SUPPLEMENTARY MATERIAL

MARCH 19, 2020

Improved predictive tools for structural properties of metal–organic frameworks

Indrani Choudhuri and Donald G. Truhlar*

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

TABLE OF CONTENTS

Table S1 : Computational details and other related information of the test set of MOFs	S-2
Table S2. Lattice constants (Å) of the metal–organic frameworks (MOFs)	S-3
Table S3: Unit cell volumes (Å ³) of the metal–organic frameworks (MOFs)	S-4
Table S4: Pore diameters (Å) of the metal–organic frameworks (MOFs)	S-5
Table S5: Bond lengths (Å) of the metal–organic frameworks (MOFs)	S-6
Table S6: Bond angles (deg) of the metal–organic frameworks (MOFs)	S-8
Table S7: Torsional angles (deg) of the metal–organic frameworks (MOFs)	S-10
Table S8: Lattice angles (deg) of the metal–organic frameworks (MOFs)	S-11
Table S9: Lattice constants and band gaps of ten semiconductors calculated with	
revM06-L and SCAN functionals	S-12
References	S-13

MOF ^a	Reference	Metal Contor of	Oxidation State of	k points ^d	Magnetic State ⁶	Initial Spin State of	Temperatures (K)	Reference ^g
	Coue	MOF	Metal ^c		State	Considered ^{<i>f</i>}	Measurements	
$Ag_4C_{12}Cl_4O_8$	RORQOE	Ag	Ι	6×4×2	NM		293	1
${\rm Cd}_{12}{\rm H}_{48}{\rm C}_{72}{\rm N}_{72}{\rm O}_{48}$	GUPCUQ01	Cd	II	2×2×2	NM		293	2
${\rm Cd_2H_{10}C_{16}N_4O_{10}}$	PIJGEV	Cd	II	4×4×4	NM		295	3
$Zn_1H_4C_4O_4$	OFUWIV01	Zn	II	6×6×4	NM		293	4
${\rm Li}_{8}{\rm Zn}_{8}{\rm H}_{24}{\rm C}_{72}{\rm O}_{48}$	WAJJAU	Li, Zn	Li (I), Zn (II)	2×2×2	NM		293	5
$\mathrm{Co}_{2}\mathrm{C}_{8}\mathrm{N}_{12}$	HAWVOQ01	Co	II	4×4×4	FM	3, 3	150	6
$Cu_{3}H_{4}C_{10}O_{10}$	MURCEH	Cu	II	4×4×2	AFM	-1, -1, 1, 1, -1, 1	293	7
$Cu_{8}H_{8}C_{8}N_{12}Cl_{8}$	QEJZUB01	Cu	I and II	4×4×2	AFM	1, -1, 1, -1,	90	8
$Dy_2H_{12}C_{12}N_2O_{16}$	YORSII	Dy	III	4×4×2	FM	5, 5	298	9
$\mathrm{Fe}_{4}\mathrm{H}_{4}\mathrm{C}_{4}\mathrm{O}_{12}$	HOGWAB	Fe	II	4×4×4	AFM	4, -4, 4, -4	283-303	10
$Fe_4P_4H_{16}C_8O_{24}$	DEMLIR	Fe	III	4×4×2	AFM	5, -5, 5, -5	298	11
$Sm_2H_{12}C_{10}O_{14}$	KOMJEC	Sm	III	4×4×4	AFM	5, -5	293	12
Zr ₂₄ O ₁₂₈ C ₁₉₂ (UiO-66)	RUBTAK	Zr	IV	2×2×2	NM		298	13
Zn32O104C192H96 (MOF-5)	SAHYIK	Zn	II	2×2×2	NM		213	14

Table S1: Computational details and other related information of the test set of MOFs

^{*a*} Chemical formula of the unit cell

^b The reference code associated with the structure in the Cambridge Structural Database (CSD) and CoRE MOF database.

^c Oxidation states of the metal center according to the experimental reference

^{*d*} *k*-points grid used for the calculations

^e Magnetic ground state considered for the calculations

^fInitial multiplicities of the metal ions considered for the calculations of the FM and AFM MOFs

^g Experimental reference for the MOF

Table S2: Lattice constants (Å) of metal-organic frameworks (MOFs)

MOF	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	SOGGA	vdW–DF2
Ag C Cl O	a=5.29	a=5.16	a=5.79	a=5.46	a=5.43	a=5.39	a=5.22	a=5.66	a=5.26	a=5.44	a=5.49
4 12 4 8	b = 6.34	b = 6.52	b = 6.06	b = 6.10	b = 6.38	b = 6.34	b = 6.39	b = 5.99	b = 6.29	b = 6.08	b = 6.48
	c = 11.40	c = 11.52	c = 12.38	c=11.65	c = 10.75	c = 11.43	c = 11.59	c = 12.21	c = 11.36	c=11.61	c = 11.67
Cd ₁ H ₄ ,C ₇ N ₇ O ₄	a = 18.07	a=17.94	a=18.34	a = 18.08	a = 18.14	a=18.22	a=18.08	a=18.30	a = 18.06	a = 18.07	a = 18.4
12 48 /2 /2 48	b = 18.07	b = 17.94	b = 18.34	b = 18.08	b = 18.14	b = 18.22	b = 18.08	b = 18.30	b = 18.06	b = 18.07	b = 18.4
	c = 18.07	c = 17.94	c = 18.34	c = 18.08	c = 18.14	c = 18.22	c = 18.08	c = 18.30	c = 18.06	c = 18.07	c = 18.4
Cd H ₁₀ C ₁ N ₁ O ₁₀	a=7.55	a=7.42	a = 7.82	a = 7.64	a = 7.58	a = 7.69	a = 7.51	a = 7.71	a = 7.56	a = 7.62	a = 7.68
2 10 16 4 10	b = 7.64	b = 7.49	b = 7.84	b = 7.74	b = 7.66	b = 7.77	b = 7.57	b = 7.76	b = 7.67	b = 7.74	b = 7.78
	c = 8.47	c = 8.50	c = 8.63	c = 8.42	c = 8.54	c = 8.50	c = 8.45	c = 8.58	c = 8.39	c = 8.41	c = 8.65
Zn ₁ H ₄ C ₄ O ₄	a=4.83	a = 4.83	a = 4.96	a = 4.87	a = 4.87	a = 4.90	a = 4.74	a = 4.94	a = 4.83	a = 4.87	a = 4.90
1 4 4 4	b = 4.83	b = 4.83	b = 4.96	b = 4.87	b = 4.87	b = 4.90	b = 4.74	b = 4.94	b = 4.83	b = 4.87	b = 4.90
	c = 6.25	c = 6.54	c = 6.46	c = 6.30	c = 6.20	c = 6.35	c = 6.38	c = 6.41	c = 6.25	c = 6.30	c = 6.37
Li _z Zn _a H _a C _z O _a	a=16.34	a=16.49	a = 16.51	a = 16.36	a = 16.47	a = 16.47	a=16.35	a = 16.46	a = 16.30	a = 16.36	a = 16.74
8 8 24 72 48	b = 16.34	b = 16.49	b = 16.51	b = 16.36	b = 16.47	b = 16.47	b = 16.35	b = 16.46	b = 16.30	b = 16.36	b = 16.74
	c = 11.28	c = 11.32	c = 11.4	c = 11.31	c = 11.28	c = 11.31	c = 11.27	c = 11.34	c = 11.25	c = 11.31	c = 11.66
Co ₂ C ₂ N ₁₂	a = 5.97	a = 5.11	a = 6.17	a = 5.89	a=5.83	a = 5.87	a = 5.95	a = 5.95	a = 5.87	a=6.37	a = 5.86
2 8 12	b = 7.06	b = 6.49	b = 7.09	b = 6.98	b = 6.98	b = 7.02	b = 7.05	b = 7.03	b = 6.95	b = 6.72	b = 6.97
	c = 7.41	c = 7.59	c = 7.35	c = 7.29	c = 7.39	c = 7.39	c = 7.36	c = 7.31	c = 7.26	c = 7.29	c = 7.23
Cu ₂ H ₄ C ₁₀ O ₁₀	a=10.03	a = 10.10	a=10.29	a = 10.01	a = 10.03	a=9.98	a = 10.00	a = 10.12	a=9.97	a = 10.02	a = 10.08
3 4 10 10	b = 5.81	b = 5.80	b = 6.07	b = 5.91	b = 5.89	b = 5.97	b = 5.89	b = 5.88	b = 5.87	b = 5.84	b = 5.91
	c=9.63	c = 9.74	c = 9.68	c = 9.61	c = 9.66	c = 9.68	c = 9.58	c = 9.65	c = 9.56	c = 9.59	c = 9.75
Cu [°] H [°] C [°] N ^{1°} Cl [°]	a = 6.77	a = 6.79	a = 6.99	a = 6.81	a = 6.74	a = 6.85	a = 6.79	a = 6.84	a = 6.81	a=6.89	a = 6.98
0 0 0 12 0	b = 6.89	b = 6.85	b = 7.21	b = 6.96	b = 6.93	b = 6.91	b = 6.95	b = 7.09	b = 6.97	b = 6.86	b = 7.10
	c = 12.36	c = 12.42	c = 12.29	c = 12.16	c = 12.29	c = 12.29	c = 12.16	c = 12.40	c = 12.19	c = 12.19	c = 12.2
Dy,H ₁ ,C ₁ ,N ₂ O ₁₆	a = 6.74	a = 6.55	a = 6.83	a = 6.68	a = 6.66	a = 6.72	a = 6.77	a = 6.82	a = 6.70	a = 6.69	a = 6.78
2 12 12 2 10	b = 7.81	b = 7.78	b = 8.02	b = 7.90	b = 7.78	b = 7.89	b = 7.77	b = 7.92	b = 7.78	b = 7.89	b = 7.91
	c = 9.17	c=9.33	c = 9.29	c = 9.17	c = 9.19	c = 9.26	c = 9.16	c = 9.24	c = 9.15	c = 9.18	c=9.33
Fe ₄ H ₄ C ₄ O ₁₂	a=5.93	a = 5.64	a = 5.78	a = 5.68	a = 5.87	a = 5.87	a = 5.92	a = 5.68	a = 5.92	a = 6.26	a=6.19
4 4 4 12	b = 5.54	b = 5.17	b = 5.31	b = 5.30	b = 5.63	b = 5.47	b = 5.53	b = 5.44	b = 5.75	b = 5.83	b = 5.78
	c = 7.27	c = 7.07	c = 7.48	c = 7.52	c = 7.37	c = 7.32	c = 7.27	c = 7.48	c = 7.07	c = 7.02	c = 7.42
Fe ₄ P ₄ H ₁₆ C ₆ O ₂₄	a = 6.61	a = 6.29	a = 6.77	a = 6.74	a = 6.83	a = 6.78	a = 6.52	a = 6.71	a = 6.63	a = 6.68	<i>a</i> =6.66
4 4 10 0 24	b = 8.36	b = 8.23	b = 8.46	b = 8.30	b = 8.21	b = 8.54	b = 8.36	b = 8.46	b = 8.30	b = 8.30	b = 8.44
	c = 9.62	c = 9.69	c = 9.74	c = 9.40	c = 9.40	c = 9.88	c = 9.72	c = 9.68	c = 9.57	c = 9.59	c = 9.76
Sm ₂ H ₁₂ C ₁₀ O ₁₄	a = 6.76	a = 6.91	a = 6.75	a = 6.65	a = 6.69	a = 6.67	a = 6.83	a = 6.74	a = 6.72	a=6.65	a = 6.85
2 12 10 14	b = 7.67	b = 7.20	b = 8.02	b = 7.77	b = 7.58	b = 7.73	b = 7.35	b = 7.91	b = 7.53	b = 7.77	b = 7.58
	c = 8.05	c = 7.89	c = 8.19	c = 8.04	c = 7.90	c = 8.12	c = 7.99	c = 8.19	c = 8.00	c = 8.03	c = 8.19
UiO-66	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=
	20.70	20.61	21.12	20.96	21.08	21.07	20.57	21.11	20.63	20.95	20.16
MOF-5	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=	a=b=c=
	25.66	25.86	26.09	25.88	25.07	26.06	25.79	26.01	25.83	25.86	26.19
MSE		-0.05	0.20	-0.03	0.04	0.09	-0.02	0.13	-0.02	0.04	0.19
MUE		0.16	0.26	0.11	0.15	0.14	0.07	0.18	0.06	0.12	0.22
MUPA (%)		2.09	2.81	1.26	1.39	1.34	0.78	1.83	0.72	1.42	2.04

^{*a*} The references for the experimental lattice constants are given in table S1.

MN15-L SOGGA MOF PBE PBEsol revTPSS SCAN Exp.^a PBE-D2 PBE-D3 revM06-L vdW –DF2 Ag₄C₁₂Cl₄O₈ 382.09 387.73 427.34 386.54 372.05 390.65 409.06 375.79 383.00 415.59 386.54 5907.36 5968.28 Cd₁₂H₄₈C₇₂N₇₂O₄₈ 5771.61 6167.81 5914.82 6045.56 5910.69 6127.55 5892.93 5900.64 6232.68 431.81 434.76 445.74 453.66 430.46 Cd₂H₁₀C₁₆N₄O₁₀ 435.56 464.86 437.40 431.93 435.95 457.62 Zn₁H₄C₄O₄ 134.58 119.55 147.97 135.19 141.69 126.46 142.13 134.29 137.34 138.13 137.48 Li₈Zn₈H₂₄C₇₂O₄₈ 3011.16 3057.86 3067.34 3027.40 3080.00 3107.53 3027.04 3012.63 3072.81 2988.82 3272.48 312.15 299.48 284.90 288.37 305.49 Co₂C₈N₁₂ 532.18 334.29 308.76 296.18 312.15 295.51 Cu₃H₄C₁₀O₁₀ 552.22 560.24 592.33 559.34 575.42 567.42 540.48 565.84 549.60 562.22 582.48 Cu₈H₈C₈N₁,Cl₈ 576.57 578.06 619.38 575.69 573.49 582.02 573.95 601.84 579.22 570.57 604.48 448.06 465.79 Dy,H₁,C₁,N₂O₁₆ 423.43 477.26 451.41 433.57 450.79 442.18 439.80 452.50 459.15 238.62 231.17 238.62 266.13 Fe₄H₄C₄O₁₂ 229.25 224.78 243.18 238.69 206.60 235.19 245.38 Fe₄P₄H₁₆C₈O₂₄ 531.61 558.15 527.66 549.75 539.61 548.27 502.13 526.17 572.86 529.45 526.61 384.47 364.78 409.14 367.92 388.02 400.90 373.01 Sm₂H₁₂C₁₀O₁₄ 382.35 370.66 356.55 394.03 8870.26 9371.18 9353.97 8802.82 9200.85 UiO-66 8756.44 9429.46 9218.97 8714.89 9408.56 9407.48 MOF-5 16913.2 17311.9 17717.2 17703.6 17171.7 17603.01 17249.9 17294.9 17602 17769.4 17337 MSE -19.69 145.44 55.75 -97.48 109.66 -1.67 -34.30 12.86 51.08 -173.85 MUE 33.69 108.36 8.22 146.78 6.50 113.55 36.65 35.61 56.89 173.85 MUPE (%) 1.74 2.85 1.59 3.86 1.32 1.73 5.43 5.71 6.62 3.33

Table S3: Unit cell volumes (Å³) of the metal–organic frameworks (MOFs)

^{*a*} The experimental unit cell volume is calculated using the zeo++ software.^{15,16,17}

 Table S4: Pore diameters (Å) of the metal–organic frameworks (MOFs)

MOF	Ac	cc. ^a	MN	15-L	PI	BE	PB	Esol	PBF	-D2	PBF	–D3	revN	106-L	rev	PSS	SC	AN	SO	GGA	vdW	-DF2
	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD	LCD	PLD
$Ag_4C_{12}Cl_4O_8$	1.36	1.30	1.48	1.47	1.65	1.65	1.47	1.47	1.32	1.32	1.37	1.31	1.32	1.26	1.53	1.53	1.32	1.32	1.45	1.45	1.48	1.35
Cd ₁₂ H ₄₈ C ₇₂ N ₇₂ O ₄₈	12.58	12.58	12.43	12.43	12.72	12.72	12.49	12.49	12.53	12.53	12.60	12.60	12.57	12.57	12.70	12.70	12.45	12.45	12.48	12.48	12.72	12.72
$Cd_{2}H_{10}C_{16}N_{4}O_{10}$	2.02	2.02	1.97	1.95	2.07	2.06	2.03	2.03	1.99	1.97	2.05	2.02	2.01	2.01	2.09	2.09	2.01	2.01	2.02	2.02	2.13	2.13
Zn ₁ H ₄ C ₄ O ₄	1.70	1.70	1.74	1.74	1.85	1.85	1.73	1.73	1.63	1.63	1.72	1.72	1.61	1.61	1.82	1.82	1.63	1.63	1.73	1.73	1.51	1.51
Li ₈ Zn ₈ H ₂₄ C ₇₂ O ₄₈	7.48	7.48	7.5	7.5	7.52	7.52	7.43	7.43	7.50	7.49	7.50	7.49	7.43	7.43	7.47	7.47	7.39	7.39	7.43	7.43	7.66	7.66
C0 ₂ C ₈ N ₁₂	1.85	1.85	1.71	1.71	2.02	2.02	1.80	1.80	1.67	1.67	1.63	1.57	1.84	1.84	1.82	1.82	1.77	1.77	1.80	1.80	1.80	1.67
Cu ₃ H ₄ C ₁₀ O ₁₀	1.80	1.80	1.7	1.7	1.93	1.93	1.70	1.62	1.75	1.75	1.72	1.72	1.65	1.65	1.76	1.76	1.70	1.70	1.70	1.70	1.77	1.70
Cu ₈ H ₈ C ₈ N ₁₂ Cl ₈	1.37	1.29	1.35	1.26	1.53	1.51	1.41	1.37	1.38	1.18	1.43	1.29	1.39	1.33	1.48	1.45	1.42	1.34	1.41	1.34	1.49	1.27
Dy ₂ H ₁₂ C ₁₂ N ₂ O ₁₆	1.81	1.81	1.66	1.65	1.82	1.77	1.69	1.69	1.54	1.54	1.56	1.66	1.75	1.70	1.79	1.79	1.65	1.63	1.71	1.71	1.65	1.65
Fe ₄ H ₄ C ₄ O ₁₂	1.21	1.21	1.05	1.02	1.07	1.01	1.08	1.05	1.07	1.03	1.20	1.54	1.13	1.11	1.23	1.20	1.23	1.23	1.41	1.40	1.37	1.36
Fe ₄ P ₄ H ₁₆ C ₈ O ₂₄	1.37	1.35	1.24	1.24	1.46	1.36	1.39	1.38	1.37	1.25	1.49	1.55	1.31	1.29	1.44	1.31	1.37	1.23	1.35	1.28	1.41	1.27
$Sm_{2}H_{12}C_{10}O_{14}$	1.36	1.30	1.5	1.74	1.93	1.91	1.92	1.92	1.86	1.50	1.96	1.90	1.81	1.78	1.95	1.95	1.92	1.92	1.92	1.90	1.99	1.99
UiO-66	8.88	3.79	8.82	3.76	9.37	4.05	9.26	3.99	9.34	4.03	9.09	3.92	8.80	3.74	9.12	3.93	8.75	3.71	9.26	3.98	9.39	4.06
MOF-5	14.94	7.84	15.08	7.92	15.24	8.03	15.10	7.93	15.23	8.02	15.23	8.02	15.03	7.89	15.18	7.99	15.06	7.92	15.08	7.92	15.32	8.08
MSE			-0.07	-0.06	0.13	0.10	0.02	-0.001	-0.01	-0.07	-0.01	0.03	-0.05	-0.05	0.07	0.06	-0.04	-0.04	0.03	0.02	0.10	0.04
MUE			0.12	0.10	0.15	0.13	0.09	0.09	0.12	0.14	0.10	0.10	0.06	0.06	0.09	0.08	0.07	0.08	0.09	0.08	0.16	0.14
MUPE (%)			5.95	5.62	6.43	7.29	3.43	4.65	4.15	6.89	4.03	5.56	3.00	3.47	3.62	4.19	2.65	3.34	3.62	4.23	5.72	5.92

^{*a*} The accurate unit cell volume is calculated using the zeo++ software.^{15,16,17}

MOF	Bond length type	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	SOGGA	vdW–DF2
Ag ₄ C ₁₂ Cl ₄ O ₈	Ag-O	2.375	2.500	2.441	2.327	2.504	2.425	2.459	2.341	2.388	2.298	2.469
		2.468	2.522	2.38	2.41	2.451	2.474	2.496	2.502	2.471	2.444	2.527
		2.442	2.494	2.543	2.393	2.359	2.380	2.421	2.383	2.369	2.319	2.436
		2.461	2.519	2.565	2.453	2.452	2.457	2.462	2.407	2.408	2.386	2.469
	Ag-Cl	2.815	2.952	2.907	2.811	2.75	2.829	2.883	2.878	2.811	2.800	2.893
Cd12H48C72N72O48	Cd-N	2.246	2.266	2.298	2.256	2.266	2.279	2.25	2.289	2.265	2.252	2.297
Cd2H10C16N4O10	Cd-N	2.406	2.428	2.421	2.378	2.421	2.412	2.43	2.417	2.388	2.371	2.428
		2.511	2.573	2.56	2.49	2.56	2.543	2.541	2.521	2.504	2.479	2.548
	Cd-O	2.332	2.396	2.373	2.358	2.373	2.358	2.372	2.359	2.354	2.353	2.395
		2.321	2.328	2.395	2.356	2.395	2.376	2.324	2.363	2.333	2.352	2.37
		2.527	2.635	2.641	2.543	2.652	2.584	2.571	2.582	2.52	2.542	2.57
		2.299	2.403	2.332	2.285	2.332	2.31	2.355	2.335	2.305	2.281	2.355
		2.289	2.291	2.381	2.329	2.382	2.349	2.287	2.334	2.31	2.328	2.339
Zn ₁ H ₄ C ₄ O ₄	Zn-O	1.943	1.984	1.981	1.952	1.973	1.974	1.937	1.977	1.944	1.95	1.981
		1.947	1.977	1.983	1.952	1.965	2.017	1.935	1.983	1.946	1.951	1.995
Li ₈ Zn ₈ H ₂₄ C ₇₂ O ₄₈	Li-O	1.866	1.876	1.886	1.87	1.879	1.878	1.891	1.874	1.867	1.87	1.895
		2.001	2.02	2.03	1.993	1.999	2.02	2.07	2.001	1.988	1.993	2.048
		2.018	1.925	2.035	2.0152	2.088	2.039	2.076	2.016	1.995	2.015	2.053
		1.905	2.023	1.918	1.897	1.895	2.003	1.948	1.921	2.001	1.897	1.998
	Zn-O	1.900	1.936	1.932	1.907	1.926	1.926	1.922	1.936	1.901	1.907	1.943
$Co_2C_8N_{12}$	Co-N	2.096	2.013	2.048	2.017	1.940	1.909	2.084	2.030	2.011	1.992	1.909
		2.153	2.113	2.315	2.128	2.148	2.147	2.165	2.160	2.121	2.115	2.322
$Cu_{3}H_{4}C_{10}O_{10}$	Cu-O	1.951	1.982	1.99	1.938	1.965	1.969	1.945	1.949	1.928	1.923	1.981
		1.978	2.005	2.027	1.985	2.002	2.000	1.976	1.987	1.96	1.981	2.022
		1.956	1.989	2.05	1.974	1.983	1.985	1.966	1.954	1.942	1.951	2.011
		1.937	1.987	2.165	1.936	1.951	1.949	1.942	1.940	1.918	1.905	1.959
		2.103	2.089	2.141	2.096	2.127	2.154	2.124	2.110	2.094	2.0816	2.158
Cu8H8C8N12Cl8	Cu-Cl	2.409	2.466	2.468	2.403	2.435	2.447	2.442	2.430	2.421	2.416	2.504
	Cu-N	1.937	1.964	2.165	1.919	1.941	1.943	1.925	1.960	1.924	1.918	1.987

Table S5: Bond lengths (Å) of the metal–organic frameworks (MOFs)

continued on next page

												S-7
MOF	Bond length type	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	SOGGA	vdW–DF2
$Dy_2H_{12}C_{12}N_2O_{16}\\$	Dy-O	2.377	2.357	2.385	2.359	2.359	2.374	2.352	2.366	2.344	2.341	2.456
		2.405	2.423	2.418	2.359	2.370	2.386	2.412	2.421	2.382	2.363	2.499
		2.289	2.281	2.308	2.274	2.278	2.305	2.287	2.298	2.275	2.272	2.313
		2.336	2.429	2.363	2.32	2.331	2.297	2.356	2.343	2.324	2.315	2.367
		2.266	2.208	2.349	2.275	2.258	2.278	2.233	2.287	2.256	2.275	2.28
		2.388	2.385	2.432	2.401	2.408	2.449	2.4	2.407	2.387	2.391	2.425
		2.423	2.411	2.506	2.476	2.542	2.506	2.437	2.465	2.457	2.478	2.491
		2.398	2.503	2.433	2.401	2.45	2.444	2.422	2.420	2.411	2.394	2.449
Fe4H4C4O12	Fe-O	2.060	1.987	2.113	2.118	2.097	2.121	2.018	2.099	1.996	2.006	2.129
		2.091	2.005	2.055	2.081	2.07	2.189	2.061	2.150	2.029	2.002	2.129
		2.157	2.027	2.09	2.042	2.057	2.033	2.169	2.077	2.209	2.25	2.234
		2.145	1.915	2.064	2.021	2.051	2.088	2.209	2.031	2.094	1.96	2.03
		2.194	2.211	2.288	2.248	2.328	2.218	2.247	2.160	2.264	2.25	2.138
		2.265	2.105	2.23	2.166	2.238	2.194	2.271	2.102	2.264	2.165	2.042
Fe4P4H16C8O24	Fe-O	2.103	1.978	1.987	1.999	1.932	1.929	2.021	1.933	2.016	2.003	1.938
		1.941	1.938	1.968	1.945	1.961	1.96	1.938	1.965	1.94	1.93	1.987
		1.919	1.967	2.002	1.967	1.974	1.99	1.962	1.988	1.969	1.976	1.993
		2.008	1.985	2.04	2.068	2.066	2.096	2.011	2.026	2.009	2.000	2.098
		1.961	2.085	1.997	1.991	1.997	2.062	1.937	2.130	2.037	2.086	2.148
		2.103	2.089	2.141	2.096	2.127	2.154	2.124	2.110	2.094	2.0816	2.158
Sm ₂ H ₁₂ C ₁₀ O ₁₄	Sm-O	2.402	2.384	2.294	2.28	2.474	2.294	2.356	2.294	2.306	2.278	2.3235
		2.423	2.411	2.513	2.398	2.372	2.409	2.426	2.417	2.412	2.394	2.49
		2.440	2.489	2.97	2.405	2.391	2.654	2.468	2.447	2.417	2.402	2.469
		2.403	2.534	2.138	2.378	2.29	2.406	2.465	2.398	2.407	2.373	2.445
		2.309	2.408	2.406	2.398	2.343	2.417	2.35	2.426	2.396	2.3987	2.422
		2.504	2.535	2.55	2.524	2.515	2.545	2.555	2.541	2.536	2.515	2.571
		2.549	2.494	2.589	2.489	2.546	2.52	2.4953	2.498	2.476	2.483	2.439
		2.456	2.458	2.501	2.472	2.372	2.478	2.462	2.474	2.455	2.469	2.474
UiO-66	Zr-O	2.23	2.22	2.26	2.23	2.25	2.27	2.22	2.27	2.22	2.22	2.26
		2.10	2.09	2.13	2.12	2.13	2.14	2.09	2.14	2.11	2.11	2.15
MOF-5	Zn-O	1.91	1.92	1.97	1.94	1.96	1.96	1.92	1.96	1.93	1.93	1.98
MSE (Å)			0.014	0.04	-0.008	0.008	0.02	0.012	0.008	-0.005	-0.015	0.03
MUE (Å)			0.054	0.069	0.031	0.045	0.049	0.026	0.039	0.027	0.037	0.064
MUPE (%)			2.46	3.05	1.38	2.02	2.24	1.16	1.79	1.22	1.68	2.95

 a The references for the experimental bond lengths are given in Table S1.

MOF	Bond angle type	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	SOGGA	vdW-DF2
Ag ₄ C ₁₂ Cl ₄ O ₈		65.96	64.73	65.57	66.82	66.46	65.93	64.91	66.14	66.21	67.02	64.4
	0 4 7 0	74.16	71.33	75.24	73.01	77.00	74.71	73.27	72.90	72.76	72.74	75.09
	0-Ag-0	108.82	110.25	110.64	117.90	98.41	110.53	112.51	122.49	112.35	117.94	110.85
		110.23	116.55	103.76	107.67	109.21	111.42	111.84	103.61	110.46	107.70	110.98
		137.82	132.08	135.44	134.00	131.55	136.66	164.62	122.49	135.33	133.91	137.05
		139.57	145.16	145.14	143.14	143.13	139.42	142.29	143.42	140.89	142.94	142.01
	$0 \Lambda a Cl$	74.94	78.09	74.32	72.69	77.63	75.29	75.57	73.16	73.58	72.60	75.63
	0-Ag-Cl	68.37	66.26	79.13	70.40	68.73	68.80	67.10	69.21	69.23	70.67	66.12
		137.90	139.41	132.12	133.66	142.81	139.5	136.15	131.89	136.31	133.73	134.76
		135.63	132.56	130.76	127.39	136.71	135.18	132.99	125.63	134.30	127.48	136.79
Cd12H48C72N72O48	NCIN	131.10	137.36	133.00	133.00	133.18	133.12	131.57	132.75	133.98	132.96	134
	N-Ca-N	99.85	97.59	99.14	99.14	99.08	99.10	99.68	99.23	98.78	99.16	98.78
Cd2H10C16N4O10	N-Cd-N	66.38	65.96	66.19	67.55	66.19	66.63	65.52	66.43	66.81	67.77	66.46
	N-Cd-O	74.73	77.54	73.80	74.21	73.80	74.57	76.08	74.01	75.13	74.22	75.5
	N-Cd-O	82.18	83.29	83.79	82.01	75.06	82.47	82.35	82.60	81.91	82.00	81.68
		97.58	89.95	101.34	100.53	101.34	99.87	94.71	99.28	98.67	100.51	97.68
		75.99	75.13	75.06	75.41	75.06	75.62	75.86	75.72	75.95	75.44	75.82
	O-Cd-O	84.29	81.48	83.95	84.91	83.95	85.23	82.19	83.37	83.99	84.78	83.98
		85.42	86.93	83.20	83.32	83.20	84.34	86.35	83.27	84.10	83.15	85.17
		84.52	89.27	81.77	81.39	81.77	81.73	85.69	83.45	83.24	81.43	83.35
Zn ₁ H ₄ C ₄ O ₄		102.9	105.55	101.07	101.85	102.87	103.11	105.18	100.70	101.70	101.82	105.54
	O-Zn-O	114.89	112.23	112.49	112.83	115.51	115.82	113.93	112.38	114.63	112.83	115.92
		107.1	107.01	107.33	106.45	109.49	108.76	108.53	107.08	109.38	106.44	107.33
Li8Zn8H24C72O48		105.55	103.90	106.68	105.25	106.70	105.54	105.52	105.13	104.61	105.25	105.44
		84.15	84.65	84.35	84.14	83.53	83.92	84.84	84.17	84.44	84.14	84.99
	O-Li-O	137.90	139.14	137.12	137.66	136.41	138.40	138.21	135.83	137.97	137.66	138.64
		107.70	107.98	109.19	108.78	111.00	109.39	107.69	108.35	108.20	108.78	108.93
		94.12	93.25	93.29	93.30	94.76	93.89	93.34	91.91	93.18	93.30	95.58
	O-Zn-O	116.94	117.66	116.95	117.53	115.88	116.79	116.92	117.71	117.92	117.53	116.02
		121.28	121.28	121.29	121.10	121.47	121.29	122.07	120.90	121.00	121.10	122.42
	1.07	94.09	93.87	93.91	94.31	95.10	94.52	93.67	94.52	93.86	94.31	94.35
	Li-O-Zn	95.20	95.80	95.52	95.43	93.99	95.58	95.32	96.03	95.52	95.43	96.59

Table S6: Bond angles (deg) of the metal–organic frameworks (MOFs) calculated using various functionals.

continued in next page

MOF	Bond angle type	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	sogg s _	9vdW–DF2
C02C8N12	N-Co-N	88.95	88.71	89.28	88.99	89.02	89.03	88.96	88.99	88.99	89.47	89.12
		85.14	86.29	87.26	85.48	85.68	86.02	84.95	91.00	85.10	85.53	86.64
		91.05	91.29	90.71	91.00	90.97	90.97	91.04	91.09	91.00	90.53	90.87
		94.86	93.58	93.75	94.51	93.99	94.17	94.55	93.66	94.11	94.58	93.35
Cu3H4C10O10	O-Cu-O	94.86	93.58	93.75	94.51	93.99	94.17	94.55	93.66	94.11	94.58	93.35
		95.57	97.28	95.05	96.12	95.50	95.48	95.91	96.55	96.26	94.76	96.9
		95.48	95.27	98.10	96.56	96.38	96.95	95.70	96.48	96.35	96.46	98.97
		82.83	81.81	79.95	81.33	82.02	82.29	82.71	81.18	81.45	83.04	80.04
		89.53	89.21	90.56	89.21	89.78	89.20	89.20	89.44	90.19	89.58	89.31
Cu8H8C8N12Cl8	N-Cu-Cl	89.32	88.29	90.38	89.84	88.52	89.52	89.50	89.72	89.57	91.46	89.4
		90.68	91.70	89.61	90.15	91.47	90.47	90.49	90.27	90.42	88.53	90.59
Dv2H12C12N2O16	O-Dv-O	75 84	80.49	78 84	79.90	82 84	79.84	78.03	78 12	79.06	80.17	79.87
Dy21112012102010	0-b <u>y</u> -0	75.51	75.05	70.04	78.05	75.00	76.75	76.10	77.21	76.60	78.13	76.20
		73.51	/3.03	77.85	76.05	(0.26	70.75	70.19	77.21	70.09	76.15	70.29
		/3.54	68.04	/6.14	75.20	69.36	72.34	/3.00	74.74	73.22	/5.01	/1.69
		/4.21	//.//	/1.81	/1.08	/1./0	72.44	/5./8	71.96	72.49	70.64	/3.4
		80.01	86.18	75.70	76.55	82.74	78.72	79.45	76.65	79.23	76.68	80.64
		85.78	82.72	84.41	85.04	87.51	84.91	84.89	84.55	85.70	84.91	84.42
		85.15	77.50	87.43	80.90	82.89	84.78	82.22	85.47	83.09	80.74	85.42
E. U.C.O	0 5 0	/0.09	/5.01	/6./9	/0.30	/0.95	/0./1	/5.00	//.44	/0.55	/0.04	/4.98
Fe4H4C4O12	O-Fe-O	88.51	95.08	85.09	84.70	85.10	85.52	88.11	80.45	91.95	84.000	84.79
		/3.86	/9.31	/1./5	/3.86	/1.51	/4.61	/2.91	//.18	72.98	82.002	81.89
		85.59	84.94	83.73	83.14	82.64	83.60	84.69	84.79	82.21	73.28	79.51
		104.87	98.64	98.73	100.22	98.16	107.91	106.67	106.62	103.09	106.96	102.13
		87.34	89.35	90.41	89.32	88.82	88.94	86.20	89.18	85.264	82.25	84.76
	0 5 0	93.86	90.08	92.34	92.33	92.03	92.58	89.31	91.91	84.15	91.73	91.59
Fe4P4H16C8O24	O-Fe-O	94.16	92.87	94.21	94.61	94.48	94.72	93.24	93.87	94.23	94.06	94.43
		81.65	81.32	81.07	82.41	82.59	81.50	80.78	81.28	81.54	81.97	81.19
		84.39	86.46	83.12	87.93	87.34	83.97	84.22	83.32	84.65	83.99	82.98
		90.43	92.72	89.23	90.89	91.01	89.96	89.62	89.71	90.54	89.28	95.18
		93.43	91.09	94.70	92.50	91.//	93.38	94.53	94.19	93.40	94.29	91.85
		90.84	85.57	92.39	90.33	89.99	90.55	90.00	91.82	90.08	90.89	89.5
		/8.4/	81.75	/0.3	151.05	/4.8/	/4.84	/8.54	/ 5.88	/9.88	140.11	85.08
		152.01	154.95	151.92	102.51	154.69	140.04	101.57	151.05	151.07	149.11	157.07
		101.34	104.49	104./1	102.51	103.85	158.57	101.20	138.07	104.90	105.21	169.05
		174.03	175.0	07.50	82.00	178.05	100.02 94.6	172.50 95.70	99.40	95 61	82.00	82.00
		87.09	07.55	87.52	82.09	02.03 86.59	01.21	00.35	02.99	00.22	00.09	06.20
		120.50	110.69	122.46	122 57	122 70	122.0	121.20	110.10	124.08	122.17	125.69
SmaHiaCiaOi	0.5m.0	51.02	51.06	51 32	51.88	51 34	51 40	51.00	51 70	51.68	52.03	51.34
511/2010014	0-511-0	75.42	76.07	74.56	73.86	74.16	74 10	76.63	73.00	74.04	73.82	74.24
		77.21	69.06	74.50	75.28	77.18	75.80	70.05	73.90	77.40	75.35	78.25
		75.97	65.62	74.06	75.26	77.42	75.33	69.86	75.10	76.87	75.55	76.23
		74.86	79.17	77.73	75.50	73.69	75.55	78.50	76.19	73.61	75.50	76.93
		67.35	71.30	65.91	66 30	69.55	66 70	68 71	66.08	66.83	66.10	68.83
UiO-66	7r_0 7r	112 76	112 76	110.40	110.21	110.08	112 76	112.8	112 76	116 50	110.04	110.60
010-00	D 7 = 0	77 30	77 20	76.00	76.02	75 02	71.03	112.0 81.39	77 20	81.60	75 01	76 /1
MOF-5	$7n_0$ $7r$	109 47	109 47	100 47	109 47	109.92	109 47	109 55	109.47	100 47	100 47	100 47
1101-5	$\Omega_{-}7 = \Omega_{-}$	106.36	109.47	107.4/	107.47	107.47	107.40	109.55	107.47	106.87	106.03	107.47
MSF (9)	0-211-0	100.30	0.10	0.04	_0 3/	_0 11	_0.05	_0.02	_0 /3	0.01	_0.42	0.26
			2 16	2.00	1 71	1 75	-0.03	1 20	-0.43	1 10	1 05	1 77
MUE() MUPF(%)			2.40	2.00	1./1	1.73	1.13	1.20	1.74	1.19	2 1.95	1.//
11101 E (/0)			<i>2.1</i> -	<i>2.10</i>	1.01	1.07	1.55	1.01	1.75	1.40	4.15	1.0/

^{*a*}The references for the experimental bond angles are given in Table S1.

MOF	Torsional angle type	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06-L	revTPSS	SCAN	SOGGA	vdW-DF2
$Ag_4C_{12}Cl_4O_8$	Ag-O-Ag-Cl	142.58	134.67	132.45	125.89	158.72	135.42	135.01	122.88	137.23	125.78	139.92
$Cd_{12}H_{48}C_{72}N_{72}O_{4}$ 8	N-Cd-N-C	140.60	141.83	145.95	142.96	142.99	142.99	141.05	143.43	143.47	143.06	143.55
$Cd_{2}H_{10}C_{16}N_{4}O_{10}$	O-Cd-N-C	123.80	123.43	127.59	124.03	124.03	124.37	123.73	124.06	124.09	123.92	126.52
$\mathbf{Zn}_{1}\mathbf{H}_{4}\mathbf{C}_{4}\mathbf{O}_{4}$	O-Zn-O-C	151.50	169.98	144.71	144.12	145.99	150.26	146.89	143.42	150.02	144.12	157.51
Li ₈ Zn ₈ H ₂₄ C ₇₂ O ₄₈	Li-O-Zn-O	128.40	127.80	130.29	127.96	131.39	130.04	128.33	125.71	127.73	127.96	133.44
$\mathrm{Co}_{2}\mathrm{C}_{8}\mathrm{N}_{12}$	N-Co-N-C	150.30	166.86	164.66	148.88	154.73	154.11	150.42	150.76	149.66	171.06	161.48
Cu ₃ H ₄ C ₁₀ O ₁₀	Cu-O-Cu-O	117.64	116.81	129.2	119.02	118.91	123.86	117.28	119.54	122.23	118.90	121.03
Cu ₈ H ₈ C ₈ N ₁₂ Cl ₈	Cu-Cl-Cu-Cl	153.40	149.82	157.94	152.41	153.85	152.65	151.65	152.69	153.17	148.36	141.86
$Dy_2H_{12}C_{12}N_2O_{16}$	O-Dy-O-C	165.23	173.83	174.61	167.66	173.46	169.97	168.08	168.05	169.91	167.79	171.28
Fe ₄ H ₄ C ₄ O ₁₂	O-Fe-O-C	164.70	168.11	162.02	170.05	163.33	169.84	159.21	164.91	165.53	158.15	171.83
Fe ₄ P ₄ H ₁₆ C ₈ O ₂₄	Fe-O-P-O	93.40	93.48	101.52	102.58	120.05	105.31	89.73	94.37	94.19	95.03	102.22
$Sm_{2}H_{12}C_{10}O_{14}$	O-Sm-O-C	131.55	126.77	141.87	136.30	134.43	134.57	127.74	136.71	132.35	136.34	136.67
UiO-66	Zr-O-Zr-O	154.96	154.96	157.87	158.09	158.21	154.96	156.96	154.96	150.11	158.26	157.66
MOF-5	Zn-O-Zn-O	120	120	120	120	120	120	120	120	120	120	120
MSE (°)			2.16	3.75	0.13	4.43	2.16	-1.57	-0.96	0.11	-0.05	3.35
MUE (°)			4.74	6.55	3.98	5.41	3.47	2.34	3.48	2.00	5.22	5.37
MUPE (%)			3.17	4.85	2.98	4.43	2.76	1.67	2.47	1.42	3.57	3.92

Table S7: Torsional angles (deg) of the metal–organic frameworks (MOFs) calculated using various local and meta functionals.

^{*a*}The references for the experimental bond lengths are given in Table S1.

MOF	Exp. ^a	MN15-L	PBE	PBEsol	PBE-D2	PBE-D3	revM06–L	revTPSS	SCAN	SOGGA	vdW-DF2
Ag ₄ C ₁₂ Cl ₄ O ₈	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	$\alpha = 90$	<i>α</i> =90	<i>α</i> =90	a=90	<i>α</i> =90
4 12 4 8	$\beta = 90$	$\beta = 86.73$	$\beta = 97.92$	$\beta = 94.99$	$\beta = 89.59$	$\beta = 91.30$	$\beta = 90.97$	$\beta = 96.02$	$\beta = 91.33$	β=95.19	$\beta = 91.53$
	γ=90	γ= 90	γ=90	γ= 90	γ= 90	γ= 90	γ=90	γ= 90	γ= 90	γ= 90	γ =90
$Cd_{12}H_{48}C_{72}N_{72}O_{48}$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	<i>α</i> =90	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	<i>α</i> =90	<i>α</i> =90	$\alpha = 90$
	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$
	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma=90$
$Cd_{2}H_{10}C_{16}N_{4}O_{10}$	$\alpha = 71.4$	$\alpha = 72.6$	$\alpha = 70.18$	$\alpha = 70.40$	$\alpha = 69.73$	$\alpha = 70.06$	$\alpha = 71.98$	$\alpha = 71.00$	$\alpha = 70.94$	$\alpha = 70.39$	$\alpha = 70.53$
	$\beta=73$	$\beta = 76$	$\beta = 71.85$	β =71.97	β =72.57	$\beta = 72.37$	$\beta = 74.20$	$\beta = 72.26$	$\beta = 72.75$	$\beta = 71.96$	$\beta = 73.15$
	γ=74.9	$\gamma = 77.14$	γ=74.36	γ=73.73	γ=73.81	$\gamma = 73.77$	$\gamma = 75.19$	γ=74.49	γ=74.24	γ=73.74	γ=74.27
Zn ₁ H ₄ C ₄ O ₄	$\alpha = 90$	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	<i>α</i> =90	$\alpha = 90$
	$\beta = 108.5$	$\beta = 110.65$	$\beta = 114.42$	$\beta = 104.64$	$\beta = 105.35$	$\beta = 105.83$	$\beta = 104.28$	$\beta = 110.92$	$\beta = 105.23$	$\beta = 104.62$	$\beta = 104.52$
	γ=90	γ=90	$\gamma=90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma=90$
Li ₈ Zn ₈ H ₂₄ C ₇₂ O ₄₈	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha=90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta=90$	$\beta = 90$
	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	γ=90
UiO-66	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	<i>α</i> =90	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$
	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma=90$
MOF-5	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta=90$	$\beta = 90$
	γ=90	γ=90	γ=90	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	γ=90
Co ₂ C ₈ N ₁₂	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	<i>α</i> =90	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$
	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma=90$
$Cu_{3}H_{4}C_{10}O_{10}$	<i>α</i> =98.6	$\alpha = 100.43$	<i>α</i> =96.91	$\alpha = 98.99$	<i>α</i> =99.17	$\alpha = 98.17$	$\alpha = 99.44$	$\alpha = 98.48$	$\alpha = 99.00$	$\alpha = 108.78$	<i>α</i> =98.91
	β=92	$\beta = 91.99$	$\beta = 91.40$	$\beta = 92.02$	$\beta = 92.04$	$\beta = 91.74$	$\beta = 92.32$	$\beta = 91.85$	$\beta = 92.02$	$\beta = 97.90$	$\beta = 91.86$
	γ=94.3	γ=93.61	γ=96.98	γ=94.95	γ=95.39	γ=95.47	γ=94.39	$\gamma = 95.00$	γ=95.62	γ=90.93	γ=94.87
Cu ₈ H ₈ C ₈ N ₁₂ Cl ₈	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha=90$	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta=90$	$\beta = 90$
	γ=90	γ=90	$\gamma=90$	γ=90	γ=90	γ=90	$\gamma = 90$	γ=90	γ=90	γ=90	$\gamma=90$
$Dy_{2}H_{12}C_{12}N_{2}O_{16}$	<i>α</i> =95.6	$\alpha = 96.49$	$\alpha = 90$	$\alpha = 96.12$	$\alpha = 95.13$	$\alpha = 95.89$	$\alpha = 95.60$	$\alpha = 96.07$	$\alpha = 95.67$	$\alpha = 96.19$	$\alpha = 95.49$
	$\beta = 110.4$	$\beta = 108.38$	$\beta = 90$	$\beta = 109.51$	$\beta = 113.12$	$\beta = 111.50$	$\beta = 111.62$	$\beta = 109.38$	$\beta = 111.24$	$\beta = 109.36$	$\beta = 111.77$
	γ=94.5	<i>γ</i> =93.65	$\gamma = 90$	γ=93.69	γ=93.73	γ=94.28	<i>γ</i> =94.43	$\gamma = 94.03$	γ=94.05	γ=93.78	γ=94.43
Fe ₄ H ₄ C ₄ O ₁₂	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	<i>α</i> =90	$\alpha = 90$	$\alpha = 90$
	$\beta = 90.6$	$\beta = 71.88$	$\beta = 90$	$\beta = 92.53$	$\beta = 90$	$\beta = 90.59$	$\beta = 90.59$	$\beta = 90$	$\beta = 88.68$	$\beta = 72.30$	$\beta = 89.75$
	γ=90	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	γ=90	$\gamma = 90$	$\gamma = 90$
Fe ₄ P ₄ H ₁₆ C ₈ O ₂₄	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$	$\alpha = 90$
	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta=90$	$\beta = 90$	$\beta = 90$
	γ=90	$\gamma = 90$	$\gamma = 90$	γ=90	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	$\gamma = 90$	γ=90	γ=90	$\gamma = 90$
$Sm_{2}H_{12}C_{10}O_{14}$	$\alpha = 101.9$	$\alpha = 103.32$	$\alpha = 101.47$	$\alpha = 101.32$	<i>α</i> =99.95	$\alpha = 100.61$	$\alpha = 102.17$	$\alpha = 101.89$	$\alpha = 101.41$	$\alpha = 103.13$	$\alpha = 101.22$
	$\beta = 103.1$	$\beta = 102.78$	$\beta = 101.62$	$\beta = 101.89$	$\beta = 102.29$	$\beta = 102.21$	$\beta = 104.11$	$\beta = 102.32$	$\beta = 103.13$	$\beta = 99.57$	$\beta = 103.25$
	γ=101.4	γ=98.21	γ=103.20	γ=103.44	γ=101.87	<i>γ</i> =102.45	γ=99.15	<i>γ</i> = <i>1</i> 02.87	γ=101.81	γ=97.12	γ=100.86
MSE		-0.38	-0.48	-0.0005	-0.13	-0.09	0.008	0.15	-0.07	-0.20	-0.08
MUE		0.99	1.34	0.49	0.37	0.32	0.31	0.37	0.28	1.26	0.28
MUPA (%)		2.38	1.35	2.25	1.52	3.52	0.32	0.40	0.29	1.36	0.29

Table S8: Lattice angles (deg) of the metal–organic frameworks (MOFs) calculated using various local and meta functionals.

S-11

Systems	Experime	ental ^a	revM0	6-L	S	CAN
	Lattice Constants (Å)	Band Gaps (eV)	Lattice Constants (Å)	Band Gaps (eV)	Lattice Constants (Å)	Band Gaps (eV)
Si	a=b=c=5.430	1.17	5.430	1.10	5.423	0.95
Ge	a=b=c=5.657	0.74	5.707	1.13	5.687	1.13
SiC	a=b=c= 4.348	2.42	4.319	2.35	4.348	1.87
β-GaN	a=b=c= 4.545	3.30	4.514	2.61	4.523	2.27
CdS	a=b=c=5.818	2.55	5.909	2.34	5.879	1.68
CdSe	a=b=c= 6.213	1.90	6.172	1.67	6.134	1.12
ZnS	a=b=c=5.409	3.66	5.387	3.45	5.375	2.74
ZnO	<i>a</i> = <i>b</i> =3.249 <i>c</i> =5.207	3.40	<i>a=b=</i> 3.189 <i>c=</i> 5.162	1.87	<i>a=b=</i> 3.234 <i>c=</i> 5.224	1.73
TiO2 (anatase) ^b	<i>a</i> = <i>b</i> =3.803 <i>c</i> =9.748 (18)	3.20 (19)	<i>a=b=</i> 3.802 <i>c=</i> 9.590	2.56	a=b=3.797 c=9.547	2.27
TiO2 (rutile) ^b	<i>a=b=</i> 4.653 <i>c=</i> 2.969 (18)	3.00 (20)	<i>a=b=</i> 4.621 <i>c=</i> 2.961	2.19	<i>a</i> = <i>b</i> =4.622 <i>c</i> =2.951	1.90
MSE			-0.01	-0.40	-0.05	-0.77
MUE			0.05	0.48	0.04	0.85
MUPE			0.68	19.54	0.57	48.96

Table S9: Lattice constants and band gaps of ten semiconductors calculated with the revM06-L and SCAN functionals

"The experimental lattice constants are taken from the LC17 database²¹ and the band gaps are taken from the SBG31 database²¹ except for the anatase and rutile phases of TiO₂.

^bThe references for the experimental lattice constants and band gaps of TiO₂ (anatase and rutile) are given in the parentheses after the experimental values.

^cMSE: mean signed error; MUE: mean unsigned error; MUPE: mean unsigned percentage error.

References

- Frenzer, W.; Wartchow, R.; Bode, H.; Crystal structure of disilver 2,5-dichloro-[1,4]benzoquinone-3,6-diolate, Ag₂(C₆O₄Cl₂). *Zeitschrift Fur Kristallographie*, **1997**, *212*, 237.
- 2. Tian, Y-Q.; Yao, S.-Y.; Gu, D.; Cui, K.-H.; Guo, D.-W.; Zhang, G.; Chen, Z. X.; Zhao, D.-Y.; Cadmium imidazolate frameworks with polymorphism, high thermal stability, and a large surface area. *Chem. Eur. J.*, **2010**, *16*, 1137-1141.
- 3. Wang, C. C.; Kuo, C. T.; Yang, J. C.; Lee, G. H.; Shih, W. J.; Sheu, H. S.; Assemblies of two new metal–organic frameworks constructed from Cd(II) with 2,2⁺-bipyrimidine and cyclic oxocarbon dianions $C_n O_n^{2-}$ (n = 4, 5). *Cryst. Growth Des.* **2007**, *7*, 1476-1482.
- Bowden, T. A.; Milton, H. L.; Slawin, A. M. Z.; Lightfoot, P.; Hydrothermal syntheses and crystal structures of three zinc succinates: Zn(C₄H₄O₄)-α, Zn(C₄H₄O₄)-β and K₂Zn(C₄H₄O₄)₂. *Dalton Trans.* 2003, 936-939.
- 5. Xie, L. H.; Lin, J. B.; Liu, X. M.; Wang, Y.; Zhang, W. X.; Zhang, J. P.; Chen, X. M.; Porous coordination polymer with flexibility imparted by coordinatively changeable lithium ions on the pore surface. *Inorg. Chem.* **2010**, *49*, 1158-1165.
- 6. Kurmoo, M., Kepert, C. J.; Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)₂}⁻. *New J. Chem.*, **1998**, *22*, 1515-1524.
- 7. Cao, R.; Shi, Q.; Sun, D. F.; Hong, M. C.; Bi, W. H.; Zhao, Y. J.; Syntheses and characterizations of Copper(II) polymeric complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. *Inorg. Chem.* **2002**, *41*, 6161-6168.
- Ouellette, W.; Prosvirin, A. V.; Chieffo, V.; Dunbar, K. R.; Hudson, B.; Zubieta, J.; Solidstate Coordination Chemistry of the Cu/triazolate/X System (X = F-, Cl-, Br-, I-, OH-, and SO₄(²⁻)). *Inorg. Chem.* 2006, *45*, 9346-9366.
- 9. Kong, X. J.; Zhuang, G. L.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S.; In situ cyclodehydration of iminodiacetic acid into 2,5-diketopiperazine-1,4-diacetate in lanthanide-based coordination polymers. *Dalton Trans.* **2009**, 1707-1709.
- Molinier, M.; Price, D. J.; Wood, P. T.; Powell, A. K.; Biomimetic control of iron oxide and hydroxide phases in the iron oxalate system. *J. Chem. Soc., Dalton Trans.*, 1997, 4061-4068.
- 11. Hou, J. J., Zhang, X. M.; Structures and magnetic properties of a series of metal phosphonoacetates synthesized from in situ hydrolysis of triethyl phosphonoacetate. *Cryst. Growth Des.* **2006**, *6*, 1445-1452.
- 12. Zhang, X. J.; Xing, Y. H.; Han, J.; Zeng, X. Q.; Ge, M. F.; Niu, S. Y.; A series of novel ln-succinate-oxalate coordination polymers: synthesis, structure, thermal stability, and fluorescent properties. *Cryst. Growth Des.* **2008**, 8, 3680-3688.
- Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
- Hailian Li, Mohamed Eddaoudi, M. O'Keeffe & O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. *Nature*, 1999, 402, 276-279.

- 15. Martin, R. L.; Smit B.; Haranczyk, M.; Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. *J. Chem. Inf. Model.* **2012**, *52*, 308-318.
- Willems, T. F.; Rycro, C.; Kazi, M.; Meza, J. C.; Haranczyk, M.; Algorithms and tools for high-throughput geometry- based analysis of crystalline porous materials, Microporous and Mesoporous Materials. 2012, 149, 134-141.
- 17. Pinheiro, M.; R. L. Martin, C. H. Rycro, A. Jones, E. Iglesia, and M. Haranczyk, Characterization and comparison of pore landscapes in crystalline porous materials. *J. Mol. Graphics Modell.* **2013**, *44*, 208-219.
- 18. Wyckoff. R. W. G. Crystal Structures; second edition; Interscience Publishers: New York, **1963**, Vol. **1**, p. 239.
- 19. Rahimi, N. v.; Pax, R. A., Gray, E. M., Review of functional titanium oxides. I: TiO₂ and its modifications. *Solid State Chem.* **2016**, *44*, 86-105.
- 20. Noda, L. K.; Rosales, R.; Goncalves, N. S.; Sala, O.; Evidences for charge-transfer complex formation in the benzene adsorption on sulfated TiO₂–a resonance Raman spectroscopy investigation. *J. Raman Spectrosc.* **2008**, *39*, 415-420.
- 21. Peverati, R.; Truhlar, D. G.; Performance of the M11-L Density Functional for Bandgaps and Lattice Constants of Unary and Binary Semiconductors. J. Chem. Phys. 2012, 136, 134704.