561 w δi.p dithiobenzoate ring+νas NO2
1589 s 1516 vs νas NO2

1382 vs 1343 vs νs NO2
1250 m 1210 m νC8-C1
1065 s 1048 vs νC8=S
902 w 895 w νas S-C8-C1
852 m 848 m Scissor NO2

758 vw 752 w o.o.p. wag NO2
a Intensities have been classified semi-quantitatively in terms of very strong (vs), strong (s), medium (m), weak (w),
and very weak (vw).b ν, stretching; s, symmetric; as, antisymmetric; o.o.p out of plane.

2.3. Biological Activity

The carbodithioate I inhibited the enzymatic activity of a myotoxic PLA2 from Crotalus durissus
cumanensis venom (Colombian rattlesnake) with an IC50 of 55.58 ± 4.6 µM, which was calculated from
the linear portion of the dose-response curve (Figure 2). The inhibitory capacity of I is comparable
with the reported inhibition for the thioester II (52% of inhibition at a concentration of 50 µM) [12].

2.4. Molecular Docking Study of I and II

To understand the mechanism of inhibition and compare the interactions of PLA2 with compounds
I and II, we performed a molecular docking study using the available protein structure (PDB ID 2QOG).

Docking conformations with the lowest binding energy (−7.1 kcal/mol) for both ligands are shown
in Figure 3. It is observed that these conformations are very similar and are almost entirely aligned. As
expected, the most significant difference is observed in the distances of (C=S) and (C=O) bonds with
1.65 Å and 1.22 Å, respectively.
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Figure 3. Docking conformations with the highest affinities for compounds I (red) and II (yellow).

Additionally, we found hydrogen bonds with Nδ1 of His48 as the donor, and oxygen from the
nitro group as the acceptor, with distances of 3.133 Å and 3.123 Å for ligands I and II, respectively
(Figure 4).

Molecules 2019, 24, x FOR PEER REVIEW 6 of 13 

 

 

Figure 3. Docking conformations with the highest affinities for compounds I (red) and II (yellow). 

Additionally, we found hydrogen bonds with Nδ1 of His48 as the donor, and oxygen from the 

nitro group as the acceptor, with distances of 3.133 Å  and 3.123 Å  for ligands I and II, respectively 

(Figure 4).  

 

Figure 4. Hydrogen bond PLA2 with compounds I (A), II (B). 

Furthermore, docking results suggested a π-π T-shaped interaction between Phe5 and the 

benzyl ring. The distances among the centroids of the aromatic rings involved in the interactions 

were 4.545 Å  and 4.528 Å  for I and II, respectively. The angles within the aromatic ring planes were 

75.9° and 73.5°. 

On the opposite face of the benzyl ring, the ligands showed a π-sulfur interaction with Cys45. 

The distances between the centroids of each benzyl ring and the sulfur atom of Cys45 were 3.409 Å  

for both compounds (Figure 5). 

 

Figure 5. Benzyl ring contacts of I (A) and II (B) with Phe5 (π-π T shaped interaction) and with the 

sulfur atom of Cys45 (π-sulfur interaction). 

Figure 4. Hydrogen bond PLA2 with compounds I (A), II (B).

Furthermore, docking results suggested a π-π T-shaped interaction between Phe5 and the benzyl
ring. The distances among the centroids of the aromatic rings involved in the interactions were 4.545 Å
and 4.528 Å for I and II, respectively. The angles within the aromatic ring planes were 75.9◦ and 73.5◦.
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On the opposite face of the benzyl ring, the ligands showed a π-sulfur interaction with Cys45.
The distances between the centroids of each benzyl ring and the sulfur atom of Cys45 were 3.409 Å for
both compounds (Figure 5).
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Furthermore, a π-π T-shaped interaction was found between the imidazole ring of His48 and the
benzyl ring of the studied compounds. The distances were 4.985 Å and 5.017 Å, and the angles were
77.8◦ and 75.4◦ for I and II, respectively.

Docking results suggested several Van der Waals interactions between ligands I and II and amino
acids in the active site, the hydrophobic channel, and the interfacial binding surface of the enzyme.

3. Discussion

3.1. Structural Details

The structural parameters of I obtained by theoretical calculation agree closely with the
experimental ones (X-ray diffraction). The atoms belonging to the S=C8-S-C7-C1′ chain are in a
plane with experimental/theoretical dihedral angles S=C8-S-C7 and C8-S-C7-C1′ of −1.2◦/2.65◦ and
−174.7◦/179.01◦, respectively, and the same conformational preference (see Supplementary Materials,
Table S1). The results show that the syn conformation is the unique form both in the gas phase
(theoretical calculations) and solid-state (X-ray diffraction). The interatomic distance involving both
sulfur atoms increases in the order C8=S > C8-S > C7-S, with the experimental values shorter than the
theoretical ones. The thiocarbonyl distance is 1.644 Å (calc. 1.653 Å) and shows the weak double bond
character due to inefficient p-overlapping. The two C-S single bond distances around the thioether
function have substantial differences. The bond connecting the sulfur atom with the sp2-hybridized
carbon atom, C8-S, is shorter (exp. 1.714(3) Å/calc. 1.758 Å) than the bond with the sp3-hybridized
carbon atom, C7-S (exp. 1.807(4) Å/calc. 1.847 Å). These results indicate a significative charge
delocalization from the thiocarbonyl sulfur to the thioether sulfur atom (S=C8-S-↔ +S-C8=−S-).

The arrangement of both aromatic rings around the chain connecting them shows differences
when the theoretical calculation is compared with the experimental results. Calculations place the
phenyl ring almost perpendicular to the carbodithioate plane with a S-C7-C1′-C2′ dihedral angle of
91.42◦ (exp: 62.9◦), whereas the nitrophenyl ring is nearly coplanar to the chain in the crystal lattice
(exp. 7.7◦, calc. 36.25◦). Additional calculations were performed with two molecules per unit cell in
the crystalline structure, but no significant improvements were obtained. These results indicate the
strong influence of the packing effects on molecular geometry.

3.2. Molecular Docking and Biological Test

Carbodithioates have been synthesized to test their antibacterial, antifungal, and antitumor
activities [27–29]. The first studies with sulfur-containing compounds assayed against snake venom
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enzymes were substituted thiobenzoic acid S-benzyl esters [12], which showed an acceptable activity
but had solubility drawbacks. Next, in order to improve the solubility, we synthesized and analyzed a
group of thioesters derived from 2-Sulfenyl ethylacetate, but the bioactivity of these compounds was
lower than substituted thiobenzoic acid S-benzyl esters [19].

Based on the above findings, one of the aims of this work was the synthesis of the thiocarbonyl
analogue of the 4-nitrothiobenzoic acid benzyl ester (II), exchanging oxygen by sulfur, to study its
ability to inhibit a myotoxic Asp-49 PLA2 from C. durissus cumanensis venom to complement the
antivenom therapy. In this work, we showed, for the first time, the capacity of a carbodithioate to
inhibit snake venom toxins. Owing to a higher reactivity and charge delocalization of the thiocarbonyl
(I) compared to carbonyl (II) function, and considering the promising results obtained previously with
II [12], greater activity of I was expected.

Nevertheless, compounds I and II exhibited similar inhibitory capacity, around 50%, with
a concentration of about 50 µM against PLA2 enzymatic activity. Docking results support the
experimental findings because I and II showed the same interactions with the active site amino acids.
The most stable conformations for the ligand–enzyme complexes are very similar and almost entirely
aligned (see Figure 6), differing only in the observed distances of (C=S) and (C=O) bonds that are
the only structural differences between these compounds. Furthermore, thiocarbonyl and carbonyl
moieties did not show interaction with the active site amino acids. These findings explain why the
theoretical affinities for compounds I and II are numerically equal, −7.1 kcal/mol.
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channel of PLA2.

Instead, docking results suggested several favorable interactions between compounds I and II
and the studied PLA2; the hydrogen bond found between the donor Nδ1 of His48 and one oxygen
atom of the nitro group as the acceptor is a critical interaction to explain the biological activity of both
compounds, since His48 is one of the catalytic residues (Figure 4).

Interestingly, the benzyl ring in both compounds participates simultaneously with two types of π
interactions, one on each side. It showed a π-π T-shaped interaction with the Phe5 phenyl ring on one
side, and a π-sulfur interaction with the sulfur atom of Cys45 on the other side. The former contact
involves Phe5, a critical amino acid that belongs to the hydrophobic channel that allows the entrance of
the substrate to the active site. π-sulfur contact, in conjunction with several Van der Waals interactions,
could contribute to reinforcing the stabilization of the ligand–enzyme complex.
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PLA2 are subdivided into catalytically active (Asp49) PLA2, and catalytically inactive PLA2

homologues. Recently, Salvador et al. reported the crystal structure of a complex formed by a
catalytically inactive PLA2 (MjTX-II from Bothrops moojeni) and a synthetic inhibitor called Varespladib.
The complex showed the presence of the inhibitor in the hydrophobic channel of the toxin, interacting
particularly with His48 and Lys49 residues [30]. We hypothesize that compounds I and II may have
a similar inhibitory mechanism on the catalytically inactive PLA2 since docking results suggest that
these compounds interact with amino acids located at the hydrophobic channel of the toxin. Hence,
compounds I and II could be classified as class I inhibitors of the homologous (Lys49) PLA2 [30]. The
activity of these compounds could be due to the blocking of the hydrophobic channel and prevention
of the binding of the fatty acid necessary for the toxin allosteric activation. Nevertheless, this should
be confirmed by structural studies, and it is important to conduct cytotoxicity and myotoxicity studies.

4. Materials and Methods

4.1. Chemistry

Solvents were evaporated from solutions in a rotary evaporator Heidolph Laborota 4010 (Heidolph
Instruments GmbH & CO. KG, Schwabach, Bayern, Germany) equipped with a ROTAVAP valve
control. Melting points (m.p.) were recorded in a Melting point apparatus 9100 (Electrothermal,
Stone, Staffordshire, England) and are not corrected. FTIR spectrum was measured between 4000 and
400 cm−1 (4 cm−1 resolution) in KBr pellets in a Spectrum Bx apparatus (Perkin Elmer Waltham, MA,
USA). NMR spectra were measured in CDCl3 at 298 K on in Ascend 600 spectrometer (Bruker, Billerica,
MA, USA). Chemical shifts, δ, are given in ppm relative to TMS (δ = 0 ppm) and are referenced by
using the residual undeuterated solvent signal. Coupling constants, J, are reported in Hz, multiplicities
being marked as singlet (s), and multiplet (m). In AA’BB’ system, coupling constants were calculated
using algebraic methods [31–33].

The preparation of I was carried out on a dry flask. A mixture of 1 mmol of 4-nitrothiobenzoic
acid benzyl ester, one mmol of 2,4-bis(4-phenoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide,
and 2 mL of anhydrous dimethoxyethane was heated for 8 h in an oil bath at 80 ◦C. The reaction
mixture was cooled at room temperature. The oxygen–sulfur exchange reagent was filtered off, and the
solvent phase was collected and evaporated. The crude product was purified by flash chromatography
(ether/hexane 19:1). After evaporation of the solvent, red crystals were obtained. The reagent used
for oxygen-sulfur exchange, 2,4-bis(4-phenoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, was
obtained from P2S5 and diphenyl ether [25].

Red crystals, 85% yield (crude product) m.p. 68.9–69.1 ◦C. 1H NMR (CDCl3, 600 MHz 25 ◦C):
δ = 8.13 (2H, AA’BB’system, J = 9, 2 and <1 Hz, H3 and H5); 7.98 (2H, AA’BB’system, J = 9, 2 and <1
Hz, H2 and H6); 7.35–7.15 (5H, m, C6H5); 4.51 (2H, s, CH2) ppm; 13C NMR (CDCl3, 62.98 MHz, 25 ◦C):
δ = 224.4 (C8); 149.6 (C4); 148.85 (C1); 134.1 (C1′); 129.3 (C2 and C6); 128.8 (C2′ and C6′); 128.05 (C4′);
127.7 (C3′ and C5′); 123.6 (C4); 42.7 (C7) ppm. For atom numbering see Figure 1.

4.2. Quantum Chemical Calculations

Compounds I and II were built using Gauss View 5 [34] using the parameters of the experimental
structure of I that was collected from The Cambridge Crystallographic Data Centre (Cambridge, UK)
(CCDC 928055) [22]. The geometric parameters for the more stable conformers were calculated at
the B3LYP/6-31+G (d,p) level of approximation using Gaussian 09 (Gaussian Inc, Wallingford, CT,
USA) [26] program package, implemented on a personal computer. The optimized conformers were
used as ligands for the docking study.



Molecules 2020, 25, 1373 9 of 12

4.3. Molecular Docking

Molecular docking was carried out on a personal computer using Autodock Vina (Scripps Research
Institute, San Diego, CA, USA) [35]. The structure of the PLA2 (PDB code 2QOG) from Crotalus durissus
terrificus that showed 57% of identity with the PLA2 from C. d. cumanensis [36] was used in this study.

The protein structure was prepared using the Protein Preparation module implemented in the
Maestro program and uploaded without water molecules. Hydrogen atoms were automatically added
to the protein according to the chemical nature of each amino acid based on the ionized form expected in
physiological conditions. This module also controls the atomic charges assignment. The 3D structure of
the protein was relaxed through constrained local minimization, using the OPLS (Optimized Potentials
for Liquid Simulations) force fields in order to remove possible structural mismatches due to the
automatic procedure employed to add the hydrogen atoms. When necessary, bonds, bond orders,
hybridizations, and hydrogen atoms were added, charges were assigned (a formal charge of +2 for Ca
ion), and flexible torsions of ligands were detected.

To perform molecular docking experiments of compounds I–II with PLA2, the calcium ion
was used as the center of the grid (X = 61.179, Y = 42.712 and Z = 47.465), whose size was 24 Å3.
Exhaustiveness = 20. Finally, the ligand poses with the best affinity were chosen, and a visual inspection
of the interactions at the active site was performed and recorded using UCSF Chimera (University of
California, San Francisco, Ca, USA) (www.cgl.ucsf.edu/chimera/) [37]. Physicochemical properties
with importance in oral bioavailability for compounds I and II were calculated using Molinspiration
(Molinspiration, Nova ulica, Slovak Republic) [38].

4.4. Toxin Isolation

Crotalus durissus cumanensis venom was obtained from four specimens from Meta, in the southeast
region of Colombia, and kept in captivity (Serpentarium of the Universidad de Antioquia, Medellín,
Colombia). PLA2 was purified by reverse-phase HPLC on C-18 column eluted at 2.0 mL/min with a
gradient from 0 to 100% acetonitrile in 0.1% trifluoroacetic acid (v/v). Absorbance in effluent solution
was recorded at 280 nm [39].

4.5. Inhibition of Phospholipase A2 Activity

The measurements of enzymatic activity using the linear substrate 4N3OBA were performed
according to the method described by Holzer and Mackessy [40] and adapted for a 96-well ELISA
plate. The standard assay contained 200 µL of buffer (10 mM Tris–HCl, 10 mM CaCl2, 100 mM NaCl,
pH 8.0), 20 µL of 10 mM of substrate (4NO3BA), 20 µL of sample (20 µg PLA2 or 20 µg PLA2 + several
concentrations of 1) and 20 µL of water. The negative control was buffer. The inhibitory effect of 1 on
PLA2 activity was determined through the co-incubation of the enzyme with 1 for 30 min at 37 ◦C. After
the incubation period, the sample was added to the assay, and the reaction was monitored at 425 nm
for 40 min (at 10 min intervals) at 37 ◦C. The quantity of chromophore released (4-nitro-3-hydroxy
benzoic acid) was proportional to the enzymatic activity. The IC50 value was determined from the
linear portion of the response-dose curve.

5. Conclusions

We demonstrated that the analogous compounds, benzyl 4-nitrobenzenecarbodithioate (I) and
4-nitrothiobenzoic acid S-benzyl ester (II), exhibit similar inhibitory capacity on myotoxic Asp49-PLA2

isolated from C. durissus cumanensis venom. The catalytic activity was reduced by about 50% using
a concentration near to 50 µM for both compounds. These results show that the exchange of
oxygen for sulfur to transform the carbonyl C (O) function into thiocarbonyl C (S) implies some
structural differences that do not significantly alter the biological activity of the compound against a
myotoxic PLA2.

www.cgl.ucsf.edu/chimera/
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Molecular docking studies for compounds I and II as ligands suggested the same way of binding
to the active site of the enzyme. These interactions could explain the inhibition of enzymatic activity
by blocking the normal progression of the catalytic cycle and by impeding the normal attachment of
the substrate to the active site of the PLA2. The inhibition of the enzymatic activity of the myotoxic
PLA2 showed similar results for I and II (between the experimental error), agreeing with the molecular
docking findings. These results prompt us to use molecular docking as a reliable and economical tool
to evaluate in silico the potential of PLA2 inhibitors.

We hope to expand the number of sulfur compounds with inhibition capacity against PLA2

and perform cytotoxicity studies and inhibition tests on homologous PLA2, as well as inhibition
studies in animal models. Sulfur compounds could be valuable in search of potent inhibitors of snake
venom enzymes.

Supplementary Materials: The following are available online, Table S1: Homologous experimental and calculated
(B3LYP/6-31+G(d,p)) intra-molecular bond distances (Å) and angles (◦) of Benzyl 4-nitrobenzenecarbodithioate
(I)., Figure S1: 1H NMR Spectrum of I Benzyl 4-nitrobenzenecarbodithioate, crude product., Figure S2:
13C NMR Spectrum of I Benzyl 4-nitrobenzenecarbodithioate, crude product., Figure S3: IR Benzyl
4-nitrobenzenecarbodithioate (I).
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