Supporting Information for

Two annulated azaheterocyclic cores readily available from a single tetrahydroisoquinolonic Castagnoli-Cushman precursor

Elizaveta Karchuganova, ${ }^{a}$ Olga Bakulina, ${ }^{a}$ Dmitry Dar'in ${ }^{a}$ and Mikhail Krasavin*a ${ }^{a}$ Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
* Corresponding Author; phone: + 7931 3617872, fax: +7 8124286939 .
E-mail: m.krasavin@spbu.ru; https://krasavin-group.org/

Table of contents

1. Table S1. Reaction conditions screening for the reduction of compound $\mathbf{5}$ S2
2. Crystallographic data for compound 7 S2
3. Copies of NMR spectra for compounds $\mathbf{2 , 4 , 5 , 7 - 1 1}$ S4
4. References S12
5. Table S1. Reaction conditions screening for the reduction of compound $\mathbf{5}$

Entry	Reagents and conditions	Result (according to NMR)
1	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, (4 equiv.), DME- $\mathrm{H}_{2} \mathrm{O}$ (1:1), reflux, 16h	Decomposition of substrate
2	SnCl_{2} (5 equiv.), EtOH, reflux, 16h	Decomposition of substrate
3	$\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{THF}, 10 \% \mathrm{wt} \mathrm{Pd} / \mathrm{C}$, r.t., 16h	Full conversion. Two products (3:1) compound $\mathbf{4}+$ corresponding NHlactam (overreduction)
4	$\mathrm{HCO}_{2} \mathrm{H}$ (50 equiv.), MeOH-THF (1:1), $10 \% \mathrm{wt}$ Pd / C, reflux, 16h	Full conversion. Compound $4+$ two unknown by-products (2:1:1)
5	$\mathrm{HCO}_{2} \mathrm{NH}_{4}$ (10 equiv.), $\mathrm{MeOH}, 10 \% \mathrm{wt} \mathrm{Pd} / \mathrm{C}$, reflux, 16h	Compound $\mathbf{4}$ was isolated in 96% yield
6	$\mathrm{Na}_{2} \mathrm{~S}$ (6 equiv.), dioxane-water (1:1), $70{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$	Compound 7 was isolated in 91% yield

2. Crystallographic data

X-ray single crystal analysis was performed on Agilent Technologies «Supernova» diffractometer with monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The temperature was kept at 293 K during data collection. Using Olex2[1], the structure was solved with the SHELXT[2] structure solution program using Intrinsic Phasing and refined with the SHELXL[3] refinement package using Least Squares minimization. CCDC 1996076 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.

Figure S1. Crystal structure of compound 7
Table S2. Crystal data and structure refinement for compound 7

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
Formula weight	468.50
Temperature/K	$293(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	$11.0070(3)$
b / \AA	$15.9054(4)$

c/ \AA	12.3765(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	95.846(3)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2155.49(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.444
μ / mm^{-1}	0.744
$\mathrm{F}(000)$	976.0
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	8.074 to 141.34
Index ranges	$-13 \leq \mathrm{h} \leq 13,-19 \leq \mathrm{k} \leq 19,-13 \leq 1 \leq 15$
Reflections collected	23901
Independent reflections	$4127\left[\mathrm{R}_{\text {int }}=0.0518, \mathrm{R}_{\text {sigma }}=0.0297\right]$
Data/restraints/parameters	4127/0/325
Goodness-of-fit on F^{2}	1.054
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0686, \mathrm{wR}_{2}=0.1930$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0752, \mathrm{wR}_{2}=0.1995$
Largest diff. peak/hole / e \AA^{-3}	0.81/-0.33

3. Copies of NMR spectra for compounds 2,4,5,7-11

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 5

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 7

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 4

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 8

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 9

	1	1	17		1	1		1	1	1	1	1	70	6	5	1	1	1	10	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 2

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 10

$$
\begin{aligned}
& \underbrace{\substack{\infty \\
\infty \\
\text { ® } \\
\infty \\
\infty}}_{\infty}
\end{aligned}
$$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of compound 11

4. References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, (2), 339-341, DOI: 10.1107/s0021889808042726.
2. Sheldrick, G. M., SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, (Pt 1), 3-8, DOI: 10.1107/S2053273314026370.
3. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, (Pt 1), 38, DOI: 10.1107/S2053229614024218.
